26241
|
1 |
(* Title: HOL/Library/Option_ord.thy
|
|
2 |
Author: Florian Haftmann, TU Muenchen
|
|
3 |
*)
|
|
4 |
|
26263
|
5 |
header {* Canonical order on option type *}
|
26241
|
6 |
|
|
7 |
theory Option_ord
|
30662
|
8 |
imports Option Main
|
26241
|
9 |
begin
|
|
10 |
|
30662
|
11 |
instantiation option :: (preorder) preorder
|
26241
|
12 |
begin
|
|
13 |
|
|
14 |
definition less_eq_option where
|
28562
|
15 |
[code del]: "x \<le> y \<longleftrightarrow> (case x of None \<Rightarrow> True | Some x \<Rightarrow> (case y of None \<Rightarrow> False | Some y \<Rightarrow> x \<le> y))"
|
26241
|
16 |
|
|
17 |
definition less_option where
|
28562
|
18 |
[code del]: "x < y \<longleftrightarrow> (case y of None \<Rightarrow> False | Some y \<Rightarrow> (case x of None \<Rightarrow> True | Some x \<Rightarrow> x < y))"
|
26241
|
19 |
|
26258
|
20 |
lemma less_eq_option_None [simp]: "None \<le> x"
|
26241
|
21 |
by (simp add: less_eq_option_def)
|
|
22 |
|
26258
|
23 |
lemma less_eq_option_None_code [code]: "None \<le> x \<longleftrightarrow> True"
|
26241
|
24 |
by simp
|
|
25 |
|
26258
|
26 |
lemma less_eq_option_None_is_None: "x \<le> None \<Longrightarrow> x = None"
|
26241
|
27 |
by (cases x) (simp_all add: less_eq_option_def)
|
|
28 |
|
26258
|
29 |
lemma less_eq_option_Some_None [simp, code]: "Some x \<le> None \<longleftrightarrow> False"
|
26241
|
30 |
by (simp add: less_eq_option_def)
|
|
31 |
|
26258
|
32 |
lemma less_eq_option_Some [simp, code]: "Some x \<le> Some y \<longleftrightarrow> x \<le> y"
|
26241
|
33 |
by (simp add: less_eq_option_def)
|
|
34 |
|
26258
|
35 |
lemma less_option_None [simp, code]: "x < None \<longleftrightarrow> False"
|
26241
|
36 |
by (simp add: less_option_def)
|
|
37 |
|
26258
|
38 |
lemma less_option_None_is_Some: "None < x \<Longrightarrow> \<exists>z. x = Some z"
|
26241
|
39 |
by (cases x) (simp_all add: less_option_def)
|
|
40 |
|
26258
|
41 |
lemma less_option_None_Some [simp]: "None < Some x"
|
26241
|
42 |
by (simp add: less_option_def)
|
|
43 |
|
26258
|
44 |
lemma less_option_None_Some_code [code]: "None < Some x \<longleftrightarrow> True"
|
26241
|
45 |
by simp
|
|
46 |
|
26258
|
47 |
lemma less_option_Some [simp, code]: "Some x < Some y \<longleftrightarrow> x < y"
|
26241
|
48 |
by (simp add: less_option_def)
|
|
49 |
|
30662
|
50 |
instance proof
|
|
51 |
qed (auto simp add: less_eq_option_def less_option_def less_le_not_le elim: order_trans split: option.splits)
|
26241
|
52 |
|
|
53 |
end
|
|
54 |
|
30662
|
55 |
instance option :: (order) order proof
|
|
56 |
qed (auto simp add: less_eq_option_def less_option_def split: option.splits)
|
|
57 |
|
|
58 |
instance option :: (linorder) linorder proof
|
|
59 |
qed (auto simp add: less_eq_option_def less_option_def split: option.splits)
|
|
60 |
|
|
61 |
instantiation option :: (preorder) bot
|
|
62 |
begin
|
|
63 |
|
|
64 |
definition "bot = None"
|
|
65 |
|
|
66 |
instance proof
|
|
67 |
qed (simp add: bot_option_def)
|
|
68 |
|
|
69 |
end
|
|
70 |
|
|
71 |
instantiation option :: (top) top
|
|
72 |
begin
|
|
73 |
|
|
74 |
definition "top = Some top"
|
|
75 |
|
|
76 |
instance proof
|
|
77 |
qed (simp add: top_option_def less_eq_option_def split: option.split)
|
26241
|
78 |
|
|
79 |
end
|
30662
|
80 |
|
|
81 |
instance option :: (wellorder) wellorder proof
|
|
82 |
fix P :: "'a option \<Rightarrow> bool" and z :: "'a option"
|
|
83 |
assume H: "\<And>x. (\<And>y. y < x \<Longrightarrow> P y) \<Longrightarrow> P x"
|
|
84 |
have "P None" by (rule H) simp
|
|
85 |
then have P_Some [case_names Some]:
|
|
86 |
"\<And>z. (\<And>x. z = Some x \<Longrightarrow> (P o Some) x) \<Longrightarrow> P z"
|
|
87 |
proof -
|
|
88 |
fix z
|
|
89 |
assume "\<And>x. z = Some x \<Longrightarrow> (P o Some) x"
|
|
90 |
with `P None` show "P z" by (cases z) simp_all
|
|
91 |
qed
|
|
92 |
show "P z" proof (cases z rule: P_Some)
|
|
93 |
case (Some w)
|
|
94 |
show "(P o Some) w" proof (induct rule: less_induct)
|
|
95 |
case (less x)
|
|
96 |
have "P (Some x)" proof (rule H)
|
|
97 |
fix y :: "'a option"
|
|
98 |
assume "y < Some x"
|
|
99 |
show "P y" proof (cases y rule: P_Some)
|
|
100 |
case (Some v) with `y < Some x` have "v < x" by simp
|
|
101 |
with less show "(P o Some) v" .
|
|
102 |
qed
|
|
103 |
qed
|
|
104 |
then show ?case by simp
|
|
105 |
qed
|
|
106 |
qed
|
|
107 |
qed
|
|
108 |
|
|
109 |
end
|