| author | paulson | 
| Tue, 21 Oct 1997 10:36:23 +0200 | |
| changeset 3960 | 7a38fae985f9 | 
| parent 3840 | e0baea4d485a | 
| child 4091 | 771b1f6422a8 | 
| permissions | -rw-r--r-- | 
| 1461 | 1 | (* Title: ZF/OrderType.ML | 
| 435 | 2 | ID: $Id$ | 
| 1461 | 3 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | 
| 435 | 4 | Copyright 1994 University of Cambridge | 
| 5 | ||
| 849 | 6 | Order types and ordinal arithmetic in Zermelo-Fraenkel Set Theory | 
| 7 | ||
| 8 | Ordinal arithmetic is traditionally defined in terms of order types, as here. | |
| 9 | But a definition by transfinite recursion would be much simpler! | |
| 435 | 10 | *) | 
| 11 | ||
| 12 | ||
| 13 | open OrderType; | |
| 14 | ||
| 849 | 15 | (**** Proofs needing the combination of Ordinal.thy and Order.thy ****) | 
| 814 
a32b420c33d4
Moved well_ord_Memrel, lt_eq_pred, Ord_iso_implies_eq_lemma,
 lcp parents: 
807diff
changeset | 16 | |
| 849 | 17 | val [prem] = goal OrderType.thy "j le i ==> well_ord(j, Memrel(i))"; | 
| 814 
a32b420c33d4
Moved well_ord_Memrel, lt_eq_pred, Ord_iso_implies_eq_lemma,
 lcp parents: 
807diff
changeset | 18 | by (rtac well_ordI 1); | 
| 
a32b420c33d4
Moved well_ord_Memrel, lt_eq_pred, Ord_iso_implies_eq_lemma,
 lcp parents: 
807diff
changeset | 19 | by (rtac (wf_Memrel RS wf_imp_wf_on) 1); | 
| 849 | 20 | by (resolve_tac [prem RS ltE] 1); | 
| 2469 | 21 | by (asm_simp_tac (!simpset addsimps [linear_def, Memrel_iff, | 
| 1461 | 22 | [ltI, prem] MRS lt_trans2 RS ltD]) 1); | 
| 849 | 23 | by (REPEAT (resolve_tac [ballI, Ord_linear] 1)); | 
| 24 | by (REPEAT (eresolve_tac [asm_rl, Ord_in_Ord] 1)); | |
| 25 | qed "le_well_ord_Memrel"; | |
| 26 | ||
| 27 | (*"Ord(i) ==> well_ord(i, Memrel(i))"*) | |
| 28 | bind_thm ("well_ord_Memrel", le_refl RS le_well_ord_Memrel);
 | |
| 814 
a32b420c33d4
Moved well_ord_Memrel, lt_eq_pred, Ord_iso_implies_eq_lemma,
 lcp parents: 
807diff
changeset | 29 | |
| 
a32b420c33d4
Moved well_ord_Memrel, lt_eq_pred, Ord_iso_implies_eq_lemma,
 lcp parents: 
807diff
changeset | 30 | (*Kunen's Theorem 7.3 (i), page 16; see also Ordinal/Ord_in_Ord | 
| 
a32b420c33d4
Moved well_ord_Memrel, lt_eq_pred, Ord_iso_implies_eq_lemma,
 lcp parents: 
807diff
changeset | 31 | The smaller ordinal is an initial segment of the larger *) | 
| 
a32b420c33d4
Moved well_ord_Memrel, lt_eq_pred, Ord_iso_implies_eq_lemma,
 lcp parents: 
807diff
changeset | 32 | goalw OrderType.thy [pred_def, lt_def] | 
| 849 | 33 | "!!i j. j<i ==> pred(i, j, Memrel(i)) = j"; | 
| 2469 | 34 | by (asm_simp_tac (!simpset addsimps [Memrel_iff]) 1); | 
| 2925 | 35 | by (blast_tac (!claset addIs [Ord_trans]) 1); | 
| 849 | 36 | qed "lt_pred_Memrel"; | 
| 814 
a32b420c33d4
Moved well_ord_Memrel, lt_eq_pred, Ord_iso_implies_eq_lemma,
 lcp parents: 
807diff
changeset | 37 | |
| 831 | 38 | goalw OrderType.thy [pred_def,Memrel_def] | 
| 849 | 39 | "!!A x. x:A ==> pred(A, x, Memrel(A)) = A Int x"; | 
| 2925 | 40 | by (Blast_tac 1); | 
| 831 | 41 | qed "pred_Memrel"; | 
| 42 | ||
| 814 
a32b420c33d4
Moved well_ord_Memrel, lt_eq_pred, Ord_iso_implies_eq_lemma,
 lcp parents: 
807diff
changeset | 43 | goal OrderType.thy | 
| 
a32b420c33d4
Moved well_ord_Memrel, lt_eq_pred, Ord_iso_implies_eq_lemma,
 lcp parents: 
807diff
changeset | 44 | "!!i. [| j<i; f: ord_iso(i,Memrel(i),j,Memrel(j)) |] ==> R"; | 
| 849 | 45 | by (forward_tac [lt_pred_Memrel] 1); | 
| 814 
a32b420c33d4
Moved well_ord_Memrel, lt_eq_pred, Ord_iso_implies_eq_lemma,
 lcp parents: 
807diff
changeset | 46 | by (etac ltE 1); | 
| 
a32b420c33d4
Moved well_ord_Memrel, lt_eq_pred, Ord_iso_implies_eq_lemma,
 lcp parents: 
807diff
changeset | 47 | by (rtac (well_ord_Memrel RS well_ord_iso_predE) 1 THEN | 
| 
a32b420c33d4
Moved well_ord_Memrel, lt_eq_pred, Ord_iso_implies_eq_lemma,
 lcp parents: 
807diff
changeset | 48 | assume_tac 3 THEN assume_tac 1); | 
| 2469 | 49 | by (asm_full_simp_tac (!simpset addsimps [ord_iso_def]) 1); | 
| 814 
a32b420c33d4
Moved well_ord_Memrel, lt_eq_pred, Ord_iso_implies_eq_lemma,
 lcp parents: 
807diff
changeset | 50 | (*Combining the two simplifications causes looping*) | 
| 2469 | 51 | by (asm_simp_tac (!simpset addsimps [Memrel_iff]) 1); | 
| 52 | by (fast_tac (!claset addSEs [bij_is_fun RS apply_type] addEs [Ord_trans]) 1); | |
| 814 
a32b420c33d4
Moved well_ord_Memrel, lt_eq_pred, Ord_iso_implies_eq_lemma,
 lcp parents: 
807diff
changeset | 53 | qed "Ord_iso_implies_eq_lemma"; | 
| 
a32b420c33d4
Moved well_ord_Memrel, lt_eq_pred, Ord_iso_implies_eq_lemma,
 lcp parents: 
807diff
changeset | 54 | |
| 
a32b420c33d4
Moved well_ord_Memrel, lt_eq_pred, Ord_iso_implies_eq_lemma,
 lcp parents: 
807diff
changeset | 55 | (*Kunen's Theorem 7.3 (ii), page 16. Isomorphic ordinals are equal*) | 
| 
a32b420c33d4
Moved well_ord_Memrel, lt_eq_pred, Ord_iso_implies_eq_lemma,
 lcp parents: 
807diff
changeset | 56 | goal OrderType.thy | 
| 1461 | 57 | "!!i. [| Ord(i); Ord(j); f: ord_iso(i,Memrel(i),j,Memrel(j)) \ | 
| 814 
a32b420c33d4
Moved well_ord_Memrel, lt_eq_pred, Ord_iso_implies_eq_lemma,
 lcp parents: 
807diff
changeset | 58 | \ |] ==> i=j"; | 
| 
a32b420c33d4
Moved well_ord_Memrel, lt_eq_pred, Ord_iso_implies_eq_lemma,
 lcp parents: 
807diff
changeset | 59 | by (res_inst_tac [("i","i"),("j","j")] Ord_linear_lt 1);
 | 
| 
a32b420c33d4
Moved well_ord_Memrel, lt_eq_pred, Ord_iso_implies_eq_lemma,
 lcp parents: 
807diff
changeset | 60 | by (REPEAT (eresolve_tac [asm_rl, ord_iso_sym, Ord_iso_implies_eq_lemma] 1)); | 
| 
a32b420c33d4
Moved well_ord_Memrel, lt_eq_pred, Ord_iso_implies_eq_lemma,
 lcp parents: 
807diff
changeset | 61 | qed "Ord_iso_implies_eq"; | 
| 
a32b420c33d4
Moved well_ord_Memrel, lt_eq_pred, Ord_iso_implies_eq_lemma,
 lcp parents: 
807diff
changeset | 62 | |
| 849 | 63 | |
| 64 | (**** Ordermap and ordertype ****) | |
| 814 
a32b420c33d4
Moved well_ord_Memrel, lt_eq_pred, Ord_iso_implies_eq_lemma,
 lcp parents: 
807diff
changeset | 65 | |
| 437 | 66 | goalw OrderType.thy [ordermap_def,ordertype_def] | 
| 67 | "ordermap(A,r) : A -> ordertype(A,r)"; | |
| 68 | by (rtac lam_type 1); | |
| 69 | by (rtac (lamI RS imageI) 1); | |
| 70 | by (REPEAT (assume_tac 1)); | |
| 760 | 71 | qed "ordermap_type"; | 
| 437 | 72 | |
| 849 | 73 | (*** Unfolding of ordermap ***) | 
| 435 | 74 | |
| 437 | 75 | (*Useful for cardinality reasoning; see CardinalArith.ML*) | 
| 435 | 76 | goalw OrderType.thy [ordermap_def, pred_def] | 
| 77 | "!!r. [| wf[A](r); x:A |] ==> \ | |
| 437 | 78 | \ ordermap(A,r) ` x = ordermap(A,r) `` pred(A,x,r)"; | 
| 2469 | 79 | by (Asm_simp_tac 1); | 
| 437 | 80 | by (etac (wfrec_on RS trans) 1); | 
| 81 | by (assume_tac 1); | |
| 2469 | 82 | by (asm_simp_tac (!simpset addsimps [subset_iff, image_lam, | 
| 437 | 83 | vimage_singleton_iff]) 1); | 
| 760 | 84 | qed "ordermap_eq_image"; | 
| 437 | 85 | |
| 467 | 86 | (*Useful for rewriting PROVIDED pred is not unfolded until later!*) | 
| 437 | 87 | goal OrderType.thy | 
| 88 | "!!r. [| wf[A](r); x:A |] ==> \ | |
| 435 | 89 | \         ordermap(A,r) ` x = {ordermap(A,r)`y . y : pred(A,x,r)}";
 | 
| 2469 | 90 | by (asm_simp_tac (!simpset addsimps [ordermap_eq_image, pred_subset, | 
| 1461 | 91 | ordermap_type RS image_fun]) 1); | 
| 760 | 92 | qed "ordermap_pred_unfold"; | 
| 435 | 93 | |
| 94 | (*pred-unfolded version. NOT suitable for rewriting -- loops!*) | |
| 95 | val ordermap_unfold = rewrite_rule [pred_def] ordermap_pred_unfold; | |
| 96 | ||
| 849 | 97 | (*** Showing that ordermap, ordertype yield ordinals ***) | 
| 435 | 98 | |
| 99 | fun ordermap_elim_tac i = | |
| 100 | EVERY [etac (ordermap_unfold RS equalityD1 RS subsetD RS RepFunE) i, | |
| 1461 | 101 | assume_tac (i+1), | 
| 102 | assume_tac i]; | |
| 435 | 103 | |
| 104 | goalw OrderType.thy [well_ord_def, tot_ord_def, part_ord_def] | |
| 105 | "!!r. [| well_ord(A,r); x:A |] ==> Ord(ordermap(A,r) ` x)"; | |
| 2469 | 106 | by (safe_tac (!claset)); | 
| 435 | 107 | by (wf_on_ind_tac "x" [] 1); | 
| 2469 | 108 | by (asm_simp_tac (!simpset addsimps [ordermap_pred_unfold]) 1); | 
| 435 | 109 | by (rtac (Ord_is_Transset RSN (2,OrdI)) 1); | 
| 437 | 110 | by (rewrite_goals_tac [pred_def,Transset_def]); | 
| 2925 | 111 | by (Blast_tac 2); | 
| 2469 | 112 | by (safe_tac (!claset)); | 
| 435 | 113 | by (ordermap_elim_tac 1); | 
| 2469 | 114 | by (fast_tac (!claset addSEs [trans_onD]) 1); | 
| 760 | 115 | qed "Ord_ordermap"; | 
| 435 | 116 | |
| 117 | goalw OrderType.thy [ordertype_def] | |
| 118 | "!!r. well_ord(A,r) ==> Ord(ordertype(A,r))"; | |
| 2033 | 119 | by (stac ([ordermap_type, subset_refl] MRS image_fun) 1); | 
| 435 | 120 | by (rtac (Ord_is_Transset RSN (2,OrdI)) 1); | 
| 2925 | 121 | by (blast_tac (!claset addIs [Ord_ordermap]) 2); | 
| 437 | 122 | by (rewrite_goals_tac [Transset_def,well_ord_def]); | 
| 2469 | 123 | by (safe_tac (!claset)); | 
| 435 | 124 | by (ordermap_elim_tac 1); | 
| 2925 | 125 | by (Blast_tac 1); | 
| 760 | 126 | qed "Ord_ordertype"; | 
| 435 | 127 | |
| 849 | 128 | (*** ordermap preserves the orderings in both directions ***) | 
| 435 | 129 | |
| 130 | goal OrderType.thy | |
| 1461 | 131 | "!!r. [| <w,x>: r; wf[A](r); w: A; x: A |] ==> \ | 
| 435 | 132 | \ ordermap(A,r)`w : ordermap(A,r)`x"; | 
| 133 | by (eres_inst_tac [("x1", "x")] (ordermap_unfold RS ssubst) 1);
 | |
| 437 | 134 | by (assume_tac 1); | 
| 2925 | 135 | by (Blast_tac 1); | 
| 760 | 136 | qed "ordermap_mono"; | 
| 435 | 137 | |
| 138 | (*linearity of r is crucial here*) | |
| 139 | goalw OrderType.thy [well_ord_def, tot_ord_def] | |
| 140 | "!!r. [| ordermap(A,r)`w : ordermap(A,r)`x; well_ord(A,r); \ | |
| 141 | \ w: A; x: A |] ==> <w,x>: r"; | |
| 2469 | 142 | by (safe_tac (!claset)); | 
| 435 | 143 | by (linear_case_tac 1); | 
| 2925 | 144 | by (blast_tac (!claset addSEs [mem_not_refl RS notE]) 1); | 
| 467 | 145 | by (dtac ordermap_mono 1); | 
| 435 | 146 | by (REPEAT_SOME assume_tac); | 
| 437 | 147 | by (etac mem_asym 1); | 
| 148 | by (assume_tac 1); | |
| 760 | 149 | qed "converse_ordermap_mono"; | 
| 435 | 150 | |
| 803 
4c8333ab3eae
changed useless "qed" calls for lemmas back to uses of "result",
 lcp parents: 
788diff
changeset | 151 | bind_thm ("ordermap_surj", 
 | 
| 1461 | 152 | rewrite_rule [symmetric ordertype_def] | 
| 153 | (ordermap_type RS surj_image)); | |
| 435 | 154 | |
| 155 | goalw OrderType.thy [well_ord_def, tot_ord_def, bij_def, inj_def] | |
| 156 | "!!r. well_ord(A,r) ==> ordermap(A,r) : bij(A, ordertype(A,r))"; | |
| 2469 | 157 | by (fast_tac (!claset addSIs [ordermap_type, ordermap_surj] | 
| 3016 | 158 | addEs [linearE] | 
| 159 | addDs [ordermap_mono] | |
| 160 | addss (!simpset addsimps [mem_not_refl])) 1); | |
| 760 | 161 | qed "ordermap_bij"; | 
| 435 | 162 | |
| 849 | 163 | (*** Isomorphisms involving ordertype ***) | 
| 814 
a32b420c33d4
Moved well_ord_Memrel, lt_eq_pred, Ord_iso_implies_eq_lemma,
 lcp parents: 
807diff
changeset | 164 | |
| 435 | 165 | goalw OrderType.thy [ord_iso_def] | 
| 166 | "!!r. well_ord(A,r) ==> \ | |
| 167 | \ ordermap(A,r) : ord_iso(A,r, ordertype(A,r), Memrel(ordertype(A,r)))"; | |
| 2925 | 168 | by (safe_tac (!claset addSEs [well_ord_is_wf] | 
| 169 | addSIs [ordermap_type RS apply_type, | |
| 170 | ordermap_mono, ordermap_bij])); | |
| 171 | by (blast_tac (!claset addSDs [converse_ordermap_mono]) 1); | |
| 760 | 172 | qed "ordertype_ord_iso"; | 
| 435 | 173 | |
| 814 
a32b420c33d4
Moved well_ord_Memrel, lt_eq_pred, Ord_iso_implies_eq_lemma,
 lcp parents: 
807diff
changeset | 174 | goal OrderType.thy | 
| 1461 | 175 | "!!f. [| f: ord_iso(A,r,B,s); well_ord(B,s) |] ==> \ | 
| 814 
a32b420c33d4
Moved well_ord_Memrel, lt_eq_pred, Ord_iso_implies_eq_lemma,
 lcp parents: 
807diff
changeset | 176 | \ ordertype(A,r) = ordertype(B,s)"; | 
| 
a32b420c33d4
Moved well_ord_Memrel, lt_eq_pred, Ord_iso_implies_eq_lemma,
 lcp parents: 
807diff
changeset | 177 | by (forward_tac [well_ord_ord_iso] 1 THEN assume_tac 1); | 
| 1461 | 178 | by (rtac Ord_iso_implies_eq 1 | 
| 179 | THEN REPEAT (etac Ord_ordertype 1)); | |
| 2469 | 180 | by (deepen_tac (!claset addIs [ord_iso_trans, ord_iso_sym] | 
| 831 | 181 | addSEs [ordertype_ord_iso]) 0 1); | 
| 814 
a32b420c33d4
Moved well_ord_Memrel, lt_eq_pred, Ord_iso_implies_eq_lemma,
 lcp parents: 
807diff
changeset | 182 | qed "ordertype_eq"; | 
| 
a32b420c33d4
Moved well_ord_Memrel, lt_eq_pred, Ord_iso_implies_eq_lemma,
 lcp parents: 
807diff
changeset | 183 | |
| 849 | 184 | goal OrderType.thy | 
| 1461 | 185 | "!!A B. [| ordertype(A,r) = ordertype(B,s); \ | 
| 849 | 186 | \ well_ord(A,r); well_ord(B,s) \ | 
| 187 | \ |] ==> EX f. f: ord_iso(A,r,B,s)"; | |
| 1461 | 188 | by (rtac exI 1); | 
| 849 | 189 | by (resolve_tac [ordertype_ord_iso RS ord_iso_trans] 1); | 
| 190 | by (assume_tac 1); | |
| 1461 | 191 | by (etac ssubst 1); | 
| 849 | 192 | by (eresolve_tac [ordertype_ord_iso RS ord_iso_sym] 1); | 
| 193 | qed "ordertype_eq_imp_ord_iso"; | |
| 435 | 194 | |
| 849 | 195 | (*** Basic equalities for ordertype ***) | 
| 467 | 196 | |
| 814 
a32b420c33d4
Moved well_ord_Memrel, lt_eq_pred, Ord_iso_implies_eq_lemma,
 lcp parents: 
807diff
changeset | 197 | (*Ordertype of Memrel*) | 
| 849 | 198 | goal OrderType.thy "!!i. j le i ==> ordertype(j,Memrel(i)) = j"; | 
| 814 
a32b420c33d4
Moved well_ord_Memrel, lt_eq_pred, Ord_iso_implies_eq_lemma,
 lcp parents: 
807diff
changeset | 199 | by (resolve_tac [Ord_iso_implies_eq RS sym] 1); | 
| 1461 | 200 | by (etac ltE 1); | 
| 849 | 201 | by (REPEAT (ares_tac [le_well_ord_Memrel, Ord_ordertype] 1)); | 
| 1461 | 202 | by (rtac ord_iso_trans 1); | 
| 849 | 203 | by (eresolve_tac [le_well_ord_Memrel RS ordertype_ord_iso] 2); | 
| 204 | by (resolve_tac [id_bij RS ord_isoI] 1); | |
| 2469 | 205 | by (asm_simp_tac (!simpset addsimps [id_conv, Memrel_iff]) 1); | 
| 206 | by (fast_tac (!claset addEs [ltE, Ord_in_Ord, Ord_trans]) 1); | |
| 849 | 207 | qed "le_ordertype_Memrel"; | 
| 208 | ||
| 209 | (*"Ord(i) ==> ordertype(i, Memrel(i)) = i"*) | |
| 210 | bind_thm ("ordertype_Memrel", le_refl RS le_ordertype_Memrel);
 | |
| 467 | 211 | |
| 849 | 212 | goal OrderType.thy "ordertype(0,r) = 0"; | 
| 213 | by (resolve_tac [id_bij RS ord_isoI RS ordertype_eq RS trans] 1); | |
| 214 | by (etac emptyE 1); | |
| 1461 | 215 | by (rtac well_ord_0 1); | 
| 849 | 216 | by (resolve_tac [Ord_0 RS ordertype_Memrel] 1); | 
| 217 | qed "ordertype_0"; | |
| 218 | ||
| 2469 | 219 | Addsimps [ordertype_0]; | 
| 220 | ||
| 849 | 221 | (*Ordertype of rvimage: [| f: bij(A,B); well_ord(B,s) |] ==> | 
| 222 | ordertype(A, rvimage(A,f,s)) = ordertype(B,s) *) | |
| 814 
a32b420c33d4
Moved well_ord_Memrel, lt_eq_pred, Ord_iso_implies_eq_lemma,
 lcp parents: 
807diff
changeset | 223 | bind_thm ("bij_ordertype_vimage", ord_iso_rvimage RS ordertype_eq);
 | 
| 467 | 224 | |
| 849 | 225 | (*** A fundamental unfolding law for ordertype. ***) | 
| 226 | ||
| 814 
a32b420c33d4
Moved well_ord_Memrel, lt_eq_pred, Ord_iso_implies_eq_lemma,
 lcp parents: 
807diff
changeset | 227 | (*Ordermap returns the same result if applied to an initial segment*) | 
| 467 | 228 | goal OrderType.thy | 
| 1461 | 229 | "!!r. [| well_ord(A,r); y:A; z: pred(A,y,r) |] ==> \ | 
| 230 | \ ordermap(pred(A,y,r), r) ` z = ordermap(A, r) ` z"; | |
| 467 | 231 | by (forward_tac [[well_ord_is_wf, pred_subset] MRS wf_on_subset_A] 1); | 
| 232 | by (wf_on_ind_tac "z" [] 1); | |
| 2469 | 233 | by (safe_tac (!claset addSEs [predE])); | 
| 467 | 234 | by (asm_simp_tac | 
| 2469 | 235 | (!simpset addsimps [ordermap_pred_unfold, well_ord_is_wf, pred_iff]) 1); | 
| 467 | 236 | (*combining these two simplifications LOOPS! *) | 
| 2469 | 237 | by (asm_simp_tac (!simpset addsimps [pred_pred_eq]) 1); | 
| 238 | by (asm_full_simp_tac (!simpset addsimps [pred_def]) 1); | |
| 807 | 239 | by (rtac (refl RSN (2,RepFun_cong)) 1); | 
| 240 | by (dtac well_ord_is_trans_on 1); | |
| 2493 | 241 | by (fast_tac (!claset addSEs [trans_onD]) 1); | 
| 760 | 242 | qed "ordermap_pred_eq_ordermap"; | 
| 467 | 243 | |
| 849 | 244 | goalw OrderType.thy [ordertype_def] | 
| 245 |     "ordertype(A,r) = {ordermap(A,r)`y . y : A}";
 | |
| 246 | by (rtac ([ordermap_type, subset_refl] MRS image_fun) 1); | |
| 247 | qed "ordertype_unfold"; | |
| 248 | ||
| 249 | (** Theorems by Krzysztof Grabczewski; proofs simplified by lcp **) | |
| 250 | ||
| 251 | goal OrderType.thy | |
| 2925 | 252 | "!!r. [| well_ord(A,r); x:A |] ==> \ | 
| 849 | 253 | \ ordertype(pred(A,x,r),r) <= ordertype(A,r)"; | 
| 2469 | 254 | by (asm_simp_tac (!simpset addsimps [ordertype_unfold, | 
| 849 | 255 | pred_subset RSN (2, well_ord_subset)]) 1); | 
| 2925 | 256 | by (fast_tac (!claset addIs [ordermap_pred_eq_ordermap] | 
| 257 | addEs [predE]) 1); | |
| 849 | 258 | qed "ordertype_pred_subset"; | 
| 259 | ||
| 260 | goal OrderType.thy | |
| 261 | "!!r. [| well_ord(A,r); x:A |] ==> \ | |
| 262 | \ ordertype(pred(A,x,r),r) < ordertype(A,r)"; | |
| 263 | by (resolve_tac [ordertype_pred_subset RS subset_imp_le RS leE] 1); | |
| 264 | by (REPEAT (ares_tac [Ord_ordertype, well_ord_subset, pred_subset] 1)); | |
| 265 | by (eresolve_tac [sym RS ordertype_eq_imp_ord_iso RS exE] 1); | |
| 1461 | 266 | by (etac well_ord_iso_predE 3); | 
| 849 | 267 | by (REPEAT (ares_tac [pred_subset, well_ord_subset] 1)); | 
| 268 | qed "ordertype_pred_lt"; | |
| 269 | ||
| 270 | (*May rewrite with this -- provided no rules are supplied for proving that | |
| 1461 | 271 | well_ord(pred(A,x,r), r) *) | 
| 849 | 272 | goal OrderType.thy | 
| 273 | "!!A r. well_ord(A,r) ==> \ | |
| 274 | \           ordertype(A,r) = {ordertype(pred(A,x,r),r). x:A}";
 | |
| 2493 | 275 | by (rtac equalityI 1); | 
| 276 | by (safe_tac (!claset addSIs [ordertype_pred_lt RS ltD])); | |
| 984 | 277 | by (fast_tac | 
| 2469 | 278 | (!claset addss | 
| 279 | (!simpset addsimps [ordertype_def, | |
| 1461 | 280 | well_ord_is_wf RS ordermap_eq_image, | 
| 281 | ordermap_type RS image_fun, | |
| 282 | ordermap_pred_eq_ordermap, | |
| 283 | pred_subset])) | |
| 984 | 284 | 1); | 
| 849 | 285 | qed "ordertype_pred_unfold"; | 
| 286 | ||
| 287 | ||
| 288 | (**** Alternative definition of ordinal ****) | |
| 289 | ||
| 290 | (*proof by Krzysztof Grabczewski*) | |
| 291 | goalw OrderType.thy [Ord_alt_def] "!!i. Ord(i) ==> Ord_alt(i)"; | |
| 1461 | 292 | by (rtac conjI 1); | 
| 293 | by (etac well_ord_Memrel 1); | |
| 849 | 294 | by (rewrite_goals_tac [Ord_def, Transset_def, pred_def, Memrel_def]); | 
| 2925 | 295 | by (Blast.depth_tac (!claset) 8 1); | 
| 849 | 296 | qed "Ord_is_Ord_alt"; | 
| 297 | ||
| 298 | (*proof by lcp*) | |
| 299 | goalw OrderType.thy [Ord_alt_def, Ord_def, Transset_def, well_ord_def, | |
| 1461 | 300 | tot_ord_def, part_ord_def, trans_on_def] | 
| 849 | 301 | "!!i. Ord_alt(i) ==> Ord(i)"; | 
| 2469 | 302 | by (asm_full_simp_tac (!simpset addsimps [Memrel_iff, pred_Memrel]) 1); | 
| 2925 | 303 | by (blast_tac (!claset addSEs [equalityE]) 1); | 
| 849 | 304 | qed "Ord_alt_is_Ord"; | 
| 305 | ||
| 306 | ||
| 307 | (**** Ordinal Addition ****) | |
| 308 | ||
| 309 | (*** Order Type calculations for radd ***) | |
| 310 | ||
| 311 | (** Addition with 0 **) | |
| 312 | ||
| 3840 | 313 | goal OrderType.thy "(lam z:A+0. case(%x. x, %y. y, z)) : bij(A+0, A)"; | 
| 849 | 314 | by (res_inst_tac [("d", "Inl")] lam_bijective 1);
 | 
| 2493 | 315 | by (safe_tac (!claset)); | 
| 2925 | 316 | by (ALLGOALS Asm_simp_tac); | 
| 849 | 317 | qed "bij_sum_0"; | 
| 318 | ||
| 319 | goal OrderType.thy | |
| 320 | "!!A r. well_ord(A,r) ==> ordertype(A+0, radd(A,r,0,s)) = ordertype(A,r)"; | |
| 321 | by (resolve_tac [bij_sum_0 RS ord_isoI RS ordertype_eq] 1); | |
| 322 | by (assume_tac 2); | |
| 2493 | 323 | by (fast_tac (!claset addss (!simpset addsimps [radd_Inl_iff, Memrel_iff])) 1); | 
| 849 | 324 | qed "ordertype_sum_0_eq"; | 
| 325 | ||
| 3840 | 326 | goal OrderType.thy "(lam z:0+A. case(%x. x, %y. y, z)) : bij(0+A, A)"; | 
| 849 | 327 | by (res_inst_tac [("d", "Inr")] lam_bijective 1);
 | 
| 2493 | 328 | by (safe_tac (!claset)); | 
| 2925 | 329 | by (ALLGOALS Asm_simp_tac); | 
| 849 | 330 | qed "bij_0_sum"; | 
| 331 | ||
| 332 | goal OrderType.thy | |
| 333 | "!!A r. well_ord(A,r) ==> ordertype(0+A, radd(0,s,A,r)) = ordertype(A,r)"; | |
| 334 | by (resolve_tac [bij_0_sum RS ord_isoI RS ordertype_eq] 1); | |
| 335 | by (assume_tac 2); | |
| 2493 | 336 | by (fast_tac (!claset addss (!simpset addsimps [radd_Inr_iff, Memrel_iff])) 1); | 
| 849 | 337 | qed "ordertype_0_sum_eq"; | 
| 338 | ||
| 339 | (** Initial segments of radd. Statements by Grabczewski **) | |
| 340 | ||
| 341 | (*In fact, pred(A+B, Inl(a), radd(A,r,B,s)) = pred(A,a,r)+0 *) | |
| 342 | goalw OrderType.thy [pred_def] | |
| 343 | "!!A B. a:A ==> \ | |
| 1461 | 344 | \ (lam x:pred(A,a,r). Inl(x)) \ | 
| 849 | 345 | \ : bij(pred(A,a,r), pred(A+B, Inl(a), radd(A,r,B,s)))"; | 
| 3840 | 346 | by (res_inst_tac [("d", "case(%x. x, %y. y)")] lam_bijective 1);
 | 
| 2493 | 347 | by (safe_tac (!claset)); | 
| 849 | 348 | by (ALLGOALS | 
| 349 | (asm_full_simp_tac | |
| 2469 | 350 | (!simpset addsimps [radd_Inl_iff, radd_Inr_Inl_iff]))); | 
| 849 | 351 | qed "pred_Inl_bij"; | 
| 352 | ||
| 353 | goal OrderType.thy | |
| 354 | "!!A B. [| a:A; well_ord(A,r) |] ==> \ | |
| 355 | \ ordertype(pred(A+B, Inl(a), radd(A,r,B,s)), radd(A,r,B,s)) = \ | |
| 356 | \ ordertype(pred(A,a,r), r)"; | |
| 357 | by (resolve_tac [pred_Inl_bij RS ord_isoI RS ord_iso_sym RS ordertype_eq] 1); | |
| 358 | by (REPEAT_FIRST (ares_tac [pred_subset, well_ord_subset])); | |
| 2469 | 359 | by (asm_full_simp_tac (!simpset addsimps [radd_Inl_iff, pred_def]) 1); | 
| 849 | 360 | qed "ordertype_pred_Inl_eq"; | 
| 361 | ||
| 362 | goalw OrderType.thy [pred_def, id_def] | |
| 363 | "!!A B. b:B ==> \ | |
| 1461 | 364 | \ id(A+pred(B,b,s)) \ | 
| 849 | 365 | \ : bij(A+pred(B,b,s), pred(A+B, Inr(b), radd(A,r,B,s)))"; | 
| 3840 | 366 | by (res_inst_tac [("d", "%z. z")] lam_bijective 1);
 | 
| 2493 | 367 | by (safe_tac (!claset)); | 
| 2469 | 368 | by (ALLGOALS (Asm_full_simp_tac)); | 
| 849 | 369 | qed "pred_Inr_bij"; | 
| 370 | ||
| 371 | goal OrderType.thy | |
| 372 | "!!A B. [| b:B; well_ord(A,r); well_ord(B,s) |] ==> \ | |
| 373 | \ ordertype(pred(A+B, Inr(b), radd(A,r,B,s)), radd(A,r,B,s)) = \ | |
| 374 | \ ordertype(A+pred(B,b,s), radd(A,r,pred(B,b,s),s))"; | |
| 375 | by (resolve_tac [pred_Inr_bij RS ord_isoI RS ord_iso_sym RS ordertype_eq] 1); | |
| 2493 | 376 | by (fast_tac (!claset addss (!simpset addsimps [pred_def, id_def])) 2); | 
| 849 | 377 | by (REPEAT_FIRST (ares_tac [well_ord_radd, pred_subset, well_ord_subset])); | 
| 378 | qed "ordertype_pred_Inr_eq"; | |
| 379 | ||
| 380 | (*** Basic laws for ordinal addition ***) | |
| 381 | ||
| 382 | goalw OrderType.thy [oadd_def] | |
| 383 | "!!i j. [| Ord(i); Ord(j) |] ==> Ord(i++j)"; | |
| 384 | by (REPEAT (ares_tac [Ord_ordertype, well_ord_radd, well_ord_Memrel] 1)); | |
| 385 | qed "Ord_oadd"; | |
| 386 | ||
| 387 | (** Ordinal addition with zero **) | |
| 388 | ||
| 389 | goalw OrderType.thy [oadd_def] "!!i. Ord(i) ==> i++0 = i"; | |
| 2469 | 390 | by (asm_simp_tac (!simpset addsimps [Memrel_0, ordertype_sum_0_eq, | 
| 1461 | 391 | ordertype_Memrel, well_ord_Memrel]) 1); | 
| 849 | 392 | qed "oadd_0"; | 
| 393 | ||
| 394 | goalw OrderType.thy [oadd_def] "!!i. Ord(i) ==> 0++i = i"; | |
| 2469 | 395 | by (asm_simp_tac (!simpset addsimps [Memrel_0, ordertype_0_sum_eq, | 
| 1461 | 396 | ordertype_Memrel, well_ord_Memrel]) 1); | 
| 849 | 397 | qed "oadd_0_left"; | 
| 398 | ||
| 2469 | 399 | Addsimps [oadd_0, oadd_0_left]; | 
| 849 | 400 | |
| 401 | (*** Further properties of ordinal addition. Statements by Grabczewski, | |
| 402 | proofs by lcp. ***) | |
| 403 | ||
| 404 | goalw OrderType.thy [oadd_def] "!!i j k. [| k<i; Ord(j) |] ==> k < i++j"; | |
| 1461 | 405 | by (rtac ltE 1 THEN assume_tac 1); | 
| 406 | by (rtac ltI 1); | |
| 849 | 407 | by (REPEAT (ares_tac [Ord_ordertype, well_ord_radd, well_ord_Memrel] 2)); | 
| 408 | by (asm_simp_tac | |
| 2469 | 409 | (!simpset addsimps [ordertype_pred_unfold, | 
| 2493 | 410 | well_ord_radd, well_ord_Memrel, | 
| 411 | ordertype_pred_Inl_eq, | |
| 412 | lt_pred_Memrel, leI RS le_ordertype_Memrel] | |
| 2469 | 413 | setloop rtac (InlI RSN (2,bexI))) 1); | 
| 849 | 414 | qed "lt_oadd1"; | 
| 415 | ||
| 1032 
54b9f670c67e
Proved odiff_oadd_inverse, oadd_lt_cancel2, oadd_lt_iff2,
 lcp parents: 
984diff
changeset | 416 | (*Thus also we obtain the rule i++j = k ==> i le k *) | 
| 849 | 417 | goal OrderType.thy "!!i j. [| Ord(i); Ord(j) |] ==> i le i++j"; | 
| 1461 | 418 | by (rtac all_lt_imp_le 1); | 
| 849 | 419 | by (REPEAT (ares_tac [Ord_oadd, lt_oadd1] 1)); | 
| 420 | qed "oadd_le_self"; | |
| 421 | ||
| 422 | (** A couple of strange but necessary results! **) | |
| 423 | ||
| 424 | goal OrderType.thy | |
| 425 | "!!A B. A<=B ==> id(A) : ord_iso(A, Memrel(A), A, Memrel(B))"; | |
| 426 | by (resolve_tac [id_bij RS ord_isoI] 1); | |
| 2469 | 427 | by (asm_simp_tac (!simpset addsimps [id_conv, Memrel_iff]) 1); | 
| 2925 | 428 | by (Blast_tac 1); | 
| 849 | 429 | qed "id_ord_iso_Memrel"; | 
| 430 | ||
| 431 | goal OrderType.thy | |
| 1461 | 432 | "!!k. [| well_ord(A,r); k<j |] ==> \ | 
| 433 | \ ordertype(A+k, radd(A, r, k, Memrel(j))) = \ | |
| 849 | 434 | \ ordertype(A+k, radd(A, r, k, Memrel(k)))"; | 
| 1461 | 435 | by (etac ltE 1); | 
| 849 | 436 | by (resolve_tac [ord_iso_refl RS sum_ord_iso_cong RS ordertype_eq] 1); | 
| 437 | by (eresolve_tac [OrdmemD RS id_ord_iso_Memrel RS ord_iso_sym] 1); | |
| 438 | by (REPEAT_FIRST (ares_tac [well_ord_radd, well_ord_Memrel])); | |
| 439 | qed "ordertype_sum_Memrel"; | |
| 440 | ||
| 441 | goalw OrderType.thy [oadd_def] "!!i j k. [| k<j; Ord(i) |] ==> i++k < i++j"; | |
| 1461 | 442 | by (rtac ltE 1 THEN assume_tac 1); | 
| 849 | 443 | by (resolve_tac [ordertype_pred_unfold RS equalityD2 RS subsetD RS ltI] 1); | 
| 444 | by (REPEAT_FIRST (ares_tac [Ord_ordertype, well_ord_radd, well_ord_Memrel])); | |
| 1461 | 445 | by (rtac RepFun_eqI 1); | 
| 446 | by (etac InrI 2); | |
| 849 | 447 | by (asm_simp_tac | 
| 2469 | 448 | (!simpset addsimps [ordertype_pred_Inr_eq, well_ord_Memrel, | 
| 1461 | 449 | lt_pred_Memrel, leI RS le_ordertype_Memrel, | 
| 450 | ordertype_sum_Memrel]) 1); | |
| 849 | 451 | qed "oadd_lt_mono2"; | 
| 452 | ||
| 1032 
54b9f670c67e
Proved odiff_oadd_inverse, oadd_lt_cancel2, oadd_lt_iff2,
 lcp parents: 
984diff
changeset | 453 | goal OrderType.thy | 
| 
54b9f670c67e
Proved odiff_oadd_inverse, oadd_lt_cancel2, oadd_lt_iff2,
 lcp parents: 
984diff
changeset | 454 | "!!i j k. [| i++j < i++k; Ord(i); Ord(j); Ord(k) |] ==> j<k"; | 
| 
54b9f670c67e
Proved odiff_oadd_inverse, oadd_lt_cancel2, oadd_lt_iff2,
 lcp parents: 
984diff
changeset | 455 | by (rtac Ord_linear_lt 1); | 
| 
54b9f670c67e
Proved odiff_oadd_inverse, oadd_lt_cancel2, oadd_lt_iff2,
 lcp parents: 
984diff
changeset | 456 | by (REPEAT_SOME assume_tac); | 
| 
54b9f670c67e
Proved odiff_oadd_inverse, oadd_lt_cancel2, oadd_lt_iff2,
 lcp parents: 
984diff
changeset | 457 | by (ALLGOALS | 
| 3016 | 458 | (blast_tac (!claset addDs [oadd_lt_mono2] addEs [lt_irrefl, lt_asym]))); | 
| 1032 
54b9f670c67e
Proved odiff_oadd_inverse, oadd_lt_cancel2, oadd_lt_iff2,
 lcp parents: 
984diff
changeset | 459 | qed "oadd_lt_cancel2"; | 
| 
54b9f670c67e
Proved odiff_oadd_inverse, oadd_lt_cancel2, oadd_lt_iff2,
 lcp parents: 
984diff
changeset | 460 | |
| 
54b9f670c67e
Proved odiff_oadd_inverse, oadd_lt_cancel2, oadd_lt_iff2,
 lcp parents: 
984diff
changeset | 461 | goal OrderType.thy | 
| 
54b9f670c67e
Proved odiff_oadd_inverse, oadd_lt_cancel2, oadd_lt_iff2,
 lcp parents: 
984diff
changeset | 462 | "!!i j k. [| Ord(i); Ord(j); Ord(k) |] ==> i++j < i++k <-> j<k"; | 
| 3016 | 463 | by (blast_tac (!claset addSIs [oadd_lt_mono2] addSDs [oadd_lt_cancel2]) 1); | 
| 1032 
54b9f670c67e
Proved odiff_oadd_inverse, oadd_lt_cancel2, oadd_lt_iff2,
 lcp parents: 
984diff
changeset | 464 | qed "oadd_lt_iff2"; | 
| 
54b9f670c67e
Proved odiff_oadd_inverse, oadd_lt_cancel2, oadd_lt_iff2,
 lcp parents: 
984diff
changeset | 465 | |
| 
54b9f670c67e
Proved odiff_oadd_inverse, oadd_lt_cancel2, oadd_lt_iff2,
 lcp parents: 
984diff
changeset | 466 | goal OrderType.thy | 
| 
54b9f670c67e
Proved odiff_oadd_inverse, oadd_lt_cancel2, oadd_lt_iff2,
 lcp parents: 
984diff
changeset | 467 | "!!i j k. [| i++j = i++k; Ord(i); Ord(j); Ord(k) |] ==> j=k"; | 
| 849 | 468 | by (rtac Ord_linear_lt 1); | 
| 469 | by (REPEAT_SOME assume_tac); | |
| 470 | by (ALLGOALS | |
| 2469 | 471 | (fast_tac (!claset addDs [oadd_lt_mono2] | 
| 3016 | 472 | addss (!simpset addsimps [lt_not_refl])))); | 
| 849 | 473 | qed "oadd_inject"; | 
| 474 | ||
| 475 | goalw OrderType.thy [oadd_def] | |
| 476 | "!!i j k. [| k < i++j; Ord(i); Ord(j) |] ==> k<i | (EX l:j. k = i++l )"; | |
| 477 | (*Rotate the hypotheses so that simplification will work*) | |
| 478 | by (etac revcut_rl 1); | |
| 479 | by (asm_full_simp_tac | |
| 2469 | 480 | (!simpset addsimps [ordertype_pred_unfold, well_ord_radd, | 
| 1461 | 481 | well_ord_Memrel]) 1); | 
| 849 | 482 | by (eresolve_tac [ltD RS RepFunE] 1); | 
| 2493 | 483 | by (fast_tac (!claset addss | 
| 2469 | 484 | (!simpset addsimps [ordertype_pred_Inl_eq, well_ord_Memrel, | 
| 1461 | 485 | ltI, lt_pred_Memrel, le_ordertype_Memrel, leI, | 
| 486 | ordertype_pred_Inr_eq, | |
| 487 | ordertype_sum_Memrel])) 1); | |
| 849 | 488 | qed "lt_oadd_disj"; | 
| 489 | ||
| 490 | ||
| 491 | (*** Ordinal addition with successor -- via associativity! ***) | |
| 492 | ||
| 493 | goalw OrderType.thy [oadd_def] | |
| 494 | "!!i j k. [| Ord(i); Ord(j); Ord(k) |] ==> (i++j)++k = i++(j++k)"; | |
| 495 | by (resolve_tac [ordertype_eq RS trans] 1); | |
| 496 | by (rtac ([ordertype_ord_iso RS ord_iso_sym, ord_iso_refl] MRS | |
| 1461 | 497 | sum_ord_iso_cong) 1); | 
| 849 | 498 | by (REPEAT (ares_tac [well_ord_radd, well_ord_Memrel, Ord_ordertype] 1)); | 
| 499 | by (resolve_tac [sum_assoc_ord_iso RS ordertype_eq RS trans] 1); | |
| 500 | by (rtac ([ord_iso_refl, ordertype_ord_iso] MRS sum_ord_iso_cong RS | |
| 1461 | 501 | ordertype_eq) 2); | 
| 849 | 502 | by (REPEAT (ares_tac [well_ord_radd, well_ord_Memrel, Ord_ordertype] 1)); | 
| 503 | qed "oadd_assoc"; | |
| 504 | ||
| 505 | goal OrderType.thy | |
| 506 |     "!!i j. [| Ord(i);  Ord(j) |] ==> i++j = i Un (UN k:j. {i++k})";
 | |
| 507 | by (rtac (subsetI RS equalityI) 1); | |
| 508 | by (eresolve_tac [ltI RS lt_oadd_disj RS disjE] 1); | |
| 509 | by (REPEAT (ares_tac [Ord_oadd] 1)); | |
| 2469 | 510 | by (fast_tac (!claset addIs [lt_oadd1, oadd_lt_mono2] | 
| 3016 | 511 | addss (!simpset addsimps [Ord_mem_iff_lt, Ord_oadd])) 3); | 
| 2925 | 512 | by (Blast_tac 2); | 
| 513 | by (blast_tac (!claset addSEs [ltE]) 1); | |
| 849 | 514 | qed "oadd_unfold"; | 
| 515 | ||
| 516 | goal OrderType.thy "!!i. Ord(i) ==> i++1 = succ(i)"; | |
| 2469 | 517 | by (asm_simp_tac (!simpset addsimps [oadd_unfold, Ord_1, oadd_0]) 1); | 
| 2925 | 518 | by (Blast_tac 1); | 
| 849 | 519 | qed "oadd_1"; | 
| 520 | ||
| 467 | 521 | goal OrderType.thy | 
| 849 | 522 | "!!i. [| Ord(i); Ord(j) |] ==> i++succ(j) = succ(i++j)"; | 
| 2493 | 523 | (*ZF_ss prevents looping*) | 
| 2469 | 524 | by (asm_simp_tac (ZF_ss addsimps [Ord_oadd, oadd_1 RS sym]) 1); | 
| 525 | by (asm_simp_tac (!simpset addsimps [oadd_1, oadd_assoc, Ord_1]) 1); | |
| 849 | 526 | qed "oadd_succ"; | 
| 527 | ||
| 528 | ||
| 529 | (** Ordinal addition with limit ordinals **) | |
| 530 | ||
| 531 | val prems = goal OrderType.thy | |
| 532 | "[| Ord(i); !!x. x:A ==> Ord(j(x)); a:A |] ==> \ | |
| 533 | \ i ++ (UN x:A. j(x)) = (UN x:A. i++j(x))"; | |
| 2925 | 534 | by (blast_tac (!claset addIs (prems @ [ltI, Ord_UN, Ord_oadd, | 
| 1461 | 535 | lt_oadd1 RS ltD, oadd_lt_mono2 RS ltD]) | 
| 849 | 536 | addSEs [ltE, ltI RS lt_oadd_disj RS disjE]) 1); | 
| 537 | qed "oadd_UN"; | |
| 538 | ||
| 539 | goal OrderType.thy | |
| 540 | "!!i j. [| Ord(i); Limit(j) |] ==> i++j = (UN k:j. i++k)"; | |
| 541 | by (forward_tac [Limit_has_0 RS ltD] 1); | |
| 2469 | 542 | by (asm_simp_tac (!simpset addsimps [Limit_is_Ord RS Ord_in_Ord, | 
| 1461 | 543 | oadd_UN RS sym, Union_eq_UN RS sym, | 
| 544 | Limit_Union_eq]) 1); | |
| 849 | 545 | qed "oadd_Limit"; | 
| 546 | ||
| 547 | (** Order/monotonicity properties of ordinal addition **) | |
| 548 | ||
| 549 | goal OrderType.thy "!!i j. [| Ord(i); Ord(j) |] ==> i le j++i"; | |
| 550 | by (eres_inst_tac [("i","i")] trans_induct3 1);
 | |
| 2469 | 551 | by (asm_simp_tac (!simpset addsimps [Ord_0_le]) 1); | 
| 552 | by (asm_simp_tac (!simpset addsimps [oadd_succ, succ_leI]) 1); | |
| 553 | by (asm_simp_tac (!simpset addsimps [oadd_Limit]) 1); | |
| 1461 | 554 | by (rtac le_trans 1); | 
| 555 | by (rtac le_implies_UN_le_UN 2); | |
| 2925 | 556 | by (Blast_tac 2); | 
| 2469 | 557 | by (asm_simp_tac (!simpset addsimps [Union_eq_UN RS sym, Limit_Union_eq, | 
| 2493 | 558 | le_refl, Limit_is_Ord]) 1); | 
| 849 | 559 | qed "oadd_le_self2"; | 
| 560 | ||
| 561 | goal OrderType.thy "!!i j k. [| k le j; Ord(i) |] ==> k++i le j++i"; | |
| 562 | by (forward_tac [lt_Ord] 1); | |
| 563 | by (forward_tac [le_Ord2] 1); | |
| 1461 | 564 | by (etac trans_induct3 1); | 
| 2469 | 565 | by (Asm_simp_tac 1); | 
| 566 | by (asm_simp_tac (!simpset addsimps [oadd_succ, succ_le_iff]) 1); | |
| 567 | by (asm_simp_tac (!simpset addsimps [oadd_Limit]) 1); | |
| 1461 | 568 | by (rtac le_implies_UN_le_UN 1); | 
| 2925 | 569 | by (Blast_tac 1); | 
| 849 | 570 | qed "oadd_le_mono1"; | 
| 571 | ||
| 572 | goal OrderType.thy "!!i j. [| i' le i; j'<j |] ==> i'++j' < i++j"; | |
| 1461 | 573 | by (rtac lt_trans1 1); | 
| 849 | 574 | by (REPEAT (eresolve_tac [asm_rl, oadd_le_mono1, oadd_lt_mono2, ltE, | 
| 1461 | 575 | Ord_succD] 1)); | 
| 849 | 576 | qed "oadd_lt_mono"; | 
| 577 | ||
| 578 | goal OrderType.thy "!!i j. [| i' le i; j' le j |] ==> i'++j' le i++j"; | |
| 2469 | 579 | by (asm_simp_tac (!simpset addsimps [oadd_succ RS sym, le_Ord2, oadd_lt_mono]) 1); | 
| 849 | 580 | qed "oadd_le_mono"; | 
| 581 | ||
| 1032 
54b9f670c67e
Proved odiff_oadd_inverse, oadd_lt_cancel2, oadd_lt_iff2,
 lcp parents: 
984diff
changeset | 582 | goal OrderType.thy | 
| 
54b9f670c67e
Proved odiff_oadd_inverse, oadd_lt_cancel2, oadd_lt_iff2,
 lcp parents: 
984diff
changeset | 583 | "!!i j k. [| Ord(i); Ord(j); Ord(k) |] ==> i++j le i++k <-> j le k"; | 
| 2469 | 584 | by (asm_simp_tac (!simpset addsimps [oadd_lt_iff2, oadd_succ RS sym, | 
| 1461 | 585 | Ord_succ]) 1); | 
| 1032 
54b9f670c67e
Proved odiff_oadd_inverse, oadd_lt_cancel2, oadd_lt_iff2,
 lcp parents: 
984diff
changeset | 586 | qed "oadd_le_iff2"; | 
| 
54b9f670c67e
Proved odiff_oadd_inverse, oadd_lt_cancel2, oadd_lt_iff2,
 lcp parents: 
984diff
changeset | 587 | |
| 849 | 588 | |
| 589 | (** Ordinal subtraction; the difference is ordertype(j-i, Memrel(j)). | |
| 590 | Probably simpler to define the difference recursively! | |
| 591 | **) | |
| 592 | ||
| 593 | goal OrderType.thy | |
| 594 | "!!A B. A<=B ==> (lam y:B. if(y:A, Inl(y), Inr(y))) : bij(B, A+(B-A))"; | |
| 3840 | 595 | by (res_inst_tac [("d", "case(%x. x, %y. y)")] lam_bijective 1);
 | 
| 2925 | 596 | by (blast_tac (!claset addSIs [if_type]) 1); | 
| 2469 | 597 | by (fast_tac (!claset addSIs [case_type]) 1); | 
| 1461 | 598 | by (etac sumE 2); | 
| 2469 | 599 | by (ALLGOALS (asm_simp_tac (!simpset setloop split_tac [expand_if]))); | 
| 849 | 600 | qed "bij_sum_Diff"; | 
| 601 | ||
| 602 | goal OrderType.thy | |
| 1461 | 603 | "!!i j. i le j ==> \ | 
| 604 | \ ordertype(i+(j-i), radd(i,Memrel(j),j-i,Memrel(j))) = \ | |
| 849 | 605 | \ ordertype(j, Memrel(j))"; | 
| 2469 | 606 | by (safe_tac (!claset addSDs [le_subset_iff RS iffD1])); | 
| 849 | 607 | by (resolve_tac [bij_sum_Diff RS ord_isoI RS ord_iso_sym RS ordertype_eq] 1); | 
| 1461 | 608 | by (etac well_ord_Memrel 3); | 
| 849 | 609 | by (assume_tac 1); | 
| 610 | by (asm_simp_tac | |
| 2469 | 611 | (!simpset setloop split_tac [expand_if] addsimps [Memrel_iff]) 1); | 
| 849 | 612 | by (forw_inst_tac [("j", "y")] Ord_in_Ord 1 THEN assume_tac 1);
 | 
| 613 | by (forw_inst_tac [("j", "x")] Ord_in_Ord 1 THEN assume_tac 1);
 | |
| 2469 | 614 | by (asm_simp_tac (!simpset addsimps [Ord_mem_iff_lt, lt_Ord, not_lt_iff_le]) 1); | 
| 2925 | 615 | by (blast_tac (!claset addIs [lt_trans2, lt_trans]) 1); | 
| 849 | 616 | qed "ordertype_sum_Diff"; | 
| 617 | ||
| 1032 
54b9f670c67e
Proved odiff_oadd_inverse, oadd_lt_cancel2, oadd_lt_iff2,
 lcp parents: 
984diff
changeset | 618 | goalw OrderType.thy [oadd_def, odiff_def] | 
| 1461 | 619 | "!!i j. i le j ==> \ | 
| 1032 
54b9f670c67e
Proved odiff_oadd_inverse, oadd_lt_cancel2, oadd_lt_iff2,
 lcp parents: 
984diff
changeset | 620 | \ i ++ (j--i) = ordertype(i+(j-i), radd(i,Memrel(j),j-i,Memrel(j)))"; | 
| 2469 | 621 | by (safe_tac (!claset addSDs [le_subset_iff RS iffD1])); | 
| 849 | 622 | by (resolve_tac [sum_ord_iso_cong RS ordertype_eq] 1); | 
| 1461 | 623 | by (etac id_ord_iso_Memrel 1); | 
| 849 | 624 | by (resolve_tac [ordertype_ord_iso RS ord_iso_sym] 1); | 
| 625 | by (REPEAT (ares_tac [well_ord_radd, well_ord_Memrel RS well_ord_subset, | |
| 1461 | 626 | Diff_subset] 1)); | 
| 849 | 627 | qed "oadd_ordertype_Diff"; | 
| 628 | ||
| 1032 
54b9f670c67e
Proved odiff_oadd_inverse, oadd_lt_cancel2, oadd_lt_iff2,
 lcp parents: 
984diff
changeset | 629 | goal OrderType.thy "!!i j. i le j ==> i ++ (j--i) = j"; | 
| 2469 | 630 | by (asm_simp_tac (!simpset addsimps [oadd_ordertype_Diff, ordertype_sum_Diff, | 
| 1461 | 631 | ordertype_Memrel, lt_Ord2 RS Ord_succD]) 1); | 
| 1032 
54b9f670c67e
Proved odiff_oadd_inverse, oadd_lt_cancel2, oadd_lt_iff2,
 lcp parents: 
984diff
changeset | 632 | qed "oadd_odiff_inverse"; | 
| 
54b9f670c67e
Proved odiff_oadd_inverse, oadd_lt_cancel2, oadd_lt_iff2,
 lcp parents: 
984diff
changeset | 633 | |
| 
54b9f670c67e
Proved odiff_oadd_inverse, oadd_lt_cancel2, oadd_lt_iff2,
 lcp parents: 
984diff
changeset | 634 | goalw OrderType.thy [odiff_def] | 
| 
54b9f670c67e
Proved odiff_oadd_inverse, oadd_lt_cancel2, oadd_lt_iff2,
 lcp parents: 
984diff
changeset | 635 | "!!i j. [| Ord(i); Ord(j) |] ==> Ord(i--j)"; | 
| 
54b9f670c67e
Proved odiff_oadd_inverse, oadd_lt_cancel2, oadd_lt_iff2,
 lcp parents: 
984diff
changeset | 636 | by (REPEAT (ares_tac [Ord_ordertype, well_ord_Memrel RS well_ord_subset, | 
| 1461 | 637 | Diff_subset] 1)); | 
| 1032 
54b9f670c67e
Proved odiff_oadd_inverse, oadd_lt_cancel2, oadd_lt_iff2,
 lcp parents: 
984diff
changeset | 638 | qed "Ord_odiff"; | 
| 849 | 639 | |
| 1032 
54b9f670c67e
Proved odiff_oadd_inverse, oadd_lt_cancel2, oadd_lt_iff2,
 lcp parents: 
984diff
changeset | 640 | (*By oadd_inject, the difference between i and j is unique. Note that we get | 
| 
54b9f670c67e
Proved odiff_oadd_inverse, oadd_lt_cancel2, oadd_lt_iff2,
 lcp parents: 
984diff
changeset | 641 | i++j = k ==> j = k--i. *) | 
| 
54b9f670c67e
Proved odiff_oadd_inverse, oadd_lt_cancel2, oadd_lt_iff2,
 lcp parents: 
984diff
changeset | 642 | goal OrderType.thy | 
| 
54b9f670c67e
Proved odiff_oadd_inverse, oadd_lt_cancel2, oadd_lt_iff2,
 lcp parents: 
984diff
changeset | 643 | "!!i j. [| Ord(i); Ord(j) |] ==> (i++j) -- i = j"; | 
| 1461 | 644 | by (rtac oadd_inject 1); | 
| 1032 
54b9f670c67e
Proved odiff_oadd_inverse, oadd_lt_cancel2, oadd_lt_iff2,
 lcp parents: 
984diff
changeset | 645 | by (REPEAT (ares_tac [Ord_ordertype, Ord_oadd, Ord_odiff] 2)); | 
| 2469 | 646 | by (asm_simp_tac (!simpset addsimps [oadd_odiff_inverse, oadd_le_self]) 1); | 
| 1032 
54b9f670c67e
Proved odiff_oadd_inverse, oadd_lt_cancel2, oadd_lt_iff2,
 lcp parents: 
984diff
changeset | 647 | qed "odiff_oadd_inverse"; | 
| 
54b9f670c67e
Proved odiff_oadd_inverse, oadd_lt_cancel2, oadd_lt_iff2,
 lcp parents: 
984diff
changeset | 648 | |
| 
54b9f670c67e
Proved odiff_oadd_inverse, oadd_lt_cancel2, oadd_lt_iff2,
 lcp parents: 
984diff
changeset | 649 | val [i_lt_j, k_le_i] = goal OrderType.thy | 
| 
54b9f670c67e
Proved odiff_oadd_inverse, oadd_lt_cancel2, oadd_lt_iff2,
 lcp parents: 
984diff
changeset | 650 | "[| i<j; k le i |] ==> i--k < j--k"; | 
| 
54b9f670c67e
Proved odiff_oadd_inverse, oadd_lt_cancel2, oadd_lt_iff2,
 lcp parents: 
984diff
changeset | 651 | by (rtac (k_le_i RS lt_Ord RSN (2,oadd_lt_cancel2)) 1); | 
| 
54b9f670c67e
Proved odiff_oadd_inverse, oadd_lt_cancel2, oadd_lt_iff2,
 lcp parents: 
984diff
changeset | 652 | by (simp_tac | 
| 2469 | 653 | (!simpset addsimps [i_lt_j, k_le_i, [k_le_i, leI] MRS le_trans, | 
| 1461 | 654 | oadd_odiff_inverse]) 1); | 
| 1032 
54b9f670c67e
Proved odiff_oadd_inverse, oadd_lt_cancel2, oadd_lt_iff2,
 lcp parents: 
984diff
changeset | 655 | by (REPEAT (resolve_tac (Ord_odiff :: | 
| 1461 | 656 | ([i_lt_j, k_le_i] RL [lt_Ord, lt_Ord2])) 1)); | 
| 1032 
54b9f670c67e
Proved odiff_oadd_inverse, oadd_lt_cancel2, oadd_lt_iff2,
 lcp parents: 
984diff
changeset | 657 | qed "odiff_lt_mono2"; | 
| 849 | 658 | |
| 659 | ||
| 660 | (**** Ordinal Multiplication ****) | |
| 661 | ||
| 662 | goalw OrderType.thy [omult_def] | |
| 663 | "!!i j. [| Ord(i); Ord(j) |] ==> Ord(i**j)"; | |
| 664 | by (REPEAT (ares_tac [Ord_ordertype, well_ord_rmult, well_ord_Memrel] 1)); | |
| 665 | qed "Ord_omult"; | |
| 666 | ||
| 667 | (*** A useful unfolding law ***) | |
| 668 | ||
| 669 | goalw OrderType.thy [pred_def] | |
| 3016 | 670 | "!!A B. [| a:A; b:B |] ==> \ | 
| 1461 | 671 | \ pred(A*B, <a,b>, rmult(A,r,B,s)) = \ | 
| 849 | 672 | \        pred(A,a,r)*B Un ({a} * pred(B,b,s))";
 | 
| 2493 | 673 | by (rtac equalityI 1); | 
| 674 | by (safe_tac (!claset)); | |
| 2469 | 675 | by (ALLGOALS (asm_full_simp_tac (!simpset addsimps [rmult_iff]))); | 
| 2925 | 676 | by (ALLGOALS (Blast_tac)); | 
| 849 | 677 | qed "pred_Pair_eq"; | 
| 678 | ||
| 679 | goal OrderType.thy | |
| 3016 | 680 | "!!A B. [| a:A; b:B; well_ord(A,r); well_ord(B,s) |] ==> \ | 
| 849 | 681 | \ ordertype(pred(A*B, <a,b>, rmult(A,r,B,s)), rmult(A,r,B,s)) = \ | 
| 3016 | 682 | \ ordertype(pred(A,a,r)*B + pred(B,b,s), \ | 
| 849 | 683 | \ radd(A*B, rmult(A,r,B,s), B, s))"; | 
| 2469 | 684 | by (asm_simp_tac (!simpset addsimps [pred_Pair_eq]) 1); | 
| 849 | 685 | by (resolve_tac [ordertype_eq RS sym] 1); | 
| 1461 | 686 | by (rtac prod_sum_singleton_ord_iso 1); | 
| 984 | 687 | by (REPEAT_FIRST (ares_tac [pred_subset, well_ord_rmult RS well_ord_subset])); | 
| 2925 | 688 | by (blast_tac (!claset addSEs [predE]) 1); | 
| 849 | 689 | qed "ordertype_pred_Pair_eq"; | 
| 690 | ||
| 691 | goalw OrderType.thy [oadd_def, omult_def] | |
| 3016 | 692 | "!!i j. [| i'<i; j'<j |] ==> \ | 
| 849 | 693 | \ ordertype(pred(i*j, <i',j'>, rmult(i,Memrel(i),j,Memrel(j))), \ | 
| 3016 | 694 | \ rmult(i,Memrel(i),j,Memrel(j))) = \ | 
| 849 | 695 | \ j**i' ++ j'"; | 
| 2469 | 696 | by (asm_simp_tac (!simpset addsimps [ordertype_pred_Pair_eq, lt_pred_Memrel, | 
| 3016 | 697 | ltD, lt_Ord2, well_ord_Memrel]) 1); | 
| 1461 | 698 | by (rtac trans 1); | 
| 849 | 699 | by (resolve_tac [ordertype_ord_iso RS sum_ord_iso_cong RS ordertype_eq] 2); | 
| 1461 | 700 | by (rtac ord_iso_refl 3); | 
| 849 | 701 | by (resolve_tac [id_bij RS ord_isoI RS ordertype_eq] 1); | 
| 702 | by (REPEAT_FIRST (eresolve_tac [SigmaE, sumE, ltE, ssubst])); | |
| 703 | by (REPEAT_FIRST (ares_tac [well_ord_rmult, well_ord_radd, well_ord_Memrel, | |
| 1461 | 704 | Ord_ordertype])); | 
| 3016 | 705 | by (ALLGOALS (asm_simp_tac (!simpset addsimps [Memrel_iff]))); | 
| 2469 | 706 | by (safe_tac (!claset)); | 
| 3016 | 707 | by (ALLGOALS (blast_tac (!claset addIs [Ord_trans]))); | 
| 849 | 708 | qed "ordertype_pred_Pair_lemma"; | 
| 709 | ||
| 710 | goalw OrderType.thy [omult_def] | |
| 711 | "!!i j. [| Ord(i); Ord(j); k<j**i |] ==> \ | |
| 712 | \ EX j' i'. k = j**i' ++ j' & j'<j & i'<i"; | |
| 2469 | 713 | by (asm_full_simp_tac (!simpset addsimps [ordertype_pred_unfold, | 
| 1461 | 714 | well_ord_rmult, well_ord_Memrel]) 1); | 
| 3736 
39ee3d31cfbc
Much tidying including step_tac -> clarify_tac or safe_tac; sometimes
 paulson parents: 
3016diff
changeset | 715 | by (safe_tac (!claset addSEs [ltE])); | 
| 2469 | 716 | by (asm_simp_tac (!simpset addsimps [ordertype_pred_Pair_lemma, ltI, | 
| 3736 
39ee3d31cfbc
Much tidying including step_tac -> clarify_tac or safe_tac; sometimes
 paulson parents: 
3016diff
changeset | 717 | symmetric omult_def]) 1); | 
| 2925 | 718 | by (blast_tac (!claset addIs [ltI]) 1); | 
| 849 | 719 | qed "lt_omult"; | 
| 720 | ||
| 721 | goalw OrderType.thy [omult_def] | |
| 722 | "!!i j. [| j'<j; i'<i |] ==> j**i' ++ j' < j**i"; | |
| 1461 | 723 | by (rtac ltI 1); | 
| 984 | 724 | by (asm_simp_tac | 
| 2469 | 725 | (!simpset addsimps [Ord_ordertype, well_ord_rmult, well_ord_Memrel, | 
| 2493 | 726 | lt_Ord2]) 2); | 
| 984 | 727 | by (asm_simp_tac | 
| 2469 | 728 | (!simpset addsimps [ordertype_pred_unfold, | 
| 1461 | 729 | well_ord_rmult, well_ord_Memrel, lt_Ord2]) 1); | 
| 2469 | 730 | by (rtac bexI 1); | 
| 2925 | 731 | by (blast_tac (!claset addSEs [ltE]) 2); | 
| 849 | 732 | by (asm_simp_tac | 
| 2469 | 733 | (!simpset addsimps [ordertype_pred_Pair_lemma, ltI, | 
| 2493 | 734 | symmetric omult_def]) 1); | 
| 849 | 735 | qed "omult_oadd_lt"; | 
| 736 | ||
| 737 | goal OrderType.thy | |
| 738 |  "!!i j. [| Ord(i);  Ord(j) |] ==> j**i = (UN j':j. UN i':i. {j**i' ++ j'})";
 | |
| 739 | by (rtac (subsetI RS equalityI) 1); | |
| 740 | by (resolve_tac [lt_omult RS exE] 1); | |
| 1461 | 741 | by (etac ltI 3); | 
| 849 | 742 | by (REPEAT (ares_tac [Ord_omult] 1)); | 
| 2925 | 743 | by (blast_tac (!claset addSEs [ltE]) 1); | 
| 744 | by (blast_tac (!claset addIs [omult_oadd_lt RS ltD, ltI]) 1); | |
| 849 | 745 | qed "omult_unfold"; | 
| 746 | ||
| 747 | (*** Basic laws for ordinal multiplication ***) | |
| 748 | ||
| 749 | (** Ordinal multiplication by zero **) | |
| 750 | ||
| 751 | goalw OrderType.thy [omult_def] "i**0 = 0"; | |
| 2469 | 752 | by (Asm_simp_tac 1); | 
| 849 | 753 | qed "omult_0"; | 
| 754 | ||
| 755 | goalw OrderType.thy [omult_def] "0**i = 0"; | |
| 2469 | 756 | by (Asm_simp_tac 1); | 
| 849 | 757 | qed "omult_0_left"; | 
| 758 | ||
| 2469 | 759 | Addsimps [omult_0, omult_0_left]; | 
| 760 | ||
| 849 | 761 | (** Ordinal multiplication by 1 **) | 
| 762 | ||
| 763 | goalw OrderType.thy [omult_def] "!!i. Ord(i) ==> i**1 = i"; | |
| 764 | by (resolve_tac [ord_isoI RS ordertype_eq RS trans] 1); | |
| 765 | by (res_inst_tac [("c", "snd"), ("d", "%z.<0,z>")] lam_bijective 1);
 | |
| 766 | by (REPEAT_FIRST (eresolve_tac [snd_type, SigmaE, succE, emptyE, | |
| 1461 | 767 | well_ord_Memrel, ordertype_Memrel])); | 
| 2469 | 768 | by (ALLGOALS (asm_simp_tac (!simpset addsimps [rmult_iff, Memrel_iff]))); | 
| 849 | 769 | qed "omult_1"; | 
| 770 | ||
| 771 | goalw OrderType.thy [omult_def] "!!i. Ord(i) ==> 1**i = i"; | |
| 772 | by (resolve_tac [ord_isoI RS ordertype_eq RS trans] 1); | |
| 773 | by (res_inst_tac [("c", "fst"), ("d", "%z.<z,0>")] lam_bijective 1);
 | |
| 774 | by (REPEAT_FIRST (eresolve_tac [fst_type, SigmaE, succE, emptyE, | |
| 1461 | 775 | well_ord_Memrel, ordertype_Memrel])); | 
| 2469 | 776 | by (ALLGOALS (asm_simp_tac (!simpset addsimps [rmult_iff, Memrel_iff]))); | 
| 849 | 777 | qed "omult_1_left"; | 
| 778 | ||
| 2469 | 779 | Addsimps [omult_1, omult_1_left]; | 
| 780 | ||
| 849 | 781 | (** Distributive law for ordinal multiplication and addition **) | 
| 782 | ||
| 783 | goalw OrderType.thy [omult_def, oadd_def] | |
| 784 | "!!i. [| Ord(i); Ord(j); Ord(k) |] ==> i**(j++k) = (i**j)++(i**k)"; | |
| 785 | by (resolve_tac [ordertype_eq RS trans] 1); | |
| 786 | by (rtac ([ordertype_ord_iso RS ord_iso_sym, ord_iso_refl] MRS | |
| 1461 | 787 | prod_ord_iso_cong) 1); | 
| 849 | 788 | by (REPEAT (ares_tac [well_ord_rmult, well_ord_radd, well_ord_Memrel, | 
| 1461 | 789 | Ord_ordertype] 1)); | 
| 849 | 790 | by (rtac (sum_prod_distrib_ord_iso RS ordertype_eq RS trans) 1); | 
| 791 | by (rtac ordertype_eq 2); | |
| 792 | by (rtac ([ordertype_ord_iso, ordertype_ord_iso] MRS sum_ord_iso_cong) 2); | |
| 793 | by (REPEAT (ares_tac [well_ord_rmult, well_ord_radd, well_ord_Memrel, | |
| 1461 | 794 | Ord_ordertype] 1)); | 
| 849 | 795 | qed "oadd_omult_distrib"; | 
| 796 | ||
| 797 | goal OrderType.thy "!!i. [| Ord(i); Ord(j) |] ==> i**succ(j) = (i**j)++i"; | |
| 2493 | 798 | (*ZF_ss prevents looping*) | 
| 2469 | 799 | by (asm_simp_tac (ZF_ss addsimps [oadd_1 RS sym]) 1); | 
| 849 | 800 | by (asm_simp_tac | 
| 2469 | 801 | (!simpset addsimps [omult_1, oadd_omult_distrib, Ord_1]) 1); | 
| 849 | 802 | qed "omult_succ"; | 
| 803 | ||
| 804 | (** Associative law **) | |
| 805 | ||
| 806 | goalw OrderType.thy [omult_def] | |
| 807 | "!!i j k. [| Ord(i); Ord(j); Ord(k) |] ==> (i**j)**k = i**(j**k)"; | |
| 808 | by (resolve_tac [ordertype_eq RS trans] 1); | |
| 809 | by (rtac ([ord_iso_refl, ordertype_ord_iso RS ord_iso_sym] MRS | |
| 1461 | 810 | prod_ord_iso_cong) 1); | 
| 849 | 811 | by (REPEAT (ares_tac [well_ord_rmult, well_ord_Memrel] 1)); | 
| 812 | by (resolve_tac [prod_assoc_ord_iso RS ord_iso_sym RS | |
| 1461 | 813 | ordertype_eq RS trans] 1); | 
| 849 | 814 | by (rtac ([ordertype_ord_iso, ord_iso_refl] MRS prod_ord_iso_cong RS | 
| 1461 | 815 | ordertype_eq) 2); | 
| 849 | 816 | by (REPEAT (ares_tac [well_ord_rmult, well_ord_Memrel, Ord_ordertype] 1)); | 
| 817 | qed "omult_assoc"; | |
| 818 | ||
| 819 | ||
| 820 | (** Ordinal multiplication with limit ordinals **) | |
| 821 | ||
| 822 | val prems = goal OrderType.thy | |
| 823 | "[| Ord(i); !!x. x:A ==> Ord(j(x)) |] ==> \ | |
| 824 | \ i ** (UN x:A. j(x)) = (UN x:A. i**j(x))"; | |
| 2469 | 825 | by (asm_simp_tac (!simpset addsimps (prems@[Ord_UN, omult_unfold])) 1); | 
| 2925 | 826 | by (Blast_tac 1); | 
| 849 | 827 | qed "omult_UN"; | 
| 467 | 828 | |
| 849 | 829 | goal OrderType.thy | 
| 830 | "!!i j. [| Ord(i); Limit(j) |] ==> i**j = (UN k:j. i**k)"; | |
| 831 | by (asm_simp_tac | |
| 2469 | 832 | (!simpset addsimps [Limit_is_Ord RS Ord_in_Ord, omult_UN RS sym, | 
| 1461 | 833 | Union_eq_UN RS sym, Limit_Union_eq]) 1); | 
| 849 | 834 | qed "omult_Limit"; | 
| 835 | ||
| 836 | ||
| 837 | (*** Ordering/monotonicity properties of ordinal multiplication ***) | |
| 838 | ||
| 839 | (*As a special case we have "[| 0<i; 0<j |] ==> 0 < i**j" *) | |
| 840 | goal OrderType.thy "!!i j. [| k<i; 0<j |] ==> k < i**j"; | |
| 2469 | 841 | by (safe_tac (!claset addSEs [ltE] addSIs [ltI, Ord_omult])); | 
| 842 | by (asm_simp_tac (!simpset addsimps [omult_unfold]) 1); | |
| 843 | by (REPEAT_FIRST (ares_tac [bexI])); | |
| 844 | by (Asm_simp_tac 1); | |
| 849 | 845 | qed "lt_omult1"; | 
| 846 | ||
| 847 | goal OrderType.thy "!!i j. [| Ord(i); 0<j |] ==> i le i**j"; | |
| 1461 | 848 | by (rtac all_lt_imp_le 1); | 
| 849 | 849 | by (REPEAT (ares_tac [Ord_omult, lt_omult1, lt_Ord2] 1)); | 
| 850 | qed "omult_le_self"; | |
| 851 | ||
| 852 | goal OrderType.thy "!!i j k. [| k le j; Ord(i) |] ==> k**i le j**i"; | |
| 853 | by (forward_tac [lt_Ord] 1); | |
| 854 | by (forward_tac [le_Ord2] 1); | |
| 1461 | 855 | by (etac trans_induct3 1); | 
| 2469 | 856 | by (asm_simp_tac (!simpset addsimps [le_refl, Ord_0]) 1); | 
| 857 | by (asm_simp_tac (!simpset addsimps [omult_succ, oadd_le_mono]) 1); | |
| 858 | by (asm_simp_tac (!simpset addsimps [omult_Limit]) 1); | |
| 1461 | 859 | by (rtac le_implies_UN_le_UN 1); | 
| 2925 | 860 | by (Blast_tac 1); | 
| 849 | 861 | qed "omult_le_mono1"; | 
| 862 | ||
| 863 | goal OrderType.thy "!!i j k. [| k<j; 0<i |] ==> i**k < i**j"; | |
| 1461 | 864 | by (rtac ltI 1); | 
| 2469 | 865 | by (asm_simp_tac (!simpset addsimps [omult_unfold, lt_Ord2]) 1); | 
| 866 | by (safe_tac (!claset addSEs [ltE] addSIs [Ord_omult])); | |
| 867 | by (REPEAT_FIRST (ares_tac [bexI])); | |
| 868 | by (asm_simp_tac (!simpset addsimps [Ord_omult]) 1); | |
| 849 | 869 | qed "omult_lt_mono2"; | 
| 870 | ||
| 871 | goal OrderType.thy "!!i j k. [| k le j; Ord(i) |] ==> i**k le i**j"; | |
| 1461 | 872 | by (rtac subset_imp_le 1); | 
| 2469 | 873 | by (safe_tac (!claset addSEs [ltE, make_elim Ord_succD] addSIs [Ord_omult])); | 
| 874 | by (asm_full_simp_tac (!simpset addsimps [omult_unfold]) 1); | |
| 875 | by (deepen_tac (!claset addEs [Ord_trans]) 0 1); | |
| 849 | 876 | qed "omult_le_mono2"; | 
| 877 | ||
| 878 | goal OrderType.thy "!!i j. [| i' le i; j' le j |] ==> i'**j' le i**j"; | |
| 1461 | 879 | by (rtac le_trans 1); | 
| 849 | 880 | by (REPEAT (eresolve_tac [asm_rl, omult_le_mono1, omult_le_mono2, ltE, | 
| 1461 | 881 | Ord_succD] 1)); | 
| 849 | 882 | qed "omult_le_mono"; | 
| 883 | ||
| 884 | goal OrderType.thy | |
| 885 | "!!i j. [| i' le i; j'<j; 0<i |] ==> i'**j' < i**j"; | |
| 1461 | 886 | by (rtac lt_trans1 1); | 
| 849 | 887 | by (REPEAT (eresolve_tac [asm_rl, omult_le_mono1, omult_lt_mono2, ltE, | 
| 1461 | 888 | Ord_succD] 1)); | 
| 849 | 889 | qed "omult_lt_mono"; | 
| 890 | ||
| 891 | goal OrderType.thy "!!i j. [| Ord(i); 0<j |] ==> i le j**i"; | |
| 892 | by (forward_tac [lt_Ord2] 1); | |
| 893 | by (eres_inst_tac [("i","i")] trans_induct3 1);
 | |
| 2469 | 894 | by (asm_simp_tac (!simpset addsimps [omult_0, Ord_0 RS le_refl]) 1); | 
| 895 | by (asm_simp_tac (!simpset addsimps [omult_succ, succ_le_iff]) 1); | |
| 1461 | 896 | by (etac lt_trans1 1); | 
| 849 | 897 | by (res_inst_tac [("b", "j**x")] (oadd_0 RS subst) 1 THEN 
 | 
| 898 | rtac oadd_lt_mono2 2); | |
| 899 | by (REPEAT (ares_tac [Ord_omult] 1)); | |
| 2469 | 900 | by (asm_simp_tac (!simpset addsimps [omult_Limit]) 1); | 
| 1461 | 901 | by (rtac le_trans 1); | 
| 902 | by (rtac le_implies_UN_le_UN 2); | |
| 2925 | 903 | by (Blast_tac 2); | 
| 2469 | 904 | by (asm_simp_tac (!simpset addsimps [Union_eq_UN RS sym, Limit_Union_eq, | 
| 2493 | 905 | Limit_is_Ord RS le_refl]) 1); | 
| 849 | 906 | qed "omult_le_self2"; | 
| 907 | ||
| 908 | ||
| 909 | (** Further properties of ordinal multiplication **) | |
| 910 | ||
| 911 | goal OrderType.thy "!!i j. [| i**j = i**k; 0<i; Ord(j); Ord(k) |] ==> j=k"; | |
| 912 | by (rtac Ord_linear_lt 1); | |
| 913 | by (REPEAT_SOME assume_tac); | |
| 914 | by (ALLGOALS | |
| 2469 | 915 | (best_tac (!claset addDs [omult_lt_mono2] | 
| 916 | addss (!simpset addsimps [lt_not_refl])))); | |
| 849 | 917 | qed "omult_inject"; | 
| 918 | ||
| 919 |