23146
|
1 |
(* Title: ZF/EquivClass.thy
|
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
4 |
Copyright 1994 University of Cambridge
|
|
5 |
|
|
6 |
*)
|
|
7 |
|
|
8 |
header{*Equivalence Relations*}
|
|
9 |
|
|
10 |
theory EquivClass imports Trancl Perm begin
|
|
11 |
|
24893
|
12 |
definition
|
|
13 |
quotient :: "[i,i]=>i" (infixl "'/'/" 90) (*set of equiv classes*) where
|
23146
|
14 |
"A//r == {r``{x} . x:A}"
|
|
15 |
|
24893
|
16 |
definition
|
|
17 |
congruent :: "[i,i=>i]=>o" where
|
23146
|
18 |
"congruent(r,b) == ALL y z. <y,z>:r --> b(y)=b(z)"
|
|
19 |
|
24893
|
20 |
definition
|
|
21 |
congruent2 :: "[i,i,[i,i]=>i]=>o" where
|
23146
|
22 |
"congruent2(r1,r2,b) == ALL y1 z1 y2 z2.
|
|
23 |
<y1,z1>:r1 --> <y2,z2>:r2 --> b(y1,y2) = b(z1,z2)"
|
|
24 |
|
24892
|
25 |
abbreviation
|
|
26 |
RESPECTS ::"[i=>i, i] => o" (infixr "respects" 80) where
|
|
27 |
"f respects r == congruent(r,f)"
|
|
28 |
|
|
29 |
abbreviation
|
|
30 |
RESPECTS2 ::"[i=>i=>i, i] => o" (infixr "respects2 " 80) where
|
|
31 |
"f respects2 r == congruent2(r,r,f)"
|
23146
|
32 |
--{*Abbreviation for the common case where the relations are identical*}
|
|
33 |
|
|
34 |
|
|
35 |
subsection{*Suppes, Theorem 70:
|
|
36 |
@{term r} is an equiv relation iff @{term "converse(r) O r = r"}*}
|
|
37 |
|
|
38 |
(** first half: equiv(A,r) ==> converse(r) O r = r **)
|
|
39 |
|
|
40 |
lemma sym_trans_comp_subset:
|
|
41 |
"[| sym(r); trans(r) |] ==> converse(r) O r <= r"
|
|
42 |
by (unfold trans_def sym_def, blast)
|
|
43 |
|
|
44 |
lemma refl_comp_subset:
|
|
45 |
"[| refl(A,r); r <= A*A |] ==> r <= converse(r) O r"
|
|
46 |
by (unfold refl_def, blast)
|
|
47 |
|
|
48 |
lemma equiv_comp_eq:
|
|
49 |
"equiv(A,r) ==> converse(r) O r = r"
|
|
50 |
apply (unfold equiv_def)
|
|
51 |
apply (blast del: subsetI intro!: sym_trans_comp_subset refl_comp_subset)
|
|
52 |
done
|
|
53 |
|
|
54 |
(*second half*)
|
|
55 |
lemma comp_equivI:
|
|
56 |
"[| converse(r) O r = r; domain(r) = A |] ==> equiv(A,r)"
|
|
57 |
apply (unfold equiv_def refl_def sym_def trans_def)
|
|
58 |
apply (erule equalityE)
|
|
59 |
apply (subgoal_tac "ALL x y. <x,y> : r --> <y,x> : r", blast+)
|
|
60 |
done
|
|
61 |
|
|
62 |
(** Equivalence classes **)
|
|
63 |
|
|
64 |
(*Lemma for the next result*)
|
|
65 |
lemma equiv_class_subset:
|
|
66 |
"[| sym(r); trans(r); <a,b>: r |] ==> r``{a} <= r``{b}"
|
|
67 |
by (unfold trans_def sym_def, blast)
|
|
68 |
|
|
69 |
lemma equiv_class_eq:
|
|
70 |
"[| equiv(A,r); <a,b>: r |] ==> r``{a} = r``{b}"
|
|
71 |
apply (unfold equiv_def)
|
|
72 |
apply (safe del: subsetI intro!: equalityI equiv_class_subset)
|
|
73 |
apply (unfold sym_def, blast)
|
|
74 |
done
|
|
75 |
|
|
76 |
lemma equiv_class_self:
|
|
77 |
"[| equiv(A,r); a: A |] ==> a: r``{a}"
|
|
78 |
by (unfold equiv_def refl_def, blast)
|
|
79 |
|
|
80 |
(*Lemma for the next result*)
|
|
81 |
lemma subset_equiv_class:
|
|
82 |
"[| equiv(A,r); r``{b} <= r``{a}; b: A |] ==> <a,b>: r"
|
|
83 |
by (unfold equiv_def refl_def, blast)
|
|
84 |
|
|
85 |
lemma eq_equiv_class: "[| r``{a} = r``{b}; equiv(A,r); b: A |] ==> <a,b>: r"
|
|
86 |
by (assumption | rule equalityD2 subset_equiv_class)+
|
|
87 |
|
|
88 |
(*thus r``{a} = r``{b} as well*)
|
|
89 |
lemma equiv_class_nondisjoint:
|
|
90 |
"[| equiv(A,r); x: (r``{a} Int r``{b}) |] ==> <a,b>: r"
|
|
91 |
by (unfold equiv_def trans_def sym_def, blast)
|
|
92 |
|
|
93 |
lemma equiv_type: "equiv(A,r) ==> r <= A*A"
|
|
94 |
by (unfold equiv_def, blast)
|
|
95 |
|
|
96 |
lemma equiv_class_eq_iff:
|
|
97 |
"equiv(A,r) ==> <x,y>: r <-> r``{x} = r``{y} & x:A & y:A"
|
|
98 |
by (blast intro: eq_equiv_class equiv_class_eq dest: equiv_type)
|
|
99 |
|
|
100 |
lemma eq_equiv_class_iff:
|
|
101 |
"[| equiv(A,r); x: A; y: A |] ==> r``{x} = r``{y} <-> <x,y>: r"
|
|
102 |
by (blast intro: eq_equiv_class equiv_class_eq dest: equiv_type)
|
|
103 |
|
|
104 |
(*** Quotients ***)
|
|
105 |
|
|
106 |
(** Introduction/elimination rules -- needed? **)
|
|
107 |
|
|
108 |
lemma quotientI [TC]: "x:A ==> r``{x}: A//r"
|
|
109 |
apply (unfold quotient_def)
|
|
110 |
apply (erule RepFunI)
|
|
111 |
done
|
|
112 |
|
|
113 |
lemma quotientE:
|
|
114 |
"[| X: A//r; !!x. [| X = r``{x}; x:A |] ==> P |] ==> P"
|
|
115 |
by (unfold quotient_def, blast)
|
|
116 |
|
|
117 |
lemma Union_quotient:
|
|
118 |
"equiv(A,r) ==> Union(A//r) = A"
|
|
119 |
by (unfold equiv_def refl_def quotient_def, blast)
|
|
120 |
|
|
121 |
lemma quotient_disj:
|
|
122 |
"[| equiv(A,r); X: A//r; Y: A//r |] ==> X=Y | (X Int Y <= 0)"
|
|
123 |
apply (unfold quotient_def)
|
|
124 |
apply (safe intro!: equiv_class_eq, assumption)
|
|
125 |
apply (unfold equiv_def trans_def sym_def, blast)
|
|
126 |
done
|
|
127 |
|
|
128 |
subsection{*Defining Unary Operations upon Equivalence Classes*}
|
|
129 |
|
|
130 |
(** Could have a locale with the premises equiv(A,r) and congruent(r,b)
|
|
131 |
**)
|
|
132 |
|
|
133 |
(*Conversion rule*)
|
|
134 |
lemma UN_equiv_class:
|
|
135 |
"[| equiv(A,r); b respects r; a: A |] ==> (UN x:r``{a}. b(x)) = b(a)"
|
|
136 |
apply (subgoal_tac "\<forall>x \<in> r``{a}. b(x) = b(a)")
|
|
137 |
apply simp
|
|
138 |
apply (blast intro: equiv_class_self)
|
|
139 |
apply (unfold equiv_def sym_def congruent_def, blast)
|
|
140 |
done
|
|
141 |
|
|
142 |
(*type checking of UN x:r``{a}. b(x) *)
|
|
143 |
lemma UN_equiv_class_type:
|
|
144 |
"[| equiv(A,r); b respects r; X: A//r; !!x. x : A ==> b(x) : B |]
|
|
145 |
==> (UN x:X. b(x)) : B"
|
|
146 |
apply (unfold quotient_def, safe)
|
|
147 |
apply (simp (no_asm_simp) add: UN_equiv_class)
|
|
148 |
done
|
|
149 |
|
|
150 |
(*Sufficient conditions for injectiveness. Could weaken premises!
|
|
151 |
major premise could be an inclusion; bcong could be !!y. y:A ==> b(y):B
|
|
152 |
*)
|
|
153 |
lemma UN_equiv_class_inject:
|
|
154 |
"[| equiv(A,r); b respects r;
|
|
155 |
(UN x:X. b(x))=(UN y:Y. b(y)); X: A//r; Y: A//r;
|
|
156 |
!!x y. [| x:A; y:A; b(x)=b(y) |] ==> <x,y>:r |]
|
|
157 |
==> X=Y"
|
|
158 |
apply (unfold quotient_def, safe)
|
|
159 |
apply (rule equiv_class_eq, assumption)
|
|
160 |
apply (simp add: UN_equiv_class [of A r b])
|
|
161 |
done
|
|
162 |
|
|
163 |
|
|
164 |
subsection{*Defining Binary Operations upon Equivalence Classes*}
|
|
165 |
|
|
166 |
lemma congruent2_implies_congruent:
|
|
167 |
"[| equiv(A,r1); congruent2(r1,r2,b); a: A |] ==> congruent(r2,b(a))"
|
|
168 |
by (unfold congruent_def congruent2_def equiv_def refl_def, blast)
|
|
169 |
|
|
170 |
lemma congruent2_implies_congruent_UN:
|
|
171 |
"[| equiv(A1,r1); equiv(A2,r2); congruent2(r1,r2,b); a: A2 |] ==>
|
|
172 |
congruent(r1, %x1. \<Union>x2 \<in> r2``{a}. b(x1,x2))"
|
|
173 |
apply (unfold congruent_def, safe)
|
|
174 |
apply (frule equiv_type [THEN subsetD], assumption)
|
|
175 |
apply clarify
|
|
176 |
apply (simp add: UN_equiv_class congruent2_implies_congruent)
|
|
177 |
apply (unfold congruent2_def equiv_def refl_def, blast)
|
|
178 |
done
|
|
179 |
|
|
180 |
lemma UN_equiv_class2:
|
|
181 |
"[| equiv(A1,r1); equiv(A2,r2); congruent2(r1,r2,b); a1: A1; a2: A2 |]
|
|
182 |
==> (\<Union>x1 \<in> r1``{a1}. \<Union>x2 \<in> r2``{a2}. b(x1,x2)) = b(a1,a2)"
|
|
183 |
by (simp add: UN_equiv_class congruent2_implies_congruent
|
|
184 |
congruent2_implies_congruent_UN)
|
|
185 |
|
|
186 |
(*type checking*)
|
|
187 |
lemma UN_equiv_class_type2:
|
|
188 |
"[| equiv(A,r); b respects2 r;
|
|
189 |
X1: A//r; X2: A//r;
|
|
190 |
!!x1 x2. [| x1: A; x2: A |] ==> b(x1,x2) : B
|
|
191 |
|] ==> (UN x1:X1. UN x2:X2. b(x1,x2)) : B"
|
|
192 |
apply (unfold quotient_def, safe)
|
|
193 |
apply (blast intro: UN_equiv_class_type congruent2_implies_congruent_UN
|
|
194 |
congruent2_implies_congruent quotientI)
|
|
195 |
done
|
|
196 |
|
|
197 |
|
|
198 |
(*Suggested by John Harrison -- the two subproofs may be MUCH simpler
|
|
199 |
than the direct proof*)
|
|
200 |
lemma congruent2I:
|
|
201 |
"[| equiv(A1,r1); equiv(A2,r2);
|
|
202 |
!! y z w. [| w \<in> A2; <y,z> \<in> r1 |] ==> b(y,w) = b(z,w);
|
|
203 |
!! y z w. [| w \<in> A1; <y,z> \<in> r2 |] ==> b(w,y) = b(w,z)
|
|
204 |
|] ==> congruent2(r1,r2,b)"
|
|
205 |
apply (unfold congruent2_def equiv_def refl_def, safe)
|
|
206 |
apply (blast intro: trans)
|
|
207 |
done
|
|
208 |
|
|
209 |
lemma congruent2_commuteI:
|
|
210 |
assumes equivA: "equiv(A,r)"
|
|
211 |
and commute: "!! y z. [| y: A; z: A |] ==> b(y,z) = b(z,y)"
|
|
212 |
and congt: "!! y z w. [| w: A; <y,z>: r |] ==> b(w,y) = b(w,z)"
|
|
213 |
shows "b respects2 r"
|
|
214 |
apply (insert equivA [THEN equiv_type, THEN subsetD])
|
|
215 |
apply (rule congruent2I [OF equivA equivA])
|
|
216 |
apply (rule commute [THEN trans])
|
|
217 |
apply (rule_tac [3] commute [THEN trans, symmetric])
|
|
218 |
apply (rule_tac [5] sym)
|
|
219 |
apply (blast intro: congt)+
|
|
220 |
done
|
|
221 |
|
|
222 |
(*Obsolete?*)
|
|
223 |
lemma congruent_commuteI:
|
|
224 |
"[| equiv(A,r); Z: A//r;
|
|
225 |
!!w. [| w: A |] ==> congruent(r, %z. b(w,z));
|
|
226 |
!!x y. [| x: A; y: A |] ==> b(y,x) = b(x,y)
|
|
227 |
|] ==> congruent(r, %w. UN z: Z. b(w,z))"
|
|
228 |
apply (simp (no_asm) add: congruent_def)
|
|
229 |
apply (safe elim!: quotientE)
|
|
230 |
apply (frule equiv_type [THEN subsetD], assumption)
|
|
231 |
apply (simp add: UN_equiv_class [of A r])
|
|
232 |
apply (simp add: congruent_def)
|
|
233 |
done
|
|
234 |
|
|
235 |
end
|