| author | wenzelm | 
| Tue, 21 Oct 2014 21:35:45 +0200 | |
| changeset 58758 | 790ff9eb2578 | 
| parent 56138 | f42de6d8ed8e | 
| child 59897 | d1e7f56bcd79 | 
| permissions | -rw-r--r-- | 
| 37134 | 1  | 
(* Title: FOL/ex/Locale_Test/Locale_Test1.thy  | 
2  | 
Author: Clemens Ballarin, TU Muenchen  | 
|
3  | 
||
4  | 
Test environment for the locale implementation.  | 
|
5  | 
*)  | 
|
6  | 
||
7  | 
theory Locale_Test1  | 
|
8  | 
imports FOL  | 
|
9  | 
begin  | 
|
10  | 
||
| 
55380
 
4de48353034e
prefer vacuous definitional type classes over axiomatic ones;
 
wenzelm 
parents: 
53367 
diff
changeset
 | 
11  | 
typedecl int  | 
| 
 
4de48353034e
prefer vacuous definitional type classes over axiomatic ones;
 
wenzelm 
parents: 
53367 
diff
changeset
 | 
12  | 
instance int :: "term" ..  | 
| 
 
4de48353034e
prefer vacuous definitional type classes over axiomatic ones;
 
wenzelm 
parents: 
53367 
diff
changeset
 | 
13  | 
|
| 37134 | 14  | 
consts plus :: "int => int => int" (infixl "+" 60)  | 
15  | 
  zero :: int ("0")
 | 
|
16  | 
  minus :: "int => int" ("- _")
 | 
|
17  | 
||
| 41779 | 18  | 
axiomatization where  | 
19  | 
int_assoc: "(x + y::int) + z = x + (y + z)" and  | 
|
20  | 
int_zero: "0 + x = x" and  | 
|
21  | 
int_minus: "(-x) + x = 0" and  | 
|
| 37134 | 22  | 
int_minus2: "-(-x) = x"  | 
23  | 
||
24  | 
section {* Inference of parameter types *}
 | 
|
25  | 
||
26  | 
locale param1 = fixes p  | 
|
27  | 
print_locale! param1  | 
|
28  | 
||
29  | 
locale param2 = fixes p :: 'b  | 
|
30  | 
print_locale! param2  | 
|
31  | 
||
32  | 
(*  | 
|
33  | 
locale param_top = param2 r for r :: "'b :: {}"
 | 
|
34  | 
Fails, cannot generalise parameter.  | 
|
35  | 
*)  | 
|
36  | 
||
37  | 
locale param3 = fixes p (infix ".." 50)  | 
|
38  | 
print_locale! param3  | 
|
39  | 
||
40  | 
locale param4 = fixes p :: "'a => 'a => 'a" (infix ".." 50)  | 
|
41  | 
print_locale! param4  | 
|
42  | 
||
43  | 
||
44  | 
subsection {* Incremental type constraints *}
 | 
|
45  | 
||
46  | 
locale constraint1 =  | 
|
47  | 
fixes prod (infixl "**" 65)  | 
|
48  | 
assumes l_id: "x ** y = x"  | 
|
49  | 
assumes assoc: "(x ** y) ** z = x ** (y ** z)"  | 
|
50  | 
print_locale! constraint1  | 
|
51  | 
||
52  | 
locale constraint2 =  | 
|
53  | 
fixes p and q  | 
|
54  | 
assumes "p = q"  | 
|
55  | 
print_locale! constraint2  | 
|
56  | 
||
57  | 
||
58  | 
section {* Inheritance *}
 | 
|
59  | 
||
60  | 
locale semi =  | 
|
61  | 
fixes prod (infixl "**" 65)  | 
|
62  | 
assumes assoc: "(x ** y) ** z = x ** (y ** z)"  | 
|
63  | 
print_locale! semi thm semi_def  | 
|
64  | 
||
65  | 
locale lgrp = semi +  | 
|
66  | 
fixes one and inv  | 
|
67  | 
assumes lone: "one ** x = x"  | 
|
68  | 
and linv: "inv(x) ** x = one"  | 
|
69  | 
print_locale! lgrp thm lgrp_def lgrp_axioms_def  | 
|
70  | 
||
71  | 
locale add_lgrp = semi "op ++" for sum (infixl "++" 60) +  | 
|
72  | 
fixes zero and neg  | 
|
73  | 
assumes lzero: "zero ++ x = x"  | 
|
74  | 
and lneg: "neg(x) ++ x = zero"  | 
|
75  | 
print_locale! add_lgrp thm add_lgrp_def add_lgrp_axioms_def  | 
|
76  | 
||
77  | 
locale rev_lgrp = semi "%x y. y ++ x" for sum (infixl "++" 60)  | 
|
78  | 
print_locale! rev_lgrp thm rev_lgrp_def  | 
|
79  | 
||
80  | 
locale hom = f: semi f + g: semi g for f and g  | 
|
81  | 
print_locale! hom thm hom_def  | 
|
82  | 
||
83  | 
locale perturbation = semi + d: semi "%x y. delta(x) ** delta(y)" for delta  | 
|
84  | 
print_locale! perturbation thm perturbation_def  | 
|
85  | 
||
86  | 
locale pert_hom = d1: perturbation f d1 + d2: perturbation f d2 for f d1 d2  | 
|
87  | 
print_locale! pert_hom thm pert_hom_def  | 
|
88  | 
||
89  | 
text {* Alternative expression, obtaining nicer names in @{text "semi f"}. *}
 | 
|
90  | 
locale pert_hom' = semi f + d1: perturbation f d1 + d2: perturbation f d2 for f d1 d2  | 
|
91  | 
print_locale! pert_hom' thm pert_hom'_def  | 
|
92  | 
||
93  | 
||
94  | 
section {* Syntax declarations *}
 | 
|
95  | 
||
96  | 
locale logic =  | 
|
97  | 
fixes land (infixl "&&" 55)  | 
|
98  | 
    and lnot ("-- _" [60] 60)
 | 
|
99  | 
assumes assoc: "(x && y) && z = x && (y && z)"  | 
|
100  | 
and notnot: "-- (-- x) = x"  | 
|
101  | 
begin  | 
|
102  | 
||
103  | 
definition lor (infixl "||" 50) where  | 
|
104  | 
"x || y = --(-- x && -- y)"  | 
|
105  | 
||
106  | 
end  | 
|
107  | 
print_locale! logic  | 
|
108  | 
||
| 
49756
 
28e37eab4e6f
added some ad-hoc namespace prefixes to avoid duplicate facts;
 
wenzelm 
parents: 
43543 
diff
changeset
 | 
109  | 
locale use_decl = l: logic + semi "op ||"  | 
| 37134 | 110  | 
print_locale! use_decl thm use_decl_def  | 
111  | 
||
112  | 
locale extra_type =  | 
|
113  | 
fixes a :: 'a  | 
|
114  | 
and P :: "'a => 'b => o"  | 
|
115  | 
begin  | 
|
116  | 
||
117  | 
definition test :: "'a => o" where  | 
|
118  | 
"test(x) <-> (ALL b. P(x, b))"  | 
|
119  | 
||
120  | 
end  | 
|
121  | 
||
122  | 
term extra_type.test thm extra_type.test_def  | 
|
123  | 
||
124  | 
interpretation var?: extra_type "0" "%x y. x = 0" .  | 
|
125  | 
||
126  | 
thm var.test_def  | 
|
127  | 
||
128  | 
||
129  | 
text {* Under which circumstances term syntax remains active. *}
 | 
|
130  | 
||
131  | 
locale "syntax" =  | 
|
132  | 
fixes p1 :: "'a => 'b"  | 
|
133  | 
and p2 :: "'b => o"  | 
|
134  | 
begin  | 
|
135  | 
||
136  | 
definition d1 :: "'a => o" where "d1(x) <-> ~ p2(p1(x))"  | 
|
137  | 
definition d2 :: "'b => o" where "d2(x) <-> ~ p2(x)"  | 
|
138  | 
||
139  | 
thm d1_def d2_def  | 
|
140  | 
||
141  | 
end  | 
|
142  | 
||
143  | 
thm syntax.d1_def syntax.d2_def  | 
|
144  | 
||
145  | 
locale syntax' = "syntax" p1 p2 for p1 :: "'a => 'a" and p2 :: "'a => o"  | 
|
146  | 
begin  | 
|
147  | 
||
148  | 
thm d1_def d2_def (* should print as "d1(?x) <-> ..." and "d2(?x) <-> ..." *)  | 
|
149  | 
||
150  | 
ML {*
 | 
|
151  | 
fun check_syntax ctxt thm expected =  | 
|
152  | 
let  | 
|
| 56036 | 153  | 
val obtained =  | 
154  | 
Print_Mode.setmp [] (Display.string_of_thm (Config.put show_markup false ctxt)) thm;  | 
|
| 37134 | 155  | 
in  | 
156  | 
if obtained <> expected  | 
|
157  | 
      then error ("Theorem syntax '" ^ obtained ^ "' obtained, but '" ^ expected ^ "' expected.")
 | 
|
158  | 
else ()  | 
|
159  | 
end;  | 
|
160  | 
*}  | 
|
161  | 
||
| 
41305
 
42967939ea81
actually enable show_hyps option, unlike local_setup in 6da953d30f48 which merely affects the (temporary) auxiliary context;
 
wenzelm 
parents: 
41272 
diff
changeset
 | 
162  | 
declare [[show_hyps]]  | 
| 
41271
 
6da953d30f48
Enable show_hyps, which appears to be set in batch mode but in an interactive session.
 
ballarin 
parents: 
39557 
diff
changeset
 | 
163  | 
|
| 37134 | 164  | 
ML {*
 | 
165  | 
  check_syntax @{context} @{thm d1_def} "d1(?x) <-> ~ p2(p1(?x))";
 | 
|
166  | 
  check_syntax @{context} @{thm d2_def} "d2(?x) <-> ~ p2(?x)";
 | 
|
167  | 
*}  | 
|
168  | 
||
169  | 
end  | 
|
170  | 
||
171  | 
locale syntax'' = "syntax" p3 p2 for p3 :: "'a => 'b" and p2 :: "'b => o"  | 
|
172  | 
begin  | 
|
173  | 
||
174  | 
thm d1_def d2_def  | 
|
175  | 
(* should print as "syntax.d1(p3, p2, ?x) <-> ..." and "d2(?x) <-> ..." *)  | 
|
176  | 
||
177  | 
ML {*
 | 
|
178  | 
  check_syntax @{context} @{thm d1_def} "syntax.d1(p3, p2, ?x) <-> ~ p2(p3(?x))";
 | 
|
179  | 
  check_syntax @{context} @{thm d2_def} "d2(?x) <-> ~ p2(?x)";
 | 
|
180  | 
*}  | 
|
181  | 
||
182  | 
end  | 
|
183  | 
||
184  | 
||
185  | 
section {* Foundational versions of theorems *}
 | 
|
186  | 
||
187  | 
thm logic.assoc  | 
|
188  | 
thm logic.lor_def  | 
|
189  | 
||
190  | 
||
191  | 
section {* Defines *}
 | 
|
192  | 
||
193  | 
locale logic_def =  | 
|
194  | 
fixes land (infixl "&&" 55)  | 
|
195  | 
and lor (infixl "||" 50)  | 
|
196  | 
    and lnot ("-- _" [60] 60)
 | 
|
197  | 
assumes assoc: "(x && y) && z = x && (y && z)"  | 
|
198  | 
and notnot: "-- (-- x) = x"  | 
|
199  | 
defines "x || y == --(-- x && -- y)"  | 
|
200  | 
begin  | 
|
201  | 
||
202  | 
thm lor_def  | 
|
203  | 
||
204  | 
lemma "x || y = --(-- x && --y)"  | 
|
205  | 
by (unfold lor_def) (rule refl)  | 
|
206  | 
||
207  | 
end  | 
|
208  | 
||
209  | 
(* Inheritance of defines *)  | 
|
210  | 
||
211  | 
locale logic_def2 = logic_def  | 
|
212  | 
begin  | 
|
213  | 
||
214  | 
lemma "x || y = --(-- x && --y)"  | 
|
215  | 
by (unfold lor_def) (rule refl)  | 
|
216  | 
||
217  | 
end  | 
|
218  | 
||
219  | 
||
220  | 
section {* Notes *}
 | 
|
221  | 
||
222  | 
(* A somewhat arcane homomorphism example *)  | 
|
223  | 
||
224  | 
definition semi_hom where  | 
|
225  | 
"semi_hom(prod, sum, h) <-> (ALL x y. h(prod(x, y)) = sum(h(x), h(y)))"  | 
|
226  | 
||
227  | 
lemma semi_hom_mult:  | 
|
228  | 
"semi_hom(prod, sum, h) ==> h(prod(x, y)) = sum(h(x), h(y))"  | 
|
229  | 
by (simp add: semi_hom_def)  | 
|
230  | 
||
231  | 
locale semi_hom_loc = prod: semi prod + sum: semi sum  | 
|
232  | 
for prod and sum and h +  | 
|
233  | 
assumes semi_homh: "semi_hom(prod, sum, h)"  | 
|
234  | 
notes semi_hom_mult = semi_hom_mult [OF semi_homh]  | 
|
235  | 
||
236  | 
thm semi_hom_loc.semi_hom_mult  | 
|
237  | 
(* unspecified, attribute not applied in backgroud theory !!! *)  | 
|
238  | 
||
239  | 
lemma (in semi_hom_loc) "h(prod(x, y)) = sum(h(x), h(y))"  | 
|
240  | 
by (rule semi_hom_mult)  | 
|
241  | 
||
242  | 
(* Referring to facts from within a context specification *)  | 
|
243  | 
||
244  | 
lemma  | 
|
245  | 
assumes x: "P <-> P"  | 
|
246  | 
notes y = x  | 
|
247  | 
shows True ..  | 
|
248  | 
||
249  | 
||
250  | 
section {* Theorem statements *}
 | 
|
251  | 
||
252  | 
lemma (in lgrp) lcancel:  | 
|
253  | 
"x ** y = x ** z <-> y = z"  | 
|
254  | 
proof  | 
|
255  | 
assume "x ** y = x ** z"  | 
|
256  | 
then have "inv(x) ** x ** y = inv(x) ** x ** z" by (simp add: assoc)  | 
|
257  | 
then show "y = z" by (simp add: lone linv)  | 
|
258  | 
qed simp  | 
|
259  | 
print_locale! lgrp  | 
|
260  | 
||
261  | 
||
262  | 
locale rgrp = semi +  | 
|
263  | 
fixes one and inv  | 
|
264  | 
assumes rone: "x ** one = x"  | 
|
265  | 
and rinv: "x ** inv(x) = one"  | 
|
266  | 
begin  | 
|
267  | 
||
268  | 
lemma rcancel:  | 
|
269  | 
"y ** x = z ** x <-> y = z"  | 
|
270  | 
proof  | 
|
271  | 
assume "y ** x = z ** x"  | 
|
272  | 
then have "y ** (x ** inv(x)) = z ** (x ** inv(x))"  | 
|
273  | 
by (simp add: assoc [symmetric])  | 
|
274  | 
then show "y = z" by (simp add: rone rinv)  | 
|
275  | 
qed simp  | 
|
276  | 
||
277  | 
end  | 
|
278  | 
print_locale! rgrp  | 
|
279  | 
||
280  | 
||
281  | 
subsection {* Patterns *}
 | 
|
282  | 
||
283  | 
lemma (in rgrp)  | 
|
284  | 
assumes "y ** x = z ** x" (is ?a)  | 
|
285  | 
shows "y = z" (is ?t)  | 
|
286  | 
proof -  | 
|
287  | 
  txt {* Weird proof involving patterns from context element and conclusion. *}
 | 
|
288  | 
  {
 | 
|
289  | 
assume ?a  | 
|
290  | 
then have "y ** (x ** inv(x)) = z ** (x ** inv(x))"  | 
|
291  | 
by (simp add: assoc [symmetric])  | 
|
292  | 
then have ?t by (simp add: rone rinv)  | 
|
293  | 
}  | 
|
294  | 
note x = this  | 
|
295  | 
show ?t by (rule x [OF `?a`])  | 
|
296  | 
qed  | 
|
297  | 
||
298  | 
||
299  | 
section {* Interpretation between locales: sublocales *}
 | 
|
300  | 
||
301  | 
sublocale lgrp < right: rgrp  | 
|
302  | 
print_facts  | 
|
303  | 
proof unfold_locales  | 
|
304  | 
  {
 | 
|
305  | 
fix x  | 
|
306  | 
have "inv(x) ** x ** one = inv(x) ** x" by (simp add: linv lone)  | 
|
307  | 
then show "x ** one = x" by (simp add: assoc lcancel)  | 
|
308  | 
}  | 
|
309  | 
note rone = this  | 
|
310  | 
  {
 | 
|
311  | 
fix x  | 
|
312  | 
have "inv(x) ** x ** inv(x) = inv(x) ** one"  | 
|
313  | 
by (simp add: linv lone rone)  | 
|
314  | 
then show "x ** inv(x) = one" by (simp add: assoc lcancel)  | 
|
315  | 
}  | 
|
316  | 
qed  | 
|
317  | 
||
318  | 
(* effect on printed locale *)  | 
|
319  | 
||
320  | 
print_locale! lgrp  | 
|
321  | 
||
322  | 
(* use of derived theorem *)  | 
|
323  | 
||
324  | 
lemma (in lgrp)  | 
|
325  | 
"y ** x = z ** x <-> y = z"  | 
|
326  | 
apply (rule rcancel)  | 
|
327  | 
done  | 
|
328  | 
||
329  | 
(* circular interpretation *)  | 
|
330  | 
||
331  | 
sublocale rgrp < left: lgrp  | 
|
332  | 
proof unfold_locales  | 
|
333  | 
  {
 | 
|
334  | 
fix x  | 
|
335  | 
have "one ** (x ** inv(x)) = x ** inv(x)" by (simp add: rinv rone)  | 
|
336  | 
then show "one ** x = x" by (simp add: assoc [symmetric] rcancel)  | 
|
337  | 
}  | 
|
338  | 
note lone = this  | 
|
339  | 
  {
 | 
|
340  | 
fix x  | 
|
341  | 
have "inv(x) ** (x ** inv(x)) = one ** inv(x)"  | 
|
342  | 
by (simp add: rinv lone rone)  | 
|
343  | 
then show "inv(x) ** x = one" by (simp add: assoc [symmetric] rcancel)  | 
|
344  | 
}  | 
|
345  | 
qed  | 
|
346  | 
||
347  | 
(* effect on printed locale *)  | 
|
348  | 
||
349  | 
print_locale! rgrp  | 
|
350  | 
print_locale! lgrp  | 
|
351  | 
||
352  | 
||
353  | 
(* Duality *)  | 
|
354  | 
||
355  | 
locale order =  | 
|
356  | 
fixes less :: "'a => 'a => o" (infix "<<" 50)  | 
|
357  | 
assumes refl: "x << x"  | 
|
358  | 
and trans: "[| x << y; y << z |] ==> x << z"  | 
|
359  | 
||
360  | 
sublocale order < dual: order "%x y. y << x"  | 
|
361  | 
apply unfold_locales apply (rule refl) apply (blast intro: trans)  | 
|
362  | 
done  | 
|
363  | 
||
364  | 
print_locale! order (* Only two instances of order. *)  | 
|
365  | 
||
366  | 
locale order' =  | 
|
367  | 
fixes less :: "'a => 'a => o" (infix "<<" 50)  | 
|
368  | 
assumes refl: "x << x"  | 
|
369  | 
and trans: "[| x << y; y << z |] ==> x << z"  | 
|
370  | 
||
371  | 
locale order_with_def = order'  | 
|
372  | 
begin  | 
|
373  | 
||
374  | 
definition greater :: "'a => 'a => o" (infix ">>" 50) where  | 
|
375  | 
"x >> y <-> y << x"  | 
|
376  | 
||
377  | 
end  | 
|
378  | 
||
379  | 
sublocale order_with_def < dual: order' "op >>"  | 
|
380  | 
apply unfold_locales  | 
|
381  | 
unfolding greater_def  | 
|
382  | 
apply (rule refl) apply (blast intro: trans)  | 
|
383  | 
done  | 
|
384  | 
||
385  | 
print_locale! order_with_def  | 
|
386  | 
(* Note that decls come after theorems that make use of them. *)  | 
|
387  | 
||
388  | 
||
389  | 
(* locale with many parameters ---  | 
|
390  | 
interpretations generate alternating group A5 *)  | 
|
391  | 
||
392  | 
||
393  | 
locale A5 =  | 
|
394  | 
fixes A and B and C and D and E  | 
|
395  | 
assumes eq: "A <-> B <-> C <-> D <-> E"  | 
|
396  | 
||
397  | 
sublocale A5 < 1: A5 _ _ D E C  | 
|
398  | 
print_facts  | 
|
399  | 
using eq apply (blast intro: A5.intro) done  | 
|
400  | 
||
401  | 
sublocale A5 < 2: A5 C _ E _ A  | 
|
402  | 
print_facts  | 
|
403  | 
using eq apply (blast intro: A5.intro) done  | 
|
404  | 
||
405  | 
sublocale A5 < 3: A5 B C A _ _  | 
|
406  | 
print_facts  | 
|
407  | 
using eq apply (blast intro: A5.intro) done  | 
|
408  | 
||
409  | 
(* Any even permutation of parameters is subsumed by the above. *)  | 
|
410  | 
||
411  | 
print_locale! A5  | 
|
412  | 
||
413  | 
||
414  | 
(* Free arguments of instance *)  | 
|
415  | 
||
416  | 
locale trivial =  | 
|
417  | 
fixes P and Q :: o  | 
|
418  | 
assumes Q: "P <-> P <-> Q"  | 
|
419  | 
begin  | 
|
420  | 
||
421  | 
lemma Q_triv: "Q" using Q by fast  | 
|
422  | 
||
423  | 
end  | 
|
424  | 
||
425  | 
sublocale trivial < x: trivial x _  | 
|
426  | 
apply unfold_locales using Q by fast  | 
|
427  | 
||
428  | 
print_locale! trivial  | 
|
429  | 
||
430  | 
context trivial begin thm x.Q [where ?x = True] end  | 
|
431  | 
||
432  | 
sublocale trivial < y: trivial Q Q  | 
|
433  | 
by unfold_locales  | 
|
434  | 
(* Succeeds since previous interpretation is more general. *)  | 
|
435  | 
||
436  | 
print_locale! trivial (* No instance for y created (subsumed). *)  | 
|
437  | 
||
438  | 
||
439  | 
subsection {* Sublocale, then interpretation in theory *}
 | 
|
440  | 
||
441  | 
interpretation int?: lgrp "op +" "0" "minus"  | 
|
442  | 
proof unfold_locales  | 
|
443  | 
qed (rule int_assoc int_zero int_minus)+  | 
|
444  | 
||
445  | 
thm int.assoc int.semi_axioms  | 
|
446  | 
||
447  | 
interpretation int2?: semi "op +"  | 
|
448  | 
by unfold_locales (* subsumed, thm int2.assoc not generated *)  | 
|
449  | 
||
| 
39557
 
fe5722fce758
renamed structure PureThy to Pure_Thy and moved most content to Global_Theory, to emphasize that this is global-only;
 
wenzelm 
parents: 
38109 
diff
changeset
 | 
450  | 
ML {* (Global_Theory.get_thms @{theory} "int2.assoc";
 | 
| 56138 | 451  | 
raise Fail "thm int2.assoc was generated")  | 
452  | 
handle ERROR _ => ([]:thm list); *}  | 
|
| 37134 | 453  | 
|
454  | 
thm int.lone int.right.rone  | 
|
455  | 
(* the latter comes through the sublocale relation *)  | 
|
456  | 
||
457  | 
||
458  | 
subsection {* Interpretation in theory, then sublocale *}
 | 
|
459  | 
||
460  | 
interpretation fol: logic "op +" "minus"  | 
|
461  | 
by unfold_locales (rule int_assoc int_minus2)+  | 
|
462  | 
||
463  | 
locale logic2 =  | 
|
464  | 
fixes land (infixl "&&" 55)  | 
|
465  | 
    and lnot ("-- _" [60] 60)
 | 
|
466  | 
assumes assoc: "(x && y) && z = x && (y && z)"  | 
|
467  | 
and notnot: "-- (-- x) = x"  | 
|
468  | 
begin  | 
|
469  | 
||
470  | 
definition lor (infixl "||" 50) where  | 
|
471  | 
"x || y = --(-- x && -- y)"  | 
|
472  | 
||
473  | 
end  | 
|
474  | 
||
475  | 
sublocale logic < two: logic2  | 
|
476  | 
by unfold_locales (rule assoc notnot)+  | 
|
477  | 
||
478  | 
thm fol.two.assoc  | 
|
479  | 
||
480  | 
||
481  | 
subsection {* Declarations and sublocale *}
 | 
|
482  | 
||
483  | 
locale logic_a = logic  | 
|
484  | 
locale logic_b = logic  | 
|
485  | 
||
486  | 
sublocale logic_a < logic_b  | 
|
487  | 
by unfold_locales  | 
|
488  | 
||
489  | 
||
| 53366 | 490  | 
subsection {* Interpretation *}
 | 
491  | 
||
492  | 
subsection {* Rewrite morphism *}
 | 
|
| 37134 | 493  | 
|
494  | 
locale logic_o =  | 
|
495  | 
fixes land (infixl "&&" 55)  | 
|
496  | 
    and lnot ("-- _" [60] 60)
 | 
|
497  | 
assumes assoc_o: "(x && y) && z <-> x && (y && z)"  | 
|
498  | 
and notnot_o: "-- (-- x) <-> x"  | 
|
499  | 
begin  | 
|
500  | 
||
501  | 
definition lor_o (infixl "||" 50) where  | 
|
502  | 
"x || y <-> --(-- x && -- y)"  | 
|
503  | 
||
504  | 
end  | 
|
505  | 
||
506  | 
interpretation x: logic_o "op &" "Not"  | 
|
| 
43543
 
eb8b4851b039
While reading equations of an interpretation, already allow syntax provided by the interpretation base.
 
ballarin 
parents: 
41779 
diff
changeset
 | 
507  | 
where bool_logic_o: "x.lor_o(x, y) <-> x | y"  | 
| 37134 | 508  | 
proof -  | 
509  | 
show bool_logic_o: "PROP logic_o(op &, Not)" by unfold_locales fast+  | 
|
510  | 
show "logic_o.lor_o(op &, Not, x, y) <-> x | y"  | 
|
511  | 
by (unfold logic_o.lor_o_def [OF bool_logic_o]) fast  | 
|
512  | 
qed  | 
|
513  | 
||
514  | 
thm x.lor_o_def bool_logic_o  | 
|
515  | 
||
516  | 
lemma lor_triv: "z <-> z" ..  | 
|
517  | 
||
518  | 
lemma (in logic_o) lor_triv: "x || y <-> x || y" by fast  | 
|
519  | 
||
520  | 
thm lor_triv [where z = True] (* Check strict prefix. *)  | 
|
521  | 
x.lor_triv  | 
|
522  | 
||
523  | 
||
| 53366 | 524  | 
subsection {* Inheritance of rewrite morphisms *}
 | 
| 37134 | 525  | 
|
526  | 
locale reflexive =  | 
|
527  | 
fixes le :: "'a => 'a => o" (infix "\<sqsubseteq>" 50)  | 
|
528  | 
assumes refl: "x \<sqsubseteq> x"  | 
|
529  | 
begin  | 
|
530  | 
||
531  | 
definition less (infix "\<sqsubset>" 50) where "x \<sqsubset> y <-> x \<sqsubseteq> y & x ~= y"  | 
|
532  | 
||
533  | 
end  | 
|
534  | 
||
| 41779 | 535  | 
axiomatization  | 
536  | 
gle :: "'a => 'a => o" and gless :: "'a => 'a => o" and  | 
|
537  | 
gle' :: "'a => 'a => o" and gless' :: "'a => 'a => o"  | 
|
538  | 
where  | 
|
539  | 
grefl: "gle(x, x)" and gless_def: "gless(x, y) <-> gle(x, y) & x ~= y" and  | 
|
540  | 
grefl': "gle'(x, x)" and gless'_def: "gless'(x, y) <-> gle'(x, y) & x ~= y"  | 
|
| 37134 | 541  | 
|
542  | 
text {* Setup *}
 | 
|
543  | 
||
544  | 
locale mixin = reflexive  | 
|
545  | 
begin  | 
|
546  | 
lemmas less_thm = less_def  | 
|
547  | 
end  | 
|
548  | 
||
549  | 
interpretation le: mixin gle where "reflexive.less(gle, x, y) <-> gless(x, y)"  | 
|
550  | 
proof -  | 
|
551  | 
show "mixin(gle)" by unfold_locales (rule grefl)  | 
|
552  | 
note reflexive = this[unfolded mixin_def]  | 
|
553  | 
show "reflexive.less(gle, x, y) <-> gless(x, y)"  | 
|
554  | 
by (simp add: reflexive.less_def[OF reflexive] gless_def)  | 
|
555  | 
qed  | 
|
556  | 
||
| 53366 | 557  | 
text {* Rewrite morphism propagated along the locale hierarchy *}
 | 
| 37134 | 558  | 
|
559  | 
locale mixin2 = mixin  | 
|
560  | 
begin  | 
|
561  | 
lemmas less_thm2 = less_def  | 
|
562  | 
end  | 
|
563  | 
||
564  | 
interpretation le: mixin2 gle  | 
|
565  | 
by unfold_locales  | 
|
566  | 
||
| 53366 | 567  | 
thm le.less_thm2 (* rewrite morphism applied *)  | 
| 37134 | 568  | 
lemma "gless(x, y) <-> gle(x, y) & x ~= y"  | 
569  | 
by (rule le.less_thm2)  | 
|
570  | 
||
| 53366 | 571  | 
text {* Rewrite morphism does not leak to a side branch. *}
 | 
| 37134 | 572  | 
|
573  | 
locale mixin3 = reflexive  | 
|
574  | 
begin  | 
|
575  | 
lemmas less_thm3 = less_def  | 
|
576  | 
end  | 
|
577  | 
||
578  | 
interpretation le: mixin3 gle  | 
|
579  | 
by unfold_locales  | 
|
580  | 
||
| 53366 | 581  | 
thm le.less_thm3 (* rewrite morphism not applied *)  | 
| 37134 | 582  | 
lemma "reflexive.less(gle, x, y) <-> gle(x, y) & x ~= y" by (rule le.less_thm3)  | 
583  | 
||
| 53366 | 584  | 
text {* Rewrite morphism only available in original context *}
 | 
| 37134 | 585  | 
|
586  | 
locale mixin4_base = reflexive  | 
|
587  | 
||
588  | 
locale mixin4_mixin = mixin4_base  | 
|
589  | 
||
590  | 
interpretation le: mixin4_mixin gle  | 
|
591  | 
where "reflexive.less(gle, x, y) <-> gless(x, y)"  | 
|
592  | 
proof -  | 
|
593  | 
show "mixin4_mixin(gle)" by unfold_locales (rule grefl)  | 
|
594  | 
note reflexive = this[unfolded mixin4_mixin_def mixin4_base_def mixin_def]  | 
|
595  | 
show "reflexive.less(gle, x, y) <-> gless(x, y)"  | 
|
596  | 
by (simp add: reflexive.less_def[OF reflexive] gless_def)  | 
|
597  | 
qed  | 
|
598  | 
||
599  | 
locale mixin4_copy = mixin4_base  | 
|
600  | 
begin  | 
|
601  | 
lemmas less_thm4 = less_def  | 
|
602  | 
end  | 
|
603  | 
||
604  | 
locale mixin4_combined = le1: mixin4_mixin le' + le2: mixin4_copy le for le' le  | 
|
605  | 
begin  | 
|
606  | 
lemmas less_thm4' = less_def  | 
|
607  | 
end  | 
|
608  | 
||
609  | 
interpretation le4: mixin4_combined gle' gle  | 
|
610  | 
by unfold_locales (rule grefl')  | 
|
611  | 
||
| 53366 | 612  | 
thm le4.less_thm4' (* rewrite morphism not applied *)  | 
| 37134 | 613  | 
lemma "reflexive.less(gle, x, y) <-> gle(x, y) & x ~= y"  | 
614  | 
by (rule le4.less_thm4')  | 
|
615  | 
||
| 53366 | 616  | 
text {* Inherited rewrite morphism applied to new theorem *}
 | 
| 37134 | 617  | 
|
618  | 
locale mixin5_base = reflexive  | 
|
619  | 
||
620  | 
locale mixin5_inherited = mixin5_base  | 
|
621  | 
||
622  | 
interpretation le5: mixin5_base gle  | 
|
623  | 
where "reflexive.less(gle, x, y) <-> gless(x, y)"  | 
|
624  | 
proof -  | 
|
625  | 
show "mixin5_base(gle)" by unfold_locales  | 
|
626  | 
note reflexive = this[unfolded mixin5_base_def mixin_def]  | 
|
627  | 
show "reflexive.less(gle, x, y) <-> gless(x, y)"  | 
|
628  | 
by (simp add: reflexive.less_def[OF reflexive] gless_def)  | 
|
629  | 
qed  | 
|
630  | 
||
631  | 
interpretation le5: mixin5_inherited gle  | 
|
632  | 
by unfold_locales  | 
|
633  | 
||
634  | 
lemmas (in mixin5_inherited) less_thm5 = less_def  | 
|
635  | 
||
| 53366 | 636  | 
thm le5.less_thm5 (* rewrite morphism applied *)  | 
| 37134 | 637  | 
lemma "gless(x, y) <-> gle(x, y) & x ~= y"  | 
638  | 
by (rule le5.less_thm5)  | 
|
639  | 
||
| 53366 | 640  | 
text {* Rewrite morphism pushed down to existing inherited locale *}
 | 
| 37134 | 641  | 
|
642  | 
locale mixin6_base = reflexive  | 
|
643  | 
||
644  | 
locale mixin6_inherited = mixin5_base  | 
|
645  | 
||
646  | 
interpretation le6: mixin6_base gle  | 
|
647  | 
by unfold_locales  | 
|
648  | 
interpretation le6: mixin6_inherited gle  | 
|
649  | 
by unfold_locales  | 
|
650  | 
interpretation le6: mixin6_base gle  | 
|
651  | 
where "reflexive.less(gle, x, y) <-> gless(x, y)"  | 
|
652  | 
proof -  | 
|
653  | 
show "mixin6_base(gle)" by unfold_locales  | 
|
654  | 
note reflexive = this[unfolded mixin6_base_def mixin_def]  | 
|
655  | 
show "reflexive.less(gle, x, y) <-> gless(x, y)"  | 
|
656  | 
by (simp add: reflexive.less_def[OF reflexive] gless_def)  | 
|
657  | 
qed  | 
|
658  | 
||
659  | 
lemmas (in mixin6_inherited) less_thm6 = less_def  | 
|
660  | 
||
661  | 
thm le6.less_thm6 (* mixin applied *)  | 
|
662  | 
lemma "gless(x, y) <-> gle(x, y) & x ~= y"  | 
|
663  | 
by (rule le6.less_thm6)  | 
|
664  | 
||
| 53366 | 665  | 
text {* Existing rewrite morphism inherited through sublocale relation *}
 | 
| 37134 | 666  | 
|
667  | 
locale mixin7_base = reflexive  | 
|
668  | 
||
669  | 
locale mixin7_inherited = reflexive  | 
|
670  | 
||
671  | 
interpretation le7: mixin7_base gle  | 
|
672  | 
where "reflexive.less(gle, x, y) <-> gless(x, y)"  | 
|
673  | 
proof -  | 
|
674  | 
show "mixin7_base(gle)" by unfold_locales  | 
|
675  | 
note reflexive = this[unfolded mixin7_base_def mixin_def]  | 
|
676  | 
show "reflexive.less(gle, x, y) <-> gless(x, y)"  | 
|
677  | 
by (simp add: reflexive.less_def[OF reflexive] gless_def)  | 
|
678  | 
qed  | 
|
679  | 
||
680  | 
interpretation le7: mixin7_inherited gle  | 
|
681  | 
by unfold_locales  | 
|
682  | 
||
683  | 
lemmas (in mixin7_inherited) less_thm7 = less_def  | 
|
684  | 
||
| 53366 | 685  | 
thm le7.less_thm7 (* before, rewrite morphism not applied *)  | 
| 37134 | 686  | 
lemma "reflexive.less(gle, x, y) <-> gle(x, y) & x ~= y"  | 
687  | 
by (rule le7.less_thm7)  | 
|
688  | 
||
689  | 
sublocale mixin7_inherited < mixin7_base  | 
|
690  | 
by unfold_locales  | 
|
691  | 
||
692  | 
lemmas (in mixin7_inherited) less_thm7b = less_def  | 
|
693  | 
||
694  | 
thm le7.less_thm7b (* after, mixin applied *)  | 
|
695  | 
lemma "gless(x, y) <-> gle(x, y) & x ~= y"  | 
|
696  | 
by (rule le7.less_thm7b)  | 
|
697  | 
||
698  | 
||
699  | 
text {* This locale will be interpreted in later theories. *}
 | 
|
700  | 
||
701  | 
locale mixin_thy_merge = le: reflexive le + le': reflexive le' for le le'  | 
|
702  | 
||
703  | 
||
| 53366 | 704  | 
subsection {* Rewrite morphisms in sublocale *}
 | 
| 41272 | 705  | 
|
706  | 
text {* Simulate a specification of left groups where unit and inverse are defined
 | 
|
707  | 
rather than specified. This is possible, but not in FOL, due to the lack of a  | 
|
708  | 
selection operator. *}  | 
|
709  | 
||
710  | 
axiomatization glob_one and glob_inv  | 
|
711  | 
where glob_lone: "prod(glob_one(prod), x) = x"  | 
|
712  | 
and glob_linv: "prod(glob_inv(prod, x), x) = glob_one(prod)"  | 
|
713  | 
||
714  | 
locale dgrp = semi  | 
|
715  | 
begin  | 
|
716  | 
||
717  | 
definition one where "one = glob_one(prod)"  | 
|
718  | 
||
719  | 
lemma lone: "one ** x = x"  | 
|
720  | 
unfolding one_def by (rule glob_lone)  | 
|
721  | 
||
722  | 
definition inv where "inv(x) = glob_inv(prod, x)"  | 
|
723  | 
||
724  | 
lemma linv: "inv(x) ** x = one"  | 
|
725  | 
unfolding one_def inv_def by (rule glob_linv)  | 
|
726  | 
||
727  | 
end  | 
|
728  | 
||
729  | 
sublocale lgrp < "def": dgrp  | 
|
730  | 
where one_equation: "dgrp.one(prod) = one" and inv_equation: "dgrp.inv(prod, x) = inv(x)"  | 
|
731  | 
proof -  | 
|
732  | 
show "dgrp(prod)" by unfold_locales  | 
|
733  | 
from this interpret d: dgrp .  | 
|
734  | 
-- Unit  | 
|
735  | 
have "dgrp.one(prod) = glob_one(prod)" by (rule d.one_def)  | 
|
736  | 
also have "... = glob_one(prod) ** one" by (simp add: rone)  | 
|
737  | 
also have "... = one" by (simp add: glob_lone)  | 
|
738  | 
finally show "dgrp.one(prod) = one" .  | 
|
739  | 
-- Inverse  | 
|
740  | 
then have "dgrp.inv(prod, x) ** x = inv(x) ** x" by (simp add: glob_linv d.linv linv)  | 
|
741  | 
then show "dgrp.inv(prod, x) = inv(x)" by (simp add: rcancel)  | 
|
742  | 
qed  | 
|
743  | 
||
744  | 
print_locale! lgrp  | 
|
745  | 
||
746  | 
context lgrp begin  | 
|
747  | 
||
748  | 
text {* Equations stored in target *}
 | 
|
749  | 
||
750  | 
lemma "dgrp.one(prod) = one" by (rule one_equation)  | 
|
751  | 
lemma "dgrp.inv(prod, x) = inv(x)" by (rule inv_equation)  | 
|
752  | 
||
| 53366 | 753  | 
text {* Rewrite morphisms applied *}
 | 
| 41272 | 754  | 
|
755  | 
lemma "one = glob_one(prod)" by (rule one_def)  | 
|
756  | 
lemma "inv(x) = glob_inv(prod, x)" by (rule inv_def)  | 
|
757  | 
||
758  | 
end  | 
|
759  | 
||
760  | 
text {* Interpreted versions *}
 | 
|
761  | 
||
762  | 
lemma "0 = glob_one (op +)" by (rule int.def.one_def)  | 
|
763  | 
lemma "- x = glob_inv(op +, x)" by (rule int.def.inv_def)  | 
|
764  | 
||
| 53366 | 765  | 
text {* Roundup applies rewrite morphisms at declaration level in DFS tree *}
 | 
| 51515 | 766  | 
|
767  | 
locale roundup = fixes x assumes true: "x <-> True"  | 
|
768  | 
||
769  | 
sublocale roundup \<subseteq> sub: roundup x where "x <-> True & True"  | 
|
770  | 
apply unfold_locales apply (simp add: true) done  | 
|
771  | 
lemma (in roundup) "True & True <-> True" by (rule sub.true)  | 
|
772  | 
||
| 41272 | 773  | 
|
| 
53367
 
1f383542226b
New test case: interpretation in named contexts is not persistent.
 
ballarin 
parents: 
53366 
diff
changeset
 | 
774  | 
section {* Interpretation in named contexts *}
 | 
| 
 
1f383542226b
New test case: interpretation in named contexts is not persistent.
 
ballarin 
parents: 
53366 
diff
changeset
 | 
775  | 
|
| 
 
1f383542226b
New test case: interpretation in named contexts is not persistent.
 
ballarin 
parents: 
53366 
diff
changeset
 | 
776  | 
locale container  | 
| 
 
1f383542226b
New test case: interpretation in named contexts is not persistent.
 
ballarin 
parents: 
53366 
diff
changeset
 | 
777  | 
begin  | 
| 
 
1f383542226b
New test case: interpretation in named contexts is not persistent.
 
ballarin 
parents: 
53366 
diff
changeset
 | 
778  | 
interpretation private!: roundup True by unfold_locales rule  | 
| 
 
1f383542226b
New test case: interpretation in named contexts is not persistent.
 
ballarin 
parents: 
53366 
diff
changeset
 | 
779  | 
lemmas true_copy = private.true  | 
| 
 
1f383542226b
New test case: interpretation in named contexts is not persistent.
 
ballarin 
parents: 
53366 
diff
changeset
 | 
780  | 
end  | 
| 
 
1f383542226b
New test case: interpretation in named contexts is not persistent.
 
ballarin 
parents: 
53366 
diff
changeset
 | 
781  | 
|
| 
 
1f383542226b
New test case: interpretation in named contexts is not persistent.
 
ballarin 
parents: 
53366 
diff
changeset
 | 
782  | 
context container begin  | 
| 
 
1f383542226b
New test case: interpretation in named contexts is not persistent.
 
ballarin 
parents: 
53366 
diff
changeset
 | 
783  | 
ML {* (Context.>> (fn generic => let val context = Context.proof_of generic
 | 
| 
 
1f383542226b
New test case: interpretation in named contexts is not persistent.
 
ballarin 
parents: 
53366 
diff
changeset
 | 
784  | 
val _ = Proof_Context.get_thms context "private.true" in generic end);  | 
| 56138 | 785  | 
raise Fail "thm private.true was persisted")  | 
786  | 
handle ERROR _ => ([]:thm list); *}  | 
|
| 
53367
 
1f383542226b
New test case: interpretation in named contexts is not persistent.
 
ballarin 
parents: 
53366 
diff
changeset
 | 
787  | 
thm true_copy  | 
| 
 
1f383542226b
New test case: interpretation in named contexts is not persistent.
 
ballarin 
parents: 
53366 
diff
changeset
 | 
788  | 
end  | 
| 
 
1f383542226b
New test case: interpretation in named contexts is not persistent.
 
ballarin 
parents: 
53366 
diff
changeset
 | 
789  | 
|
| 
 
1f383542226b
New test case: interpretation in named contexts is not persistent.
 
ballarin 
parents: 
53366 
diff
changeset
 | 
790  | 
|
| 41272 | 791  | 
section {* Interpretation in proofs *}
 | 
| 37134 | 792  | 
|
793  | 
lemma True  | 
|
794  | 
proof  | 
|
795  | 
interpret "local": lgrp "op +" "0" "minus"  | 
|
796  | 
by unfold_locales (* subsumed *)  | 
|
797  | 
  {
 | 
|
798  | 
fix zero :: int  | 
|
799  | 
assume "!!x. zero + x = x" "!!x. (-x) + x = zero"  | 
|
800  | 
then interpret local_fixed: lgrp "op +" zero "minus"  | 
|
801  | 
by unfold_locales  | 
|
802  | 
thm local_fixed.lone  | 
|
| 41435 | 803  | 
print_dependencies! lgrp "op +" 0 minus + lgrp "op +" zero minus  | 
| 37134 | 804  | 
}  | 
805  | 
assume "!!x zero. zero + x = x" "!!x zero. (-x) + x = zero"  | 
|
806  | 
then interpret local_free: lgrp "op +" zero "minus" for zero  | 
|
807  | 
by unfold_locales  | 
|
808  | 
thm local_free.lone [where ?zero = 0]  | 
|
809  | 
qed  | 
|
810  | 
||
| 38108 | 811  | 
lemma True  | 
812  | 
proof  | 
|
813  | 
  {
 | 
|
814  | 
fix pand and pnot and por  | 
|
815  | 
assume passoc: "!!x y z. pand(pand(x, y), z) <-> pand(x, pand(y, z))"  | 
|
816  | 
and pnotnot: "!!x. pnot(pnot(x)) <-> x"  | 
|
817  | 
and por_def: "!!x y. por(x, y) <-> pnot(pand(pnot(x), pnot(y)))"  | 
|
818  | 
interpret loc: logic_o pand pnot  | 
|
819  | 
where por_eq: "!!x y. logic_o.lor_o(pand, pnot, x, y) <-> por(x, y)" (* FIXME *)  | 
|
820  | 
proof -  | 
|
821  | 
show logic_o: "PROP logic_o(pand, pnot)" using passoc pnotnot by unfold_locales  | 
|
822  | 
fix x y  | 
|
823  | 
show "logic_o.lor_o(pand, pnot, x, y) <-> por(x, y)"  | 
|
824  | 
by (unfold logic_o.lor_o_def [OF logic_o]) (rule por_def [symmetric])  | 
|
825  | 
qed  | 
|
| 38109 | 826  | 
print_interps logic_o  | 
| 38108 | 827  | 
have "!!x y. por(x, y) <-> pnot(pand(pnot(x), pnot(y)))" by (rule loc.lor_o_def)  | 
828  | 
}  | 
|
829  | 
qed  | 
|
830  | 
||
| 37134 | 831  | 
end  |