| author | blanchet | 
| Wed, 04 May 2011 23:18:28 +0200 | |
| changeset 42685 | 7a5116bd63b7 | 
| parent 32960 | 69916a850301 | 
| child 45602 | 2a858377c3d2 | 
| permissions | -rw-r--r-- | 
| 1478 | 1  | 
(* Title: ZF/Finite.thy  | 
2  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
|
| 516 | 3  | 
Copyright 1994 University of Cambridge  | 
4  | 
||
| 13194 | 5  | 
prove: b: Fin(A) ==> inj(b,b) <= surj(b,b)  | 
| 516 | 6  | 
*)  | 
7  | 
||
| 13328 | 8  | 
header{*Finite Powerset Operator and Finite Function Space*}
 | 
9  | 
||
| 
26056
 
6a0801279f4c
Made theory names in ZF disjoint from HOL theory names to allow loading both developments
 
krauss 
parents: 
24893 
diff
changeset
 | 
10  | 
theory Finite imports Inductive_ZF Epsilon Nat_ZF begin  | 
| 
9491
 
1a36151ee2fc
natify, a coercion to reduce the number of type constraints in arithmetic
 
paulson 
parents: 
6053 
diff
changeset
 | 
11  | 
|
| 
 
1a36151ee2fc
natify, a coercion to reduce the number of type constraints in arithmetic
 
paulson 
parents: 
6053 
diff
changeset
 | 
12  | 
(*The natural numbers as a datatype*)  | 
| 13194 | 13  | 
rep_datatype  | 
14  | 
elimination natE  | 
|
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
26056 
diff
changeset
 | 
15  | 
induction nat_induct  | 
| 
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
26056 
diff
changeset
 | 
16  | 
case_eqns nat_case_0 nat_case_succ  | 
| 13194 | 17  | 
recursor_eqns recursor_0 recursor_succ  | 
| 
9491
 
1a36151ee2fc
natify, a coercion to reduce the number of type constraints in arithmetic
 
paulson 
parents: 
6053 
diff
changeset
 | 
18  | 
|
| 
 
1a36151ee2fc
natify, a coercion to reduce the number of type constraints in arithmetic
 
paulson 
parents: 
6053 
diff
changeset
 | 
19  | 
|
| 534 | 20  | 
consts  | 
| 13194 | 21  | 
Fin :: "i=>i"  | 
22  | 
  FiniteFun :: "[i,i]=>i"         ("(_ -||>/ _)" [61, 60] 60)
 | 
|
| 534 | 23  | 
|
| 516 | 24  | 
inductive  | 
25  | 
domains "Fin(A)" <= "Pow(A)"  | 
|
| 13194 | 26  | 
intros  | 
27  | 
emptyI: "0 : Fin(A)"  | 
|
28  | 
consI: "[| a: A; b: Fin(A) |] ==> cons(a,b) : Fin(A)"  | 
|
29  | 
type_intros empty_subsetI cons_subsetI PowI  | 
|
30  | 
type_elims PowD [THEN revcut_rl]  | 
|
| 534 | 31  | 
|
32  | 
inductive  | 
|
33  | 
domains "FiniteFun(A,B)" <= "Fin(A*B)"  | 
|
| 13194 | 34  | 
intros  | 
35  | 
emptyI: "0 : A -||> B"  | 
|
36  | 
consI: "[| a: A; b: B; h: A -||> B; a ~: domain(h) |]  | 
|
37  | 
==> cons(<a,b>,h) : A -||> B"  | 
|
38  | 
type_intros Fin.intros  | 
|
39  | 
||
40  | 
||
| 13356 | 41  | 
subsection {* Finite Powerset Operator *}
 | 
| 13194 | 42  | 
|
43  | 
lemma Fin_mono: "A<=B ==> Fin(A) <= Fin(B)"  | 
|
44  | 
apply (unfold Fin.defs)  | 
|
45  | 
apply (rule lfp_mono)  | 
|
46  | 
apply (rule Fin.bnd_mono)+  | 
|
47  | 
apply blast  | 
|
48  | 
done  | 
|
49  | 
||
50  | 
(* A : Fin(B) ==> A <= B *)  | 
|
51  | 
lemmas FinD = Fin.dom_subset [THEN subsetD, THEN PowD, standard]  | 
|
52  | 
||
53  | 
(** Induction on finite sets **)  | 
|
54  | 
||
55  | 
(*Discharging x~:y entails extra work*)  | 
|
| 13524 | 56  | 
lemma Fin_induct [case_names 0 cons, induct set: Fin]:  | 
| 13194 | 57  | 
"[| b: Fin(A);  | 
58  | 
P(0);  | 
|
59  | 
!!x y. [| x: A; y: Fin(A); x~:y; P(y) |] ==> P(cons(x,y))  | 
|
60  | 
|] ==> P(b)"  | 
|
61  | 
apply (erule Fin.induct, simp)  | 
|
62  | 
apply (case_tac "a:b")  | 
|
63  | 
apply (erule cons_absorb [THEN ssubst], assumption) (*backtracking!*)  | 
|
64  | 
apply simp  | 
|
65  | 
done  | 
|
66  | 
||
| 
13203
 
fac77a839aa2
Tidying up.  Mainly moving proofs from Main.thy to other (Isar) theory files.
 
paulson 
parents: 
13194 
diff
changeset
 | 
67  | 
|
| 13194 | 68  | 
(** Simplification for Fin **)  | 
69  | 
declare Fin.intros [simp]  | 
|
70  | 
||
| 
13203
 
fac77a839aa2
Tidying up.  Mainly moving proofs from Main.thy to other (Isar) theory files.
 
paulson 
parents: 
13194 
diff
changeset
 | 
71  | 
lemma Fin_0: "Fin(0) = {0}"
 | 
| 
 
fac77a839aa2
Tidying up.  Mainly moving proofs from Main.thy to other (Isar) theory files.
 
paulson 
parents: 
13194 
diff
changeset
 | 
72  | 
by (blast intro: Fin.emptyI dest: FinD)  | 
| 
 
fac77a839aa2
Tidying up.  Mainly moving proofs from Main.thy to other (Isar) theory files.
 
paulson 
parents: 
13194 
diff
changeset
 | 
73  | 
|
| 13194 | 74  | 
(*The union of two finite sets is finite.*)  | 
| 
13203
 
fac77a839aa2
Tidying up.  Mainly moving proofs from Main.thy to other (Isar) theory files.
 
paulson 
parents: 
13194 
diff
changeset
 | 
75  | 
lemma Fin_UnI [simp]: "[| b: Fin(A); c: Fin(A) |] ==> b Un c : Fin(A)"  | 
| 13194 | 76  | 
apply (erule Fin_induct)  | 
77  | 
apply (simp_all add: Un_cons)  | 
|
78  | 
done  | 
|
79  | 
||
80  | 
||
81  | 
(*The union of a set of finite sets is finite.*)  | 
|
82  | 
lemma Fin_UnionI: "C : Fin(Fin(A)) ==> Union(C) : Fin(A)"  | 
|
83  | 
by (erule Fin_induct, simp_all)  | 
|
84  | 
||
85  | 
(*Every subset of a finite set is finite.*)  | 
|
86  | 
lemma Fin_subset_lemma [rule_format]: "b: Fin(A) ==> \<forall>z. z<=b --> z: Fin(A)"  | 
|
87  | 
apply (erule Fin_induct)  | 
|
88  | 
apply (simp add: subset_empty_iff)  | 
|
89  | 
apply (simp add: subset_cons_iff distrib_simps, safe)  | 
|
| 13784 | 90  | 
apply (erule_tac b = z in cons_Diff [THEN subst], simp)  | 
| 13194 | 91  | 
done  | 
92  | 
||
93  | 
lemma Fin_subset: "[| c<=b; b: Fin(A) |] ==> c: Fin(A)"  | 
|
94  | 
by (blast intro: Fin_subset_lemma)  | 
|
95  | 
||
96  | 
lemma Fin_IntI1 [intro,simp]: "b: Fin(A) ==> b Int c : Fin(A)"  | 
|
97  | 
by (blast intro: Fin_subset)  | 
|
98  | 
||
99  | 
lemma Fin_IntI2 [intro,simp]: "c: Fin(A) ==> b Int c : Fin(A)"  | 
|
100  | 
by (blast intro: Fin_subset)  | 
|
101  | 
||
102  | 
lemma Fin_0_induct_lemma [rule_format]:  | 
|
103  | 
"[| c: Fin(A); b: Fin(A); P(b);  | 
|
104  | 
        !!x y. [| x: A;  y: Fin(A);  x:y;  P(y) |] ==> P(y-{x})
 | 
|
105  | 
|] ==> c<=b --> P(b-c)"  | 
|
106  | 
apply (erule Fin_induct, simp)  | 
|
107  | 
apply (subst Diff_cons)  | 
|
108  | 
apply (simp add: cons_subset_iff Diff_subset [THEN Fin_subset])  | 
|
109  | 
done  | 
|
110  | 
||
111  | 
lemma Fin_0_induct:  | 
|
112  | 
"[| b: Fin(A);  | 
|
113  | 
P(b);  | 
|
114  | 
        !!x y. [| x: A;  y: Fin(A);  x:y;  P(y) |] ==> P(y-{x})
 | 
|
115  | 
|] ==> P(0)"  | 
|
116  | 
apply (rule Diff_cancel [THEN subst])  | 
|
117  | 
apply (blast intro: Fin_0_induct_lemma)  | 
|
118  | 
done  | 
|
119  | 
||
120  | 
(*Functions from a finite ordinal*)  | 
|
121  | 
lemma nat_fun_subset_Fin: "n: nat ==> n->A <= Fin(nat*A)"  | 
|
122  | 
apply (induct_tac "n")  | 
|
123  | 
apply (simp add: subset_iff)  | 
|
124  | 
apply (simp add: succ_def mem_not_refl [THEN cons_fun_eq])  | 
|
125  | 
apply (fast intro!: Fin.consI)  | 
|
126  | 
done  | 
|
127  | 
||
128  | 
||
| 13356 | 129  | 
subsection{*Finite Function Space*}
 | 
| 13194 | 130  | 
|
131  | 
lemma FiniteFun_mono:  | 
|
132  | 
"[| A<=C; B<=D |] ==> A -||> B <= C -||> D"  | 
|
133  | 
apply (unfold FiniteFun.defs)  | 
|
134  | 
apply (rule lfp_mono)  | 
|
135  | 
apply (rule FiniteFun.bnd_mono)+  | 
|
136  | 
apply (intro Fin_mono Sigma_mono basic_monos, assumption+)  | 
|
137  | 
done  | 
|
138  | 
||
139  | 
lemma FiniteFun_mono1: "A<=B ==> A -||> A <= B -||> B"  | 
|
140  | 
by (blast dest: FiniteFun_mono)  | 
|
141  | 
||
142  | 
lemma FiniteFun_is_fun: "h: A -||>B ==> h: domain(h) -> B"  | 
|
143  | 
apply (erule FiniteFun.induct, simp)  | 
|
144  | 
apply (simp add: fun_extend3)  | 
|
145  | 
done  | 
|
146  | 
||
147  | 
lemma FiniteFun_domain_Fin: "h: A -||>B ==> domain(h) : Fin(A)"  | 
|
| 13269 | 148  | 
by (erule FiniteFun.induct, simp, simp)  | 
| 13194 | 149  | 
|
150  | 
lemmas FiniteFun_apply_type = FiniteFun_is_fun [THEN apply_type, standard]  | 
|
151  | 
||
152  | 
(*Every subset of a finite function is a finite function.*)  | 
|
153  | 
lemma FiniteFun_subset_lemma [rule_format]:  | 
|
154  | 
"b: A-||>B ==> ALL z. z<=b --> z: A-||>B"  | 
|
155  | 
apply (erule FiniteFun.induct)  | 
|
156  | 
apply (simp add: subset_empty_iff FiniteFun.intros)  | 
|
157  | 
apply (simp add: subset_cons_iff distrib_simps, safe)  | 
|
| 13784 | 158  | 
apply (erule_tac b = z in cons_Diff [THEN subst])  | 
| 13194 | 159  | 
apply (drule spec [THEN mp], assumption)  | 
160  | 
apply (fast intro!: FiniteFun.intros)  | 
|
161  | 
done  | 
|
162  | 
||
163  | 
lemma FiniteFun_subset: "[| c<=b; b: A-||>B |] ==> c: A-||>B"  | 
|
164  | 
by (blast intro: FiniteFun_subset_lemma)  | 
|
165  | 
||
166  | 
(** Some further results by Sidi O. Ehmety **)  | 
|
167  | 
||
168  | 
lemma fun_FiniteFunI [rule_format]: "A:Fin(X) ==> ALL f. f:A->B --> f:A-||>B"  | 
|
169  | 
apply (erule Fin.induct)  | 
|
| 13269 | 170  | 
apply (simp add: FiniteFun.intros, clarify)  | 
| 13194 | 171  | 
apply (case_tac "a:b")  | 
172  | 
apply (simp add: cons_absorb)  | 
|
173  | 
apply (subgoal_tac "restrict (f,b) : b -||> B")  | 
|
174  | 
prefer 2 apply (blast intro: restrict_type2)  | 
|
175  | 
apply (subst fun_cons_restrict_eq, assumption)  | 
|
176  | 
apply (simp add: restrict_def lam_def)  | 
|
177  | 
apply (blast intro: apply_funtype FiniteFun.intros  | 
|
178  | 
FiniteFun_mono [THEN [2] rev_subsetD])  | 
|
179  | 
done  | 
|
180  | 
||
181  | 
lemma lam_FiniteFun: "A: Fin(X) ==> (lam x:A. b(x)) : A -||> {b(x). x:A}"
 | 
|
182  | 
by (blast intro: fun_FiniteFunI lam_funtype)  | 
|
183  | 
||
184  | 
lemma FiniteFun_Collect_iff:  | 
|
185  | 
     "f : FiniteFun(A, {y:B. P(y)})
 | 
|
186  | 
<-> f : FiniteFun(A,B) & (ALL x:domain(f). P(f`x))"  | 
|
187  | 
apply auto  | 
|
188  | 
apply (blast intro: FiniteFun_mono [THEN [2] rev_subsetD])  | 
|
189  | 
apply (blast dest: Pair_mem_PiD FiniteFun_is_fun)  | 
|
190  | 
apply (rule_tac A1="domain(f)" in  | 
|
191  | 
subset_refl [THEN [2] FiniteFun_mono, THEN subsetD])  | 
|
192  | 
apply (fast dest: FiniteFun_domain_Fin Fin.dom_subset [THEN subsetD])  | 
|
193  | 
apply (rule fun_FiniteFunI)  | 
|
194  | 
apply (erule FiniteFun_domain_Fin)  | 
|
195  | 
apply (rule_tac B = "range (f) " in fun_weaken_type)  | 
|
196  | 
apply (blast dest: FiniteFun_is_fun range_of_fun range_type apply_equality)+  | 
|
197  | 
done  | 
|
198  | 
||
| 14883 | 199  | 
|
200  | 
subsection{*The Contents of a Singleton Set*}
 | 
|
201  | 
||
| 24893 | 202  | 
definition  | 
203  | 
contents :: "i=>i" where  | 
|
| 14883 | 204  | 
   "contents(X) == THE x. X = {x}"
 | 
205  | 
||
206  | 
lemma contents_eq [simp]: "contents ({x}) = x"
 | 
|
207  | 
by (simp add: contents_def)  | 
|
208  | 
||
| 516 | 209  | 
end  |