| 10267 |      1 | %
 | 
|  |      2 | \begin{isabellebody}%
 | 
|  |      3 | \def\isabellecontext{CTLind}%
 | 
| 17056 |      4 | %
 | 
|  |      5 | \isadelimtheory
 | 
|  |      6 | %
 | 
|  |      7 | \endisadelimtheory
 | 
|  |      8 | %
 | 
|  |      9 | \isatagtheory
 | 
|  |     10 | %
 | 
|  |     11 | \endisatagtheory
 | 
|  |     12 | {\isafoldtheory}%
 | 
|  |     13 | %
 | 
|  |     14 | \isadelimtheory
 | 
|  |     15 | %
 | 
|  |     16 | \endisadelimtheory
 | 
| 10267 |     17 | %
 | 
| 10878 |     18 | \isamarkupsubsection{CTL Revisited%
 | 
| 10395 |     19 | }
 | 
| 11866 |     20 | \isamarkuptrue%
 | 
| 10267 |     21 | %
 | 
|  |     22 | \begin{isamarkuptext}%
 | 
|  |     23 | \label{sec:CTL-revisited}
 | 
| 11494 |     24 | \index{CTL|(}%
 | 
|  |     25 | The purpose of this section is twofold: to demonstrate
 | 
|  |     26 | some of the induction principles and heuristics discussed above and to
 | 
| 10283 |     27 | show how inductive definitions can simplify proofs.
 | 
| 10267 |     28 | In \S\ref{sec:CTL} we gave a fairly involved proof of the correctness of a
 | 
| 10795 |     29 | model checker for CTL\@. In particular the proof of the
 | 
| 10267 |     30 | \isa{infinity{\isacharunderscore}lemma} on the way to \isa{AF{\isacharunderscore}lemma{\isadigit{2}}} is not as
 | 
| 11494 |     31 | simple as one might expect, due to the \isa{SOME} operator
 | 
| 10283 |     32 | involved. Below we give a simpler proof of \isa{AF{\isacharunderscore}lemma{\isadigit{2}}}
 | 
|  |     33 | based on an auxiliary inductive definition.
 | 
| 10267 |     34 | 
 | 
|  |     35 | Let us call a (finite or infinite) path \emph{\isa{A}-avoiding} if it does
 | 
|  |     36 | not touch any node in the set \isa{A}. Then \isa{AF{\isacharunderscore}lemma{\isadigit{2}}} says
 | 
|  |     37 | that if no infinite path from some state \isa{s} is \isa{A}-avoiding,
 | 
|  |     38 | then \isa{s\ {\isasymin}\ lfp\ {\isacharparenleft}af\ A{\isacharparenright}}. We prove this by inductively defining the set
 | 
|  |     39 | \isa{Avoid\ s\ A} of states reachable from \isa{s} by a finite \isa{A}-avoiding path:
 | 
|  |     40 | % Second proof of opposite direction, directly by well-founded induction
 | 
|  |     41 | % on the initial segment of M that avoids A.%
 | 
|  |     42 | \end{isamarkuptext}%
 | 
| 17175 |     43 | \isamarkuptrue%
 | 
| 23733 |     44 | \isacommand{inductive{\isacharunderscore}set}\isamarkupfalse%
 | 
|  |     45 | \isanewline
 | 
|  |     46 | \ \ Avoid\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}state\ {\isasymRightarrow}\ state\ set\ {\isasymRightarrow}\ state\ set{\isachardoublequoteclose}\isanewline
 | 
|  |     47 | \ \ \isakeyword{for}\ s\ {\isacharcolon}{\isacharcolon}\ state\ \isakeyword{and}\ A\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}state\ set{\isachardoublequoteclose}\isanewline
 | 
|  |     48 | \isakeyword{where}\isanewline
 | 
|  |     49 | \ \ \ \ {\isachardoublequoteopen}s\ {\isasymin}\ Avoid\ s\ A{\isachardoublequoteclose}\isanewline
 | 
|  |     50 | \ \ {\isacharbar}\ {\isachardoublequoteopen}{\isasymlbrakk}\ t\ {\isasymin}\ Avoid\ s\ A{\isacharsemicolon}\ t\ {\isasymnotin}\ A{\isacharsemicolon}\ {\isacharparenleft}t{\isacharcomma}u{\isacharparenright}\ {\isasymin}\ M\ {\isasymrbrakk}\ {\isasymLongrightarrow}\ u\ {\isasymin}\ Avoid\ s\ A{\isachardoublequoteclose}%
 | 
| 10267 |     51 | \begin{isamarkuptext}%
 | 
|  |     52 | It is easy to see that for any infinite \isa{A}-avoiding path \isa{f}
 | 
| 12492 |     53 | with \isa{f\ {\isadigit{0}}\ {\isasymin}\ Avoid\ s\ A} there is an infinite \isa{A}-avoiding path
 | 
| 10267 |     54 | starting with \isa{s} because (by definition of \isa{Avoid}) there is a
 | 
| 12492 |     55 | finite \isa{A}-avoiding path from \isa{s} to \isa{f\ {\isadigit{0}}}.
 | 
|  |     56 | The proof is by induction on \isa{f\ {\isadigit{0}}\ {\isasymin}\ Avoid\ s\ A}. However,
 | 
| 10267 |     57 | this requires the following
 | 
|  |     58 | reformulation, as explained in \S\ref{sec:ind-var-in-prems} above;
 | 
|  |     59 | the \isa{rule{\isacharunderscore}format} directive undoes the reformulation after the proof.%
 | 
|  |     60 | \end{isamarkuptext}%
 | 
| 17175 |     61 | \isamarkuptrue%
 | 
|  |     62 | \isacommand{lemma}\isamarkupfalse%
 | 
|  |     63 | \ ex{\isacharunderscore}infinite{\isacharunderscore}path{\isacharbrackleft}rule{\isacharunderscore}format{\isacharbrackright}{\isacharcolon}\isanewline
 | 
|  |     64 | \ \ {\isachardoublequoteopen}t\ {\isasymin}\ Avoid\ s\ A\ \ {\isasymLongrightarrow}\isanewline
 | 
|  |     65 | \ \ \ {\isasymforall}f{\isasymin}Paths\ t{\isachardot}\ {\isacharparenleft}{\isasymforall}i{\isachardot}\ f\ i\ {\isasymnotin}\ A{\isacharparenright}\ {\isasymlongrightarrow}\ {\isacharparenleft}{\isasymexists}p{\isasymin}Paths\ s{\isachardot}\ {\isasymforall}i{\isachardot}\ p\ i\ {\isasymnotin}\ A{\isacharparenright}{\isachardoublequoteclose}\isanewline
 | 
| 17056 |     66 | %
 | 
|  |     67 | \isadelimproof
 | 
|  |     68 | %
 | 
|  |     69 | \endisadelimproof
 | 
|  |     70 | %
 | 
|  |     71 | \isatagproof
 | 
| 17175 |     72 | \isacommand{apply}\isamarkupfalse%
 | 
|  |     73 | {\isacharparenleft}erule\ Avoid{\isachardot}induct{\isacharparenright}\isanewline
 | 
|  |     74 | \ \isacommand{apply}\isamarkupfalse%
 | 
|  |     75 | {\isacharparenleft}blast{\isacharparenright}\isanewline
 | 
|  |     76 | \isacommand{apply}\isamarkupfalse%
 | 
|  |     77 | {\isacharparenleft}clarify{\isacharparenright}\isanewline
 | 
|  |     78 | \isacommand{apply}\isamarkupfalse%
 | 
|  |     79 | {\isacharparenleft}drule{\isacharunderscore}tac\ x\ {\isacharequal}\ {\isachardoublequoteopen}{\isasymlambda}i{\isachardot}\ case\ i\ of\ {\isadigit{0}}\ {\isasymRightarrow}\ t\ {\isacharbar}\ Suc\ i\ {\isasymRightarrow}\ f\ i{\isachardoublequoteclose}\ \isakeyword{in}\ bspec{\isacharparenright}\isanewline
 | 
|  |     80 | \isacommand{apply}\isamarkupfalse%
 | 
|  |     81 | {\isacharparenleft}simp{\isacharunderscore}all\ add{\isacharcolon}\ Paths{\isacharunderscore}def\ split{\isacharcolon}\ nat{\isachardot}split{\isacharparenright}\isanewline
 | 
|  |     82 | \isacommand{done}\isamarkupfalse%
 | 
|  |     83 | %
 | 
| 17056 |     84 | \endisatagproof
 | 
|  |     85 | {\isafoldproof}%
 | 
|  |     86 | %
 | 
|  |     87 | \isadelimproof
 | 
|  |     88 | %
 | 
|  |     89 | \endisadelimproof
 | 
| 11866 |     90 | %
 | 
| 10267 |     91 | \begin{isamarkuptext}%
 | 
|  |     92 | \noindent
 | 
| 11494 |     93 | The base case (\isa{t\ {\isacharequal}\ s}) is trivial and proved by \isa{blast}.
 | 
| 10267 |     94 | In the induction step, we have an infinite \isa{A}-avoiding path \isa{f}
 | 
|  |     95 | starting from \isa{u}, a successor of \isa{t}. Now we simply instantiate
 | 
|  |     96 | the \isa{{\isasymforall}f{\isasymin}Paths\ t} in the induction hypothesis by the path starting with
 | 
|  |     97 | \isa{t} and continuing with \isa{f}. That is what the above $\lambda$-term
 | 
| 10878 |     98 | expresses.  Simplification shows that this is a path starting with \isa{t} 
 | 
|  |     99 | and that the instantiated induction hypothesis implies the conclusion.
 | 
| 10267 |    100 | 
 | 
| 11196 |    101 | Now we come to the key lemma. Assuming that no infinite \isa{A}-avoiding
 | 
| 11277 |    102 | path starts from \isa{s}, we want to show \isa{s\ {\isasymin}\ lfp\ {\isacharparenleft}af\ A{\isacharparenright}}. For the
 | 
|  |    103 | inductive proof this must be generalized to the statement that every point \isa{t}
 | 
| 11494 |    104 | ``between'' \isa{s} and \isa{A}, in other words all of \isa{Avoid\ s\ A},
 | 
| 11196 |    105 | is contained in \isa{lfp\ {\isacharparenleft}af\ A{\isacharparenright}}:%
 | 
| 10267 |    106 | \end{isamarkuptext}%
 | 
| 17175 |    107 | \isamarkuptrue%
 | 
|  |    108 | \isacommand{lemma}\isamarkupfalse%
 | 
|  |    109 | \ Avoid{\isacharunderscore}in{\isacharunderscore}lfp{\isacharbrackleft}rule{\isacharunderscore}format{\isacharparenleft}no{\isacharunderscore}asm{\isacharparenright}{\isacharbrackright}{\isacharcolon}\isanewline
 | 
|  |    110 | \ \ {\isachardoublequoteopen}{\isasymforall}p{\isasymin}Paths\ s{\isachardot}\ {\isasymexists}i{\isachardot}\ p\ i\ {\isasymin}\ A\ {\isasymLongrightarrow}\ t\ {\isasymin}\ Avoid\ s\ A\ {\isasymlongrightarrow}\ t\ {\isasymin}\ lfp{\isacharparenleft}af\ A{\isacharparenright}{\isachardoublequoteclose}%
 | 
| 17056 |    111 | \isadelimproof
 | 
|  |    112 | %
 | 
|  |    113 | \endisadelimproof
 | 
|  |    114 | %
 | 
|  |    115 | \isatagproof
 | 
| 16069 |    116 | %
 | 
|  |    117 | \begin{isamarkuptxt}%
 | 
|  |    118 | \noindent
 | 
|  |    119 | The proof is by induction on the ``distance'' between \isa{t} and \isa{A}. Remember that \isa{lfp\ {\isacharparenleft}af\ A{\isacharparenright}\ {\isacharequal}\ A\ {\isasymunion}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ lfp\ {\isacharparenleft}af\ A{\isacharparenright}}.
 | 
|  |    120 | If \isa{t} is already in \isa{A}, then \isa{t\ {\isasymin}\ lfp\ {\isacharparenleft}af\ A{\isacharparenright}} is
 | 
|  |    121 | trivial. If \isa{t} is not in \isa{A} but all successors are in
 | 
|  |    122 | \isa{lfp\ {\isacharparenleft}af\ A{\isacharparenright}} (induction hypothesis), then \isa{t\ {\isasymin}\ lfp\ {\isacharparenleft}af\ A{\isacharparenright}} is
 | 
|  |    123 | again trivial.
 | 
|  |    124 | 
 | 
|  |    125 | The formal counterpart of this proof sketch is a well-founded induction
 | 
|  |    126 | on~\isa{M} restricted to \isa{Avoid\ s\ A\ {\isacharminus}\ A}, roughly speaking:
 | 
|  |    127 | \begin{isabelle}%
 | 
|  |    128 | \ \ \ \ \ {\isacharbraceleft}{\isacharparenleft}y{\isacharcomma}\ x{\isacharparenright}{\isachardot}\ {\isacharparenleft}x{\isacharcomma}\ y{\isacharparenright}\ {\isasymin}\ M\ {\isasymand}\ x\ {\isasymin}\ Avoid\ s\ A\ {\isasymand}\ x\ {\isasymnotin}\ A{\isacharbraceright}%
 | 
|  |    129 | \end{isabelle}
 | 
|  |    130 | As we shall see presently, the absence of infinite \isa{A}-avoiding paths
 | 
|  |    131 | starting from \isa{s} implies well-foundedness of this relation. For the
 | 
|  |    132 | moment we assume this and proceed with the induction:%
 | 
|  |    133 | \end{isamarkuptxt}%
 | 
| 17175 |    134 | \isamarkuptrue%
 | 
|  |    135 | \isacommand{apply}\isamarkupfalse%
 | 
|  |    136 | {\isacharparenleft}subgoal{\isacharunderscore}tac\ {\isachardoublequoteopen}wf{\isacharbraceleft}{\isacharparenleft}y{\isacharcomma}x{\isacharparenright}{\isachardot}\ {\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ M\ {\isasymand}\ x\ {\isasymin}\ Avoid\ s\ A\ {\isasymand}\ x\ {\isasymnotin}\ A{\isacharbraceright}{\isachardoublequoteclose}{\isacharparenright}\isanewline
 | 
|  |    137 | \ \isacommand{apply}\isamarkupfalse%
 | 
|  |    138 | {\isacharparenleft}erule{\isacharunderscore}tac\ a\ {\isacharequal}\ t\ \isakeyword{in}\ wf{\isacharunderscore}induct{\isacharparenright}\isanewline
 | 
|  |    139 | \ \isacommand{apply}\isamarkupfalse%
 | 
| 17181 |    140 | {\isacharparenleft}clarsimp{\isacharparenright}%
 | 
| 16069 |    141 | \begin{isamarkuptxt}%
 | 
|  |    142 | \noindent
 | 
|  |    143 | \begin{isabelle}%
 | 
|  |    144 | \ {\isadigit{1}}{\isachardot}\ {\isasymAnd}t{\isachardot}\ {\isasymlbrakk}{\isasymforall}p{\isasymin}Paths\ s{\isachardot}\ {\isasymexists}i{\isachardot}\ p\ i\ {\isasymin}\ A{\isacharsemicolon}\isanewline
 | 
|  |    145 | \isaindent{\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}t{\isachardot}\ \ }{\isasymforall}y{\isachardot}\ {\isacharparenleft}t{\isacharcomma}\ y{\isacharparenright}\ {\isasymin}\ M\ {\isasymand}\ t\ {\isasymnotin}\ A\ {\isasymlongrightarrow}\isanewline
 | 
|  |    146 | \isaindent{\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}t{\isachardot}\ \ {\isasymforall}y{\isachardot}\ }y\ {\isasymin}\ Avoid\ s\ A\ {\isasymlongrightarrow}\ y\ {\isasymin}\ lfp\ {\isacharparenleft}af\ A{\isacharparenright}{\isacharsemicolon}\isanewline
 | 
|  |    147 | \isaindent{\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}t{\isachardot}\ \ }t\ {\isasymin}\ Avoid\ s\ A{\isasymrbrakk}\isanewline
 | 
|  |    148 | \isaindent{\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}t{\isachardot}\ }{\isasymLongrightarrow}\ t\ {\isasymin}\ lfp\ {\isacharparenleft}af\ A{\isacharparenright}\isanewline
 | 
|  |    149 | \ {\isadigit{2}}{\isachardot}\ {\isasymforall}p{\isasymin}Paths\ s{\isachardot}\ {\isasymexists}i{\isachardot}\ p\ i\ {\isasymin}\ A\ {\isasymLongrightarrow}\isanewline
 | 
|  |    150 | \isaindent{\ {\isadigit{2}}{\isachardot}\ }wf\ {\isacharbraceleft}{\isacharparenleft}y{\isacharcomma}\ x{\isacharparenright}{\isachardot}\ {\isacharparenleft}x{\isacharcomma}\ y{\isacharparenright}\ {\isasymin}\ M\ {\isasymand}\ x\ {\isasymin}\ Avoid\ s\ A\ {\isasymand}\ x\ {\isasymnotin}\ A{\isacharbraceright}%
 | 
|  |    151 | \end{isabelle}
 | 
|  |    152 | Now the induction hypothesis states that if \isa{t\ {\isasymnotin}\ A}
 | 
|  |    153 | then all successors of \isa{t} that are in \isa{Avoid\ s\ A} are in
 | 
|  |    154 | \isa{lfp\ {\isacharparenleft}af\ A{\isacharparenright}}. Unfolding \isa{lfp} in the conclusion of the first
 | 
|  |    155 | subgoal once, we have to prove that \isa{t} is in \isa{A} or all successors
 | 
|  |    156 | of \isa{t} are in \isa{lfp\ {\isacharparenleft}af\ A{\isacharparenright}}.  But if \isa{t} is not in \isa{A},
 | 
|  |    157 | the second 
 | 
|  |    158 | \isa{Avoid}-rule implies that all successors of \isa{t} are in
 | 
|  |    159 | \isa{Avoid\ s\ A}, because we also assume \isa{t\ {\isasymin}\ Avoid\ s\ A}.
 | 
|  |    160 | Hence, by the induction hypothesis, all successors of \isa{t} are indeed in
 | 
|  |    161 | \isa{lfp\ {\isacharparenleft}af\ A{\isacharparenright}}. Mechanically:%
 | 
|  |    162 | \end{isamarkuptxt}%
 | 
| 17175 |    163 | \isamarkuptrue%
 | 
|  |    164 | \ \isacommand{apply}\isamarkupfalse%
 | 
|  |    165 | {\isacharparenleft}subst\ lfp{\isacharunderscore}unfold{\isacharbrackleft}OF\ mono{\isacharunderscore}af{\isacharbrackright}{\isacharparenright}\isanewline
 | 
|  |    166 | \ \isacommand{apply}\isamarkupfalse%
 | 
|  |    167 | {\isacharparenleft}simp\ {\isacharparenleft}no{\isacharunderscore}asm{\isacharparenright}\ add{\isacharcolon}\ af{\isacharunderscore}def{\isacharparenright}\isanewline
 | 
|  |    168 | \ \isacommand{apply}\isamarkupfalse%
 | 
|  |    169 | {\isacharparenleft}blast\ intro{\isacharcolon}\ Avoid{\isachardot}intros{\isacharparenright}%
 | 
| 16069 |    170 | \begin{isamarkuptxt}%
 | 
|  |    171 | Having proved the main goal, we return to the proof obligation that the 
 | 
|  |    172 | relation used above is indeed well-founded. This is proved by contradiction: if
 | 
|  |    173 | the relation is not well-founded then there exists an infinite \isa{A}-avoiding path all in \isa{Avoid\ s\ A}, by theorem
 | 
|  |    174 | \isa{wf{\isacharunderscore}iff{\isacharunderscore}no{\isacharunderscore}infinite{\isacharunderscore}down{\isacharunderscore}chain}:
 | 
|  |    175 | \begin{isabelle}%
 | 
|  |    176 | \ \ \ \ \ wf\ r\ {\isacharequal}\ {\isacharparenleft}{\isasymnot}\ {\isacharparenleft}{\isasymexists}f{\isachardot}\ {\isasymforall}i{\isachardot}\ {\isacharparenleft}f\ {\isacharparenleft}Suc\ i{\isacharparenright}{\isacharcomma}\ f\ i{\isacharparenright}\ {\isasymin}\ r{\isacharparenright}{\isacharparenright}%
 | 
|  |    177 | \end{isabelle}
 | 
|  |    178 | From lemma \isa{ex{\isacharunderscore}infinite{\isacharunderscore}path} the existence of an infinite
 | 
|  |    179 | \isa{A}-avoiding path starting in \isa{s} follows, contradiction.%
 | 
|  |    180 | \end{isamarkuptxt}%
 | 
| 17175 |    181 | \isamarkuptrue%
 | 
|  |    182 | \isacommand{apply}\isamarkupfalse%
 | 
|  |    183 | {\isacharparenleft}erule\ contrapos{\isacharunderscore}pp{\isacharparenright}\isanewline
 | 
|  |    184 | \isacommand{apply}\isamarkupfalse%
 | 
|  |    185 | {\isacharparenleft}simp\ add{\isacharcolon}\ wf{\isacharunderscore}iff{\isacharunderscore}no{\isacharunderscore}infinite{\isacharunderscore}down{\isacharunderscore}chain{\isacharparenright}\isanewline
 | 
|  |    186 | \isacommand{apply}\isamarkupfalse%
 | 
|  |    187 | {\isacharparenleft}erule\ exE{\isacharparenright}\isanewline
 | 
|  |    188 | \isacommand{apply}\isamarkupfalse%
 | 
|  |    189 | {\isacharparenleft}rule\ ex{\isacharunderscore}infinite{\isacharunderscore}path{\isacharparenright}\isanewline
 | 
|  |    190 | \isacommand{apply}\isamarkupfalse%
 | 
|  |    191 | {\isacharparenleft}auto\ simp\ add{\isacharcolon}\ Paths{\isacharunderscore}def{\isacharparenright}\isanewline
 | 
|  |    192 | \isacommand{done}\isamarkupfalse%
 | 
|  |    193 | %
 | 
| 17056 |    194 | \endisatagproof
 | 
|  |    195 | {\isafoldproof}%
 | 
|  |    196 | %
 | 
|  |    197 | \isadelimproof
 | 
|  |    198 | %
 | 
|  |    199 | \endisadelimproof
 | 
| 11866 |    200 | %
 | 
| 10267 |    201 | \begin{isamarkuptext}%
 | 
| 11196 |    202 | The \isa{{\isacharparenleft}no{\isacharunderscore}asm{\isacharparenright}} modifier of the \isa{rule{\isacharunderscore}format} directive in the
 | 
|  |    203 | statement of the lemma means
 | 
| 11494 |    204 | that the assumption is left unchanged; otherwise the \isa{{\isasymforall}p} 
 | 
|  |    205 | would be turned
 | 
| 10267 |    206 | into a \isa{{\isasymAnd}p}, which would complicate matters below. As it is,
 | 
|  |    207 | \isa{Avoid{\isacharunderscore}in{\isacharunderscore}lfp} is now
 | 
|  |    208 | \begin{isabelle}%
 | 
| 10696 |    209 | \ \ \ \ \ {\isasymlbrakk}{\isasymforall}p{\isasymin}Paths\ s{\isachardot}\ {\isasymexists}i{\isachardot}\ p\ i\ {\isasymin}\ A{\isacharsemicolon}\ t\ {\isasymin}\ Avoid\ s\ A{\isasymrbrakk}\ {\isasymLongrightarrow}\ t\ {\isasymin}\ lfp\ {\isacharparenleft}af\ A{\isacharparenright}%
 | 
| 10267 |    210 | \end{isabelle}
 | 
|  |    211 | The main theorem is simply the corollary where \isa{t\ {\isacharequal}\ s},
 | 
| 11494 |    212 | when the assumption \isa{t\ {\isasymin}\ Avoid\ s\ A} is trivially true
 | 
| 10845 |    213 | by the first \isa{Avoid}-rule. Isabelle confirms this:%
 | 
| 11494 |    214 | \index{CTL|)}%
 | 
| 10267 |    215 | \end{isamarkuptext}%
 | 
| 17175 |    216 | \isamarkuptrue%
 | 
|  |    217 | \isacommand{theorem}\isamarkupfalse%
 | 
|  |    218 | \ AF{\isacharunderscore}lemma{\isadigit{2}}{\isacharcolon}\ \ {\isachardoublequoteopen}{\isacharbraceleft}s{\isachardot}\ {\isasymforall}p\ {\isasymin}\ Paths\ s{\isachardot}\ {\isasymexists}\ i{\isachardot}\ p\ i\ {\isasymin}\ A{\isacharbraceright}\ {\isasymsubseteq}\ lfp{\isacharparenleft}af\ A{\isacharparenright}{\isachardoublequoteclose}\isanewline
 | 
| 17056 |    219 | %
 | 
|  |    220 | \isadelimproof
 | 
|  |    221 | %
 | 
|  |    222 | \endisadelimproof
 | 
|  |    223 | %
 | 
|  |    224 | \isatagproof
 | 
| 17175 |    225 | \isacommand{by}\isamarkupfalse%
 | 
|  |    226 | {\isacharparenleft}auto\ elim{\isacharcolon}\ Avoid{\isacharunderscore}in{\isacharunderscore}lfp\ intro{\isacharcolon}\ Avoid{\isachardot}intros{\isacharparenright}\isanewline
 | 
| 15488 |    227 | \isanewline
 | 
| 17056 |    228 | %
 | 
|  |    229 | \endisatagproof
 | 
|  |    230 | {\isafoldproof}%
 | 
|  |    231 | %
 | 
|  |    232 | \isadelimproof
 | 
|  |    233 | %
 | 
|  |    234 | \endisadelimproof
 | 
|  |    235 | %
 | 
|  |    236 | \isadelimtheory
 | 
|  |    237 | %
 | 
|  |    238 | \endisadelimtheory
 | 
|  |    239 | %
 | 
|  |    240 | \isatagtheory
 | 
|  |    241 | %
 | 
|  |    242 | \endisatagtheory
 | 
|  |    243 | {\isafoldtheory}%
 | 
|  |    244 | %
 | 
|  |    245 | \isadelimtheory
 | 
|  |    246 | %
 | 
|  |    247 | \endisadelimtheory
 | 
| 10267 |    248 | \end{isabellebody}%
 | 
|  |    249 | %%% Local Variables:
 | 
|  |    250 | %%% mode: latex
 | 
|  |    251 | %%% TeX-master: "root"
 | 
|  |    252 | %%% End:
 |