| author | wenzelm | 
| Tue, 12 Jan 2010 22:23:29 +0100 | |
| changeset 34882 | 7ad1189d54ca | 
| parent 23464 | bc2563c37b1a | 
| child 36862 | 952b2b102a0a | 
| permissions | -rw-r--r-- | 
| 5261 | 1  | 
(* Title: HOL/Lambda/ListApplication.thy  | 
2  | 
ID: $Id$  | 
|
3  | 
Author: Tobias Nipkow  | 
|
4  | 
Copyright 1998 TU Muenchen  | 
|
| 
9811
 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 
wenzelm 
parents: 
9771 
diff
changeset
 | 
5  | 
*)  | 
| 5261 | 6  | 
|
| 
9811
 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 
wenzelm 
parents: 
9771 
diff
changeset
 | 
7  | 
header {* Application of a term to a list of terms *}
 | 
| 5261 | 8  | 
|
| 16417 | 9  | 
theory ListApplication imports Lambda begin  | 
| 9771 | 10  | 
|
| 19363 | 11  | 
abbreviation  | 
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
20503 
diff
changeset
 | 
12  | 
list_application :: "dB => dB list => dB" (infixl "\<degree>\<degree>" 150) where  | 
| 19363 | 13  | 
"t \<degree>\<degree> ts == foldl (op \<degree>) t ts"  | 
| 11943 | 14  | 
|
| 12011 | 15  | 
lemma apps_eq_tail_conv [iff]: "(r \<degree>\<degree> ts = s \<degree>\<degree> ts) = (r = s)"  | 
| 18241 | 16  | 
by (induct ts rule: rev_induct) auto  | 
| 9771 | 17  | 
|
| 18241 | 18  | 
lemma Var_eq_apps_conv [iff]: "(Var m = s \<degree>\<degree> ss) = (Var m = s \<and> ss = [])"  | 
| 20503 | 19  | 
by (induct ss arbitrary: s) auto  | 
| 9771 | 20  | 
|
| 
13915
 
28ccb51bd2f3
Eliminated most occurrences of rule_format attribute.
 
berghofe 
parents: 
12011 
diff
changeset
 | 
21  | 
lemma Var_apps_eq_Var_apps_conv [iff]:  | 
| 18241 | 22  | 
"(Var m \<degree>\<degree> rs = Var n \<degree>\<degree> ss) = (m = n \<and> rs = ss)"  | 
| 20503 | 23  | 
apply (induct rs arbitrary: ss rule: rev_induct)  | 
| 9771 | 24  | 
apply simp  | 
25  | 
apply blast  | 
|
26  | 
apply (induct_tac ss rule: rev_induct)  | 
|
27  | 
apply auto  | 
|
28  | 
done  | 
|
29  | 
||
30  | 
lemma App_eq_foldl_conv:  | 
|
| 12011 | 31  | 
"(r \<degree> s = t \<degree>\<degree> ts) =  | 
32  | 
(if ts = [] then r \<degree> s = t  | 
|
33  | 
else (\<exists>ss. ts = ss @ [s] \<and> r = t \<degree>\<degree> ss))"  | 
|
| 9771 | 34  | 
apply (rule_tac xs = ts in rev_exhaust)  | 
35  | 
apply auto  | 
|
36  | 
done  | 
|
37  | 
||
38  | 
lemma Abs_eq_apps_conv [iff]:  | 
|
| 12011 | 39  | 
"(Abs r = s \<degree>\<degree> ss) = (Abs r = s \<and> ss = [])"  | 
| 18241 | 40  | 
by (induct ss rule: rev_induct) auto  | 
| 9771 | 41  | 
|
| 12011 | 42  | 
lemma apps_eq_Abs_conv [iff]: "(s \<degree>\<degree> ss = Abs r) = (s = Abs r \<and> ss = [])"  | 
| 18241 | 43  | 
by (induct ss rule: rev_induct) auto  | 
| 9771 | 44  | 
|
45  | 
lemma Abs_apps_eq_Abs_apps_conv [iff]:  | 
|
| 18241 | 46  | 
"(Abs r \<degree>\<degree> rs = Abs s \<degree>\<degree> ss) = (r = s \<and> rs = ss)"  | 
| 20503 | 47  | 
apply (induct rs arbitrary: ss rule: rev_induct)  | 
| 9771 | 48  | 
apply simp  | 
49  | 
apply blast  | 
|
50  | 
apply (induct_tac ss rule: rev_induct)  | 
|
51  | 
apply auto  | 
|
52  | 
done  | 
|
53  | 
||
54  | 
lemma Abs_App_neq_Var_apps [iff]:  | 
|
| 18257 | 55  | 
"Abs s \<degree> t \<noteq> Var n \<degree>\<degree> ss"  | 
| 20503 | 56  | 
by (induct ss arbitrary: s t rule: rev_induct) auto  | 
| 9771 | 57  | 
|
| 
13915
 
28ccb51bd2f3
Eliminated most occurrences of rule_format attribute.
 
berghofe 
parents: 
12011 
diff
changeset
 | 
58  | 
lemma Var_apps_neq_Abs_apps [iff]:  | 
| 18257 | 59  | 
"Var n \<degree>\<degree> ts \<noteq> Abs r \<degree>\<degree> ss"  | 
| 20503 | 60  | 
apply (induct ss arbitrary: ts rule: rev_induct)  | 
| 9771 | 61  | 
apply simp  | 
62  | 
apply (induct_tac ts rule: rev_induct)  | 
|
63  | 
apply auto  | 
|
64  | 
done  | 
|
| 5261 | 65  | 
|
| 9771 | 66  | 
lemma ex_head_tail:  | 
| 12011 | 67  | 
"\<exists>ts h. t = h \<degree>\<degree> ts \<and> ((\<exists>n. h = Var n) \<or> (\<exists>u. h = Abs u))"  | 
| 18241 | 68  | 
apply (induct t)  | 
| 9771 | 69  | 
apply (rule_tac x = "[]" in exI)  | 
70  | 
apply simp  | 
|
71  | 
apply clarify  | 
|
72  | 
apply (rename_tac ts1 ts2 h1 h2)  | 
|
| 12011 | 73  | 
apply (rule_tac x = "ts1 @ [h2 \<degree>\<degree> ts2]" in exI)  | 
| 9771 | 74  | 
apply simp  | 
75  | 
apply simp  | 
|
76  | 
done  | 
|
77  | 
||
78  | 
lemma size_apps [simp]:  | 
|
| 12011 | 79  | 
"size (r \<degree>\<degree> rs) = size r + foldl (op +) 0 (map size rs) + length rs"  | 
| 18241 | 80  | 
by (induct rs rule: rev_induct) auto  | 
| 9771 | 81  | 
|
82  | 
lemma lem0: "[| (0::nat) < k; m <= n |] ==> m < n + k"  | 
|
| 18241 | 83  | 
by simp  | 
| 9771 | 84  | 
|
| 14066 | 85  | 
lemma lift_map [simp]:  | 
| 18241 | 86  | 
"lift (t \<degree>\<degree> ts) i = lift t i \<degree>\<degree> map (\<lambda>t. lift t i) ts"  | 
| 20503 | 87  | 
by (induct ts arbitrary: t) simp_all  | 
| 14066 | 88  | 
|
89  | 
lemma subst_map [simp]:  | 
|
| 18241 | 90  | 
"subst (t \<degree>\<degree> ts) u i = subst t u i \<degree>\<degree> map (\<lambda>t. subst t u i) ts"  | 
| 20503 | 91  | 
by (induct ts arbitrary: t) simp_all  | 
| 14066 | 92  | 
|
93  | 
lemma app_last: "(t \<degree>\<degree> ts) \<degree> u = t \<degree>\<degree> (ts @ [u])"  | 
|
94  | 
by simp  | 
|
95  | 
||
| 
9811
 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 
wenzelm 
parents: 
9771 
diff
changeset
 | 
96  | 
|
| 12011 | 97  | 
text {* \medskip A customized induction schema for @{text "\<degree>\<degree>"}. *}
 | 
| 9771 | 98  | 
|
| 18241 | 99  | 
lemma lem:  | 
100  | 
assumes "!!n ts. \<forall>t \<in> set ts. P t ==> P (Var n \<degree>\<degree> ts)"  | 
|
101  | 
and "!!u ts. [| P u; \<forall>t \<in> set ts. P t |] ==> P (Abs u \<degree>\<degree> ts)"  | 
|
102  | 
shows "size t = n \<Longrightarrow> P t"  | 
|
| 20503 | 103  | 
apply (induct n arbitrary: t rule: nat_less_induct)  | 
| 18241 | 104  | 
apply (cut_tac t = t in ex_head_tail)  | 
105  | 
apply clarify  | 
|
106  | 
apply (erule disjE)  | 
|
107  | 
apply clarify  | 
|
| 23464 | 108  | 
apply (rule assms)  | 
| 9771 | 109  | 
apply clarify  | 
| 18241 | 110  | 
apply (erule allE, erule impE)  | 
111  | 
prefer 2  | 
|
112  | 
apply (erule allE, erule mp, rule refl)  | 
|
113  | 
apply simp  | 
|
114  | 
apply (rule lem0)  | 
|
| 9771 | 115  | 
apply force  | 
| 18241 | 116  | 
apply (rule elem_le_sum)  | 
117  | 
apply force  | 
|
118  | 
apply clarify  | 
|
| 23464 | 119  | 
apply (rule assms)  | 
| 18241 | 120  | 
apply (erule allE, erule impE)  | 
121  | 
prefer 2  | 
|
122  | 
apply (erule allE, erule mp, rule refl)  | 
|
123  | 
apply simp  | 
|
124  | 
apply clarify  | 
|
125  | 
apply (erule allE, erule impE)  | 
|
126  | 
prefer 2  | 
|
127  | 
apply (erule allE, erule mp, rule refl)  | 
|
128  | 
apply simp  | 
|
129  | 
apply (rule le_imp_less_Suc)  | 
|
130  | 
apply (rule trans_le_add1)  | 
|
131  | 
apply (rule trans_le_add2)  | 
|
132  | 
apply (rule elem_le_sum)  | 
|
133  | 
apply force  | 
|
134  | 
done  | 
|
| 9771 | 135  | 
|
| 
9811
 
39ffdb8cab03
HOL/Lambda: converted into new-style theory and document;
 
wenzelm 
parents: 
9771 
diff
changeset
 | 
136  | 
theorem Apps_dB_induct:  | 
| 18241 | 137  | 
assumes "!!n ts. \<forall>t \<in> set ts. P t ==> P (Var n \<degree>\<degree> ts)"  | 
138  | 
and "!!u ts. [| P u; \<forall>t \<in> set ts. P t |] ==> P (Abs u \<degree>\<degree> ts)"  | 
|
139  | 
shows "P t"  | 
|
140  | 
apply (rule_tac t = t in lem)  | 
|
141  | 
prefer 3  | 
|
142  | 
apply (rule refl)  | 
|
| 23464 | 143  | 
using assms apply iprover+  | 
| 18241 | 144  | 
done  | 
| 5261 | 145  | 
|
| 9870 | 146  | 
end  |