author | blanchet |
Mon, 09 Aug 2010 12:53:16 +0200 | |
changeset 38287 | 796302ca3611 |
parent 35175 | 61255c81da01 |
child 40077 | c8a9eaaa2f59 |
permissions | -rw-r--r-- |
19944 | 1 |
(* Title: HOL/Library/Ramsey.thy |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
30738
diff
changeset
|
2 |
Author: Tom Ridge. Converted to structured Isar by L C Paulson |
19944 | 3 |
*) |
4 |
||
5 |
header "Ramsey's Theorem" |
|
6 |
||
25594 | 7 |
theory Ramsey |
30738 | 8 |
imports Main Infinite_Set |
25594 | 9 |
begin |
19944 | 10 |
|
22665 | 11 |
subsection {* Preliminaries *} |
19944 | 12 |
|
22665 | 13 |
subsubsection {* ``Axiom'' of Dependent Choice *} |
19944 | 14 |
|
34941 | 15 |
primrec choice :: "('a => bool) => ('a * 'a) set => nat => 'a" where |
19944 | 16 |
--{*An integer-indexed chain of choices*} |
34941 | 17 |
choice_0: "choice P r 0 = (SOME x. P x)" |
18 |
| choice_Suc: "choice P r (Suc n) = (SOME y. P y & (choice P r n, y) \<in> r)" |
|
19944 | 19 |
|
20 |
lemma choice_n: |
|
21 |
assumes P0: "P x0" |
|
22 |
and Pstep: "!!x. P x ==> \<exists>y. P y & (x,y) \<in> r" |
|
23 |
shows "P (choice P r n)" |
|
19948 | 24 |
proof (induct n) |
25 |
case 0 show ?case by (force intro: someI P0) |
|
26 |
next |
|
27 |
case Suc thus ?case by (auto intro: someI2_ex [OF Pstep]) |
|
28 |
qed |
|
19944 | 29 |
|
30 |
lemma dependent_choice: |
|
31 |
assumes trans: "trans r" |
|
32 |
and P0: "P x0" |
|
33 |
and Pstep: "!!x. P x ==> \<exists>y. P y & (x,y) \<in> r" |
|
19954 | 34 |
obtains f :: "nat => 'a" where |
35 |
"!!n. P (f n)" and "!!n m. n < m ==> (f n, f m) \<in> r" |
|
36 |
proof |
|
37 |
fix n |
|
38 |
show "P (choice P r n)" by (blast intro: choice_n [OF P0 Pstep]) |
|
19944 | 39 |
next |
40 |
have PSuc: "\<forall>n. (choice P r n, choice P r (Suc n)) \<in> r" |
|
41 |
using Pstep [OF choice_n [OF P0 Pstep]] |
|
42 |
by (auto intro: someI2_ex) |
|
19954 | 43 |
fix n m :: nat |
44 |
assume less: "n < m" |
|
45 |
show "(choice P r n, choice P r m) \<in> r" using PSuc |
|
46 |
by (auto intro: less_Suc_induct [OF less] transD [OF trans]) |
|
47 |
qed |
|
19944 | 48 |
|
49 |
||
22665 | 50 |
subsubsection {* Partitions of a Set *} |
19944 | 51 |
|
19948 | 52 |
definition |
53 |
part :: "nat => nat => 'a set => ('a set => nat) => bool" |
|
19944 | 54 |
--{*the function @{term f} partitions the @{term r}-subsets of the typically |
55 |
infinite set @{term Y} into @{term s} distinct categories.*} |
|
21634 | 56 |
where |
19948 | 57 |
"part r s Y f = (\<forall>X. X \<subseteq> Y & finite X & card X = r --> f X < s)" |
19944 | 58 |
|
59 |
text{*For induction, we decrease the value of @{term r} in partitions.*} |
|
60 |
lemma part_Suc_imp_part: |
|
61 |
"[| infinite Y; part (Suc r) s Y f; y \<in> Y |] |
|
62 |
==> part r s (Y - {y}) (%u. f (insert y u))" |
|
63 |
apply(simp add: part_def, clarify) |
|
64 |
apply(drule_tac x="insert y X" in spec) |
|
24853 | 65 |
apply(force) |
19944 | 66 |
done |
67 |
||
68 |
lemma part_subset: "part r s YY f ==> Y \<subseteq> YY ==> part r s Y f" |
|
19948 | 69 |
unfolding part_def by blast |
19944 | 70 |
|
71 |
||
22665 | 72 |
subsection {* Ramsey's Theorem: Infinitary Version *} |
19944 | 73 |
|
19954 | 74 |
lemma Ramsey_induction: |
75 |
fixes s and r::nat |
|
19944 | 76 |
shows |
77 |
"!!(YY::'a set) (f::'a set => nat). |
|
78 |
[|infinite YY; part r s YY f|] |
|
79 |
==> \<exists>Y' t'. Y' \<subseteq> YY & infinite Y' & t' < s & |
|
80 |
(\<forall>X. X \<subseteq> Y' & finite X & card X = r --> f X = t')" |
|
81 |
proof (induct r) |
|
82 |
case 0 |
|
24853 | 83 |
thus ?case by (auto simp add: part_def card_eq_0_iff cong: conj_cong) |
19944 | 84 |
next |
85 |
case (Suc r) |
|
86 |
show ?case |
|
87 |
proof - |
|
88 |
from Suc.prems infinite_imp_nonempty obtain yy where yy: "yy \<in> YY" by blast |
|
89 |
let ?ramr = "{((y,Y,t),(y',Y',t')). y' \<in> Y & Y' \<subseteq> Y}" |
|
90 |
let ?propr = "%(y,Y,t). |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
30738
diff
changeset
|
91 |
y \<in> YY & y \<notin> Y & Y \<subseteq> YY & infinite Y & t < s |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
30738
diff
changeset
|
92 |
& (\<forall>X. X\<subseteq>Y & finite X & card X = r --> (f o insert y) X = t)" |
19944 | 93 |
have infYY': "infinite (YY-{yy})" using Suc.prems by auto |
94 |
have partf': "part r s (YY - {yy}) (f \<circ> insert yy)" |
|
95 |
by (simp add: o_def part_Suc_imp_part yy Suc.prems) |
|
96 |
have transr: "trans ?ramr" by (force simp add: trans_def) |
|
97 |
from Suc.hyps [OF infYY' partf'] |
|
98 |
obtain Y0 and t0 |
|
99 |
where "Y0 \<subseteq> YY - {yy}" "infinite Y0" "t0 < s" |
|
100 |
"\<forall>X. X\<subseteq>Y0 \<and> finite X \<and> card X = r \<longrightarrow> (f \<circ> insert yy) X = t0" |
|
101 |
by blast |
|
102 |
with yy have propr0: "?propr(yy,Y0,t0)" by blast |
|
103 |
have proprstep: "\<And>x. ?propr x \<Longrightarrow> \<exists>y. ?propr y \<and> (x, y) \<in> ?ramr" |
|
104 |
proof - |
|
105 |
fix x |
|
106 |
assume px: "?propr x" thus "?thesis x" |
|
107 |
proof (cases x) |
|
108 |
case (fields yx Yx tx) |
|
109 |
then obtain yx' where yx': "yx' \<in> Yx" using px |
|
110 |
by (blast dest: infinite_imp_nonempty) |
|
111 |
have infYx': "infinite (Yx-{yx'})" using fields px by auto |
|
112 |
with fields px yx' Suc.prems |
|
113 |
have partfx': "part r s (Yx - {yx'}) (f \<circ> insert yx')" |
|
35175 | 114 |
by (simp add: o_def part_Suc_imp_part part_subset [where YY=YY and Y=Yx]) |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
30738
diff
changeset
|
115 |
from Suc.hyps [OF infYx' partfx'] |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
30738
diff
changeset
|
116 |
obtain Y' and t' |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
30738
diff
changeset
|
117 |
where Y': "Y' \<subseteq> Yx - {yx'}" "infinite Y'" "t' < s" |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
30738
diff
changeset
|
118 |
"\<forall>X. X\<subseteq>Y' \<and> finite X \<and> card X = r \<longrightarrow> (f \<circ> insert yx') X = t'" |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
30738
diff
changeset
|
119 |
by blast |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
30738
diff
changeset
|
120 |
show ?thesis |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
30738
diff
changeset
|
121 |
proof |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
30738
diff
changeset
|
122 |
show "?propr (yx',Y',t') & (x, (yx',Y',t')) \<in> ?ramr" |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
30738
diff
changeset
|
123 |
using fields Y' yx' px by blast |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
30738
diff
changeset
|
124 |
qed |
19944 | 125 |
qed |
126 |
qed |
|
127 |
from dependent_choice [OF transr propr0 proprstep] |
|
19946 | 128 |
obtain g where pg: "!!n::nat. ?propr (g n)" |
19954 | 129 |
and rg: "!!n m. n<m ==> (g n, g m) \<in> ?ramr" by blast |
28741 | 130 |
let ?gy = "fst o g" |
131 |
let ?gt = "snd o snd o g" |
|
19944 | 132 |
have rangeg: "\<exists>k. range ?gt \<subseteq> {..<k}" |
133 |
proof (intro exI subsetI) |
|
134 |
fix x |
|
135 |
assume "x \<in> range ?gt" |
|
136 |
then obtain n where "x = ?gt n" .. |
|
137 |
with pg [of n] show "x \<in> {..<s}" by (cases "g n") auto |
|
138 |
qed |
|
20810 | 139 |
have "finite (range ?gt)" |
140 |
by (simp add: finite_nat_iff_bounded rangeg) |
|
19944 | 141 |
then obtain s' and n' |
20810 | 142 |
where s': "s' = ?gt n'" |
143 |
and infeqs': "infinite {n. ?gt n = s'}" |
|
144 |
by (rule inf_img_fin_domE) (auto simp add: vimage_def intro: nat_infinite) |
|
19944 | 145 |
with pg [of n'] have less': "s'<s" by (cases "g n'") auto |
146 |
have inj_gy: "inj ?gy" |
|
147 |
proof (rule linorder_injI) |
|
19949 | 148 |
fix m m' :: nat assume less: "m < m'" show "?gy m \<noteq> ?gy m'" |
19948 | 149 |
using rg [OF less] pg [of m] by (cases "g m", cases "g m'") auto |
19944 | 150 |
qed |
151 |
show ?thesis |
|
152 |
proof (intro exI conjI) |
|
153 |
show "?gy ` {n. ?gt n = s'} \<subseteq> YY" using pg |
|
154 |
by (auto simp add: Let_def split_beta) |
|
155 |
show "infinite (?gy ` {n. ?gt n = s'})" using infeqs' |
|
156 |
by (blast intro: inj_gy [THEN subset_inj_on] dest: finite_imageD) |
|
157 |
show "s' < s" by (rule less') |
|
158 |
show "\<forall>X. X \<subseteq> ?gy ` {n. ?gt n = s'} & finite X & card X = Suc r |
|
159 |
--> f X = s'" |
|
160 |
proof - |
|
161 |
{fix X |
|
162 |
assume "X \<subseteq> ?gy ` {n. ?gt n = s'}" |
|
163 |
and cardX: "finite X" "card X = Suc r" |
|
164 |
then obtain AA where AA: "AA \<subseteq> {n. ?gt n = s'}" and Xeq: "X = ?gy`AA" |
|
165 |
by (auto simp add: subset_image_iff) |
|
166 |
with cardX have "AA\<noteq>{}" by auto |
|
167 |
hence AAleast: "(LEAST x. x \<in> AA) \<in> AA" by (auto intro: LeastI_ex) |
|
168 |
have "f X = s'" |
|
169 |
proof (cases "g (LEAST x. x \<in> AA)") |
|
170 |
case (fields ya Ya ta) |
|
171 |
with AAleast Xeq |
|
172 |
have ya: "ya \<in> X" by (force intro!: rev_image_eqI) |
|
173 |
hence "f X = f (insert ya (X - {ya}))" by (simp add: insert_absorb) |
|
174 |
also have "... = ta" |
|
175 |
proof - |
|
176 |
have "X - {ya} \<subseteq> Ya" |
|
177 |
proof |
|
19954 | 178 |
fix x assume x: "x \<in> X - {ya}" |
19944 | 179 |
then obtain a' where xeq: "x = ?gy a'" and a': "a' \<in> AA" |
180 |
by (auto simp add: Xeq) |
|
181 |
hence "a' \<noteq> (LEAST x. x \<in> AA)" using x fields by auto |
|
182 |
hence lessa': "(LEAST x. x \<in> AA) < a'" |
|
183 |
using Least_le [of "%x. x \<in> AA", OF a'] by arith |
|
184 |
show "x \<in> Ya" using xeq fields rg [OF lessa'] by auto |
|
185 |
qed |
|
186 |
moreover |
|
187 |
have "card (X - {ya}) = r" |
|
24853 | 188 |
by (simp add: cardX ya) |
19944 | 189 |
ultimately show ?thesis |
190 |
using pg [of "LEAST x. x \<in> AA"] fields cardX |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
30738
diff
changeset
|
191 |
by (clarsimp simp del:insert_Diff_single) |
19944 | 192 |
qed |
193 |
also have "... = s'" using AA AAleast fields by auto |
|
194 |
finally show ?thesis . |
|
195 |
qed} |
|
196 |
thus ?thesis by blast |
|
197 |
qed |
|
198 |
qed |
|
199 |
qed |
|
200 |
qed |
|
201 |
||
202 |
||
203 |
theorem Ramsey: |
|
19949 | 204 |
fixes s r :: nat and Z::"'a set" and f::"'a set => nat" |
19944 | 205 |
shows |
206 |
"[|infinite Z; |
|
207 |
\<forall>X. X \<subseteq> Z & finite X & card X = r --> f X < s|] |
|
208 |
==> \<exists>Y t. Y \<subseteq> Z & infinite Y & t < s |
|
209 |
& (\<forall>X. X \<subseteq> Y & finite X & card X = r --> f X = t)" |
|
19954 | 210 |
by (blast intro: Ramsey_induction [unfolded part_def]) |
211 |
||
212 |
||
213 |
corollary Ramsey2: |
|
214 |
fixes s::nat and Z::"'a set" and f::"'a set => nat" |
|
215 |
assumes infZ: "infinite Z" |
|
216 |
and part: "\<forall>x\<in>Z. \<forall>y\<in>Z. x\<noteq>y --> f{x,y} < s" |
|
217 |
shows |
|
218 |
"\<exists>Y t. Y \<subseteq> Z & infinite Y & t < s & (\<forall>x\<in>Y. \<forall>y\<in>Y. x\<noteq>y --> f{x,y} = t)" |
|
219 |
proof - |
|
220 |
have part2: "\<forall>X. X \<subseteq> Z & finite X & card X = 2 --> f X < s" |
|
24853 | 221 |
using part by (fastsimp simp add: nat_number card_Suc_eq) |
19954 | 222 |
obtain Y t |
223 |
where "Y \<subseteq> Z" "infinite Y" "t < s" |
|
224 |
"(\<forall>X. X \<subseteq> Y & finite X & card X = 2 --> f X = t)" |
|
225 |
by (insert Ramsey [OF infZ part2]) auto |
|
226 |
moreover from this have "\<forall>x\<in>Y. \<forall>y\<in>Y. x \<noteq> y \<longrightarrow> f {x, y} = t" by auto |
|
227 |
ultimately show ?thesis by iprover |
|
228 |
qed |
|
229 |
||
230 |
||
22665 | 231 |
subsection {* Disjunctive Well-Foundedness *} |
19954 | 232 |
|
22367 | 233 |
text {* |
234 |
An application of Ramsey's theorem to program termination. See |
|
235 |
\cite{Podelski-Rybalchenko}. |
|
19954 | 236 |
*} |
237 |
||
20810 | 238 |
definition |
19954 | 239 |
disj_wf :: "('a * 'a)set => bool" |
21634 | 240 |
where |
20810 | 241 |
"disj_wf r = (\<exists>T. \<exists>n::nat. (\<forall>i<n. wf(T i)) & r = (\<Union>i<n. T i))" |
19954 | 242 |
|
21634 | 243 |
definition |
19954 | 244 |
transition_idx :: "[nat => 'a, nat => ('a*'a)set, nat set] => nat" |
21634 | 245 |
where |
20810 | 246 |
"transition_idx s T A = |
247 |
(LEAST k. \<exists>i j. A = {i,j} & i<j & (s j, s i) \<in> T k)" |
|
19954 | 248 |
|
249 |
||
250 |
lemma transition_idx_less: |
|
251 |
"[|i<j; (s j, s i) \<in> T k; k<n|] ==> transition_idx s T {i,j} < n" |
|
252 |
apply (subgoal_tac "transition_idx s T {i, j} \<le> k", simp) |
|
253 |
apply (simp add: transition_idx_def, blast intro: Least_le) |
|
254 |
done |
|
255 |
||
256 |
lemma transition_idx_in: |
|
257 |
"[|i<j; (s j, s i) \<in> T k|] ==> (s j, s i) \<in> T (transition_idx s T {i,j})" |
|
258 |
apply (simp add: transition_idx_def doubleton_eq_iff conj_disj_distribR |
|
259 |
cong: conj_cong) |
|
260 |
apply (erule LeastI) |
|
261 |
done |
|
262 |
||
263 |
text{*To be equal to the union of some well-founded relations is equivalent |
|
264 |
to being the subset of such a union.*} |
|
265 |
lemma disj_wf: |
|
266 |
"disj_wf(r) = (\<exists>T. \<exists>n::nat. (\<forall>i<n. wf(T i)) & r \<subseteq> (\<Union>i<n. T i))" |
|
267 |
apply (auto simp add: disj_wf_def) |
|
268 |
apply (rule_tac x="%i. T i Int r" in exI) |
|
269 |
apply (rule_tac x=n in exI) |
|
270 |
apply (force simp add: wf_Int1) |
|
271 |
done |
|
272 |
||
273 |
theorem trans_disj_wf_implies_wf: |
|
274 |
assumes transr: "trans r" |
|
275 |
and dwf: "disj_wf(r)" |
|
276 |
shows "wf r" |
|
277 |
proof (simp only: wf_iff_no_infinite_down_chain, rule notI) |
|
278 |
assume "\<exists>s. \<forall>i. (s (Suc i), s i) \<in> r" |
|
279 |
then obtain s where sSuc: "\<forall>i. (s (Suc i), s i) \<in> r" .. |
|
280 |
have s: "!!i j. i < j ==> (s j, s i) \<in> r" |
|
281 |
proof - |
|
282 |
fix i and j::nat |
|
283 |
assume less: "i<j" |
|
284 |
thus "(s j, s i) \<in> r" |
|
285 |
proof (rule less_Suc_induct) |
|
286 |
show "\<And>i. (s (Suc i), s i) \<in> r" by (simp add: sSuc) |
|
287 |
show "\<And>i j k. \<lbrakk>(s j, s i) \<in> r; (s k, s j) \<in> r\<rbrakk> \<Longrightarrow> (s k, s i) \<in> r" |
|
288 |
using transr by (unfold trans_def, blast) |
|
289 |
qed |
|
290 |
qed |
|
291 |
from dwf |
|
292 |
obtain T and n::nat where wfT: "\<forall>k<n. wf(T k)" and r: "r = (\<Union>k<n. T k)" |
|
293 |
by (auto simp add: disj_wf_def) |
|
294 |
have s_in_T: "\<And>i j. i<j ==> \<exists>k. (s j, s i) \<in> T k & k<n" |
|
295 |
proof - |
|
296 |
fix i and j::nat |
|
297 |
assume less: "i<j" |
|
298 |
hence "(s j, s i) \<in> r" by (rule s [of i j]) |
|
299 |
thus "\<exists>k. (s j, s i) \<in> T k & k<n" by (auto simp add: r) |
|
300 |
qed |
|
301 |
have trless: "!!i j. i\<noteq>j ==> transition_idx s T {i,j} < n" |
|
302 |
apply (auto simp add: linorder_neq_iff) |
|
303 |
apply (blast dest: s_in_T transition_idx_less) |
|
304 |
apply (subst insert_commute) |
|
305 |
apply (blast dest: s_in_T transition_idx_less) |
|
306 |
done |
|
307 |
have |
|
308 |
"\<exists>K k. K \<subseteq> UNIV & infinite K & k < n & |
|
309 |
(\<forall>i\<in>K. \<forall>j\<in>K. i\<noteq>j --> transition_idx s T {i,j} = k)" |
|
310 |
by (rule Ramsey2) (auto intro: trless nat_infinite) |
|
311 |
then obtain K and k |
|
312 |
where infK: "infinite K" and less: "k < n" and |
|
313 |
allk: "\<forall>i\<in>K. \<forall>j\<in>K. i\<noteq>j --> transition_idx s T {i,j} = k" |
|
314 |
by auto |
|
315 |
have "\<forall>m. (s (enumerate K (Suc m)), s(enumerate K m)) \<in> T k" |
|
316 |
proof |
|
317 |
fix m::nat |
|
318 |
let ?j = "enumerate K (Suc m)" |
|
319 |
let ?i = "enumerate K m" |
|
320 |
have jK: "?j \<in> K" by (simp add: enumerate_in_set infK) |
|
321 |
have iK: "?i \<in> K" by (simp add: enumerate_in_set infK) |
|
322 |
have ij: "?i < ?j" by (simp add: enumerate_step infK) |
|
323 |
have ijk: "transition_idx s T {?i,?j} = k" using iK jK ij |
|
324 |
by (simp add: allk) |
|
325 |
obtain k' where "(s ?j, s ?i) \<in> T k'" "k'<n" |
|
326 |
using s_in_T [OF ij] by blast |
|
327 |
thus "(s ?j, s ?i) \<in> T k" |
|
328 |
by (simp add: ijk [symmetric] transition_idx_in ij) |
|
329 |
qed |
|
330 |
hence "~ wf(T k)" by (force simp add: wf_iff_no_infinite_down_chain) |
|
331 |
thus False using wfT less by blast |
|
332 |
qed |
|
333 |
||
19944 | 334 |
end |