author | bulwahn |
Thu, 29 Jul 2010 17:27:51 +0200 | |
changeset 38072 | 7b8c295af291 |
parent 35479 | dffffe36344a |
child 39973 | c62b4ff97bfc |
permissions | -rw-r--r-- |
35473 | 1 |
(* Title: HOLCF/Powerdomains.thy |
2 |
Author: Brian Huffman |
|
3 |
*) |
|
4 |
||
5 |
header {* Powerdomains *} |
|
6 |
||
7 |
theory Powerdomains |
|
8 |
imports Representable ConvexPD |
|
9 |
begin |
|
10 |
||
11 |
subsection {* Powerdomains are representable *} |
|
12 |
||
13 |
text "Upper powerdomain of a representable type is representable." |
|
14 |
||
15 |
instantiation upper_pd :: (rep) rep |
|
16 |
begin |
|
17 |
||
18 |
definition emb_upper_pd_def: "emb = udom_emb oo upper_map\<cdot>emb" |
|
19 |
definition prj_upper_pd_def: "prj = upper_map\<cdot>prj oo udom_prj" |
|
20 |
||
21 |
instance |
|
22 |
apply (intro_classes, unfold emb_upper_pd_def prj_upper_pd_def) |
|
23 |
apply (intro ep_pair_comp ep_pair_upper_map ep_pair_emb_prj ep_pair_udom) |
|
24 |
done |
|
25 |
||
26 |
end |
|
27 |
||
28 |
text "Lower powerdomain of a representable type is representable." |
|
29 |
||
30 |
instantiation lower_pd :: (rep) rep |
|
31 |
begin |
|
32 |
||
33 |
definition emb_lower_pd_def: "emb = udom_emb oo lower_map\<cdot>emb" |
|
34 |
definition prj_lower_pd_def: "prj = lower_map\<cdot>prj oo udom_prj" |
|
35 |
||
36 |
instance |
|
37 |
apply (intro_classes, unfold emb_lower_pd_def prj_lower_pd_def) |
|
38 |
apply (intro ep_pair_comp ep_pair_lower_map ep_pair_emb_prj ep_pair_udom) |
|
39 |
done |
|
40 |
||
41 |
end |
|
42 |
||
43 |
text "Convex powerdomain of a representable type is representable." |
|
44 |
||
45 |
instantiation convex_pd :: (rep) rep |
|
46 |
begin |
|
47 |
||
48 |
definition emb_convex_pd_def: "emb = udom_emb oo convex_map\<cdot>emb" |
|
49 |
definition prj_convex_pd_def: "prj = convex_map\<cdot>prj oo udom_prj" |
|
50 |
||
51 |
instance |
|
52 |
apply (intro_classes, unfold emb_convex_pd_def prj_convex_pd_def) |
|
53 |
apply (intro ep_pair_comp ep_pair_convex_map ep_pair_emb_prj ep_pair_udom) |
|
54 |
done |
|
55 |
||
56 |
end |
|
57 |
||
58 |
subsection {* Finite deflation lemmas *} |
|
59 |
||
60 |
text "TODO: move these lemmas somewhere else" |
|
61 |
||
62 |
lemma finite_compact_range_imp_finite_range: |
|
63 |
fixes d :: "'a::profinite \<rightarrow> 'b::cpo" |
|
64 |
assumes "finite ((\<lambda>x. d\<cdot>x) ` {x. compact x})" |
|
65 |
shows "finite (range (\<lambda>x. d\<cdot>x))" |
|
66 |
proof (rule finite_subset [OF _ prems]) |
|
67 |
{ |
|
68 |
fix x :: 'a |
|
69 |
have "range (\<lambda>i. d\<cdot>(approx i\<cdot>x)) \<subseteq> (\<lambda>x. d\<cdot>x) ` {x. compact x}" |
|
70 |
by auto |
|
71 |
hence "finite (range (\<lambda>i. d\<cdot>(approx i\<cdot>x)))" |
|
72 |
using prems by (rule finite_subset) |
|
73 |
hence "finite_chain (\<lambda>i. d\<cdot>(approx i\<cdot>x))" |
|
74 |
by (simp add: finite_range_imp_finch) |
|
75 |
hence "\<exists>i. (\<Squnion>i. d\<cdot>(approx i\<cdot>x)) = d\<cdot>(approx i\<cdot>x)" |
|
76 |
by (simp add: finite_chain_def maxinch_is_thelub) |
|
77 |
hence "\<exists>i. d\<cdot>x = d\<cdot>(approx i\<cdot>x)" |
|
78 |
by (simp add: lub_distribs) |
|
79 |
hence "d\<cdot>x \<in> (\<lambda>x. d\<cdot>x) ` {x. compact x}" |
|
80 |
by auto |
|
81 |
} |
|
82 |
thus "range (\<lambda>x. d\<cdot>x) \<subseteq> (\<lambda>x. d\<cdot>x) ` {x. compact x}" |
|
83 |
by clarsimp |
|
84 |
qed |
|
85 |
||
86 |
lemma finite_deflation_upper_map: |
|
87 |
assumes "finite_deflation d" shows "finite_deflation (upper_map\<cdot>d)" |
|
88 |
proof (intro finite_deflation.intro finite_deflation_axioms.intro) |
|
89 |
interpret d: finite_deflation d by fact |
|
90 |
have "deflation d" by fact |
|
91 |
thus "deflation (upper_map\<cdot>d)" by (rule deflation_upper_map) |
|
92 |
have "finite (range (\<lambda>x. d\<cdot>x))" by (rule d.finite_range) |
|
93 |
hence "finite (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))" |
|
94 |
by (rule finite_vimageI, simp add: inj_on_def Rep_compact_basis_inject) |
|
95 |
hence "finite (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x)))" by simp |
|
96 |
hence "finite (Rep_pd_basis -` (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))))" |
|
97 |
by (rule finite_vimageI, simp add: inj_on_def Rep_pd_basis_inject) |
|
98 |
hence "finite (upper_principal ` Rep_pd_basis -` (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))))" by simp |
|
99 |
hence "finite ((\<lambda>xs. upper_map\<cdot>d\<cdot>xs) ` range upper_principal)" |
|
100 |
apply (rule finite_subset [COMP swap_prems_rl]) |
|
101 |
apply (clarsimp, rename_tac t) |
|
102 |
apply (induct_tac t rule: pd_basis_induct) |
|
103 |
apply (simp only: upper_unit_Rep_compact_basis [symmetric] upper_map_unit) |
|
104 |
apply (subgoal_tac "\<exists>b. d\<cdot>(Rep_compact_basis a) = Rep_compact_basis b") |
|
105 |
apply clarsimp |
|
106 |
apply (rule imageI) |
|
107 |
apply (rule vimageI2) |
|
108 |
apply (simp add: Rep_PDUnit) |
|
109 |
apply (rule image_eqI) |
|
110 |
apply (erule sym) |
|
111 |
apply simp |
|
112 |
apply (rule exI) |
|
113 |
apply (rule Abs_compact_basis_inverse [symmetric]) |
|
114 |
apply (simp add: d.compact) |
|
115 |
apply (simp only: upper_plus_principal [symmetric] upper_map_plus) |
|
116 |
apply clarsimp |
|
117 |
apply (rule imageI) |
|
118 |
apply (rule vimageI2) |
|
119 |
apply (simp add: Rep_PDPlus) |
|
120 |
done |
|
121 |
moreover have "{xs::'a upper_pd. compact xs} = range upper_principal" |
|
122 |
by (auto dest: upper_pd.compact_imp_principal) |
|
123 |
ultimately have "finite ((\<lambda>xs. upper_map\<cdot>d\<cdot>xs) ` {xs::'a upper_pd. compact xs})" |
|
124 |
by simp |
|
125 |
hence "finite (range (\<lambda>xs. upper_map\<cdot>d\<cdot>xs))" |
|
126 |
by (rule finite_compact_range_imp_finite_range) |
|
127 |
thus "finite {xs. upper_map\<cdot>d\<cdot>xs = xs}" |
|
128 |
by (rule finite_range_imp_finite_fixes) |
|
129 |
qed |
|
130 |
||
131 |
lemma finite_deflation_lower_map: |
|
132 |
assumes "finite_deflation d" shows "finite_deflation (lower_map\<cdot>d)" |
|
133 |
proof (intro finite_deflation.intro finite_deflation_axioms.intro) |
|
134 |
interpret d: finite_deflation d by fact |
|
135 |
have "deflation d" by fact |
|
136 |
thus "deflation (lower_map\<cdot>d)" by (rule deflation_lower_map) |
|
137 |
have "finite (range (\<lambda>x. d\<cdot>x))" by (rule d.finite_range) |
|
138 |
hence "finite (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))" |
|
139 |
by (rule finite_vimageI, simp add: inj_on_def Rep_compact_basis_inject) |
|
140 |
hence "finite (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x)))" by simp |
|
141 |
hence "finite (Rep_pd_basis -` (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))))" |
|
142 |
by (rule finite_vimageI, simp add: inj_on_def Rep_pd_basis_inject) |
|
143 |
hence "finite (lower_principal ` Rep_pd_basis -` (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))))" by simp |
|
144 |
hence "finite ((\<lambda>xs. lower_map\<cdot>d\<cdot>xs) ` range lower_principal)" |
|
145 |
apply (rule finite_subset [COMP swap_prems_rl]) |
|
146 |
apply (clarsimp, rename_tac t) |
|
147 |
apply (induct_tac t rule: pd_basis_induct) |
|
148 |
apply (simp only: lower_unit_Rep_compact_basis [symmetric] lower_map_unit) |
|
149 |
apply (subgoal_tac "\<exists>b. d\<cdot>(Rep_compact_basis a) = Rep_compact_basis b") |
|
150 |
apply clarsimp |
|
151 |
apply (rule imageI) |
|
152 |
apply (rule vimageI2) |
|
153 |
apply (simp add: Rep_PDUnit) |
|
154 |
apply (rule image_eqI) |
|
155 |
apply (erule sym) |
|
156 |
apply simp |
|
157 |
apply (rule exI) |
|
158 |
apply (rule Abs_compact_basis_inverse [symmetric]) |
|
159 |
apply (simp add: d.compact) |
|
160 |
apply (simp only: lower_plus_principal [symmetric] lower_map_plus) |
|
161 |
apply clarsimp |
|
162 |
apply (rule imageI) |
|
163 |
apply (rule vimageI2) |
|
164 |
apply (simp add: Rep_PDPlus) |
|
165 |
done |
|
166 |
moreover have "{xs::'a lower_pd. compact xs} = range lower_principal" |
|
167 |
by (auto dest: lower_pd.compact_imp_principal) |
|
168 |
ultimately have "finite ((\<lambda>xs. lower_map\<cdot>d\<cdot>xs) ` {xs::'a lower_pd. compact xs})" |
|
169 |
by simp |
|
170 |
hence "finite (range (\<lambda>xs. lower_map\<cdot>d\<cdot>xs))" |
|
171 |
by (rule finite_compact_range_imp_finite_range) |
|
172 |
thus "finite {xs. lower_map\<cdot>d\<cdot>xs = xs}" |
|
173 |
by (rule finite_range_imp_finite_fixes) |
|
174 |
qed |
|
175 |
||
176 |
lemma finite_deflation_convex_map: |
|
177 |
assumes "finite_deflation d" shows "finite_deflation (convex_map\<cdot>d)" |
|
178 |
proof (intro finite_deflation.intro finite_deflation_axioms.intro) |
|
179 |
interpret d: finite_deflation d by fact |
|
180 |
have "deflation d" by fact |
|
181 |
thus "deflation (convex_map\<cdot>d)" by (rule deflation_convex_map) |
|
182 |
have "finite (range (\<lambda>x. d\<cdot>x))" by (rule d.finite_range) |
|
183 |
hence "finite (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))" |
|
184 |
by (rule finite_vimageI, simp add: inj_on_def Rep_compact_basis_inject) |
|
185 |
hence "finite (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x)))" by simp |
|
186 |
hence "finite (Rep_pd_basis -` (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))))" |
|
187 |
by (rule finite_vimageI, simp add: inj_on_def Rep_pd_basis_inject) |
|
188 |
hence "finite (convex_principal ` Rep_pd_basis -` (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))))" by simp |
|
189 |
hence "finite ((\<lambda>xs. convex_map\<cdot>d\<cdot>xs) ` range convex_principal)" |
|
190 |
apply (rule finite_subset [COMP swap_prems_rl]) |
|
191 |
apply (clarsimp, rename_tac t) |
|
192 |
apply (induct_tac t rule: pd_basis_induct) |
|
193 |
apply (simp only: convex_unit_Rep_compact_basis [symmetric] convex_map_unit) |
|
194 |
apply (subgoal_tac "\<exists>b. d\<cdot>(Rep_compact_basis a) = Rep_compact_basis b") |
|
195 |
apply clarsimp |
|
196 |
apply (rule imageI) |
|
197 |
apply (rule vimageI2) |
|
198 |
apply (simp add: Rep_PDUnit) |
|
199 |
apply (rule image_eqI) |
|
200 |
apply (erule sym) |
|
201 |
apply simp |
|
202 |
apply (rule exI) |
|
203 |
apply (rule Abs_compact_basis_inverse [symmetric]) |
|
204 |
apply (simp add: d.compact) |
|
205 |
apply (simp only: convex_plus_principal [symmetric] convex_map_plus) |
|
206 |
apply clarsimp |
|
207 |
apply (rule imageI) |
|
208 |
apply (rule vimageI2) |
|
209 |
apply (simp add: Rep_PDPlus) |
|
210 |
done |
|
211 |
moreover have "{xs::'a convex_pd. compact xs} = range convex_principal" |
|
212 |
by (auto dest: convex_pd.compact_imp_principal) |
|
213 |
ultimately have "finite ((\<lambda>xs. convex_map\<cdot>d\<cdot>xs) ` {xs::'a convex_pd. compact xs})" |
|
214 |
by simp |
|
215 |
hence "finite (range (\<lambda>xs. convex_map\<cdot>d\<cdot>xs))" |
|
216 |
by (rule finite_compact_range_imp_finite_range) |
|
217 |
thus "finite {xs. convex_map\<cdot>d\<cdot>xs = xs}" |
|
218 |
by (rule finite_range_imp_finite_fixes) |
|
219 |
qed |
|
220 |
||
221 |
subsection {* Deflation combinators *} |
|
222 |
||
223 |
definition "upper_defl = TypeRep_fun1 upper_map" |
|
224 |
definition "lower_defl = TypeRep_fun1 lower_map" |
|
225 |
definition "convex_defl = TypeRep_fun1 convex_map" |
|
226 |
||
227 |
lemma cast_upper_defl: |
|
228 |
"cast\<cdot>(upper_defl\<cdot>A) = udom_emb oo upper_map\<cdot>(cast\<cdot>A) oo udom_prj" |
|
229 |
unfolding upper_defl_def |
|
230 |
apply (rule cast_TypeRep_fun1) |
|
231 |
apply (erule finite_deflation_upper_map) |
|
232 |
done |
|
233 |
||
234 |
lemma cast_lower_defl: |
|
235 |
"cast\<cdot>(lower_defl\<cdot>A) = udom_emb oo lower_map\<cdot>(cast\<cdot>A) oo udom_prj" |
|
236 |
unfolding lower_defl_def |
|
237 |
apply (rule cast_TypeRep_fun1) |
|
238 |
apply (erule finite_deflation_lower_map) |
|
239 |
done |
|
240 |
||
241 |
lemma cast_convex_defl: |
|
242 |
"cast\<cdot>(convex_defl\<cdot>A) = udom_emb oo convex_map\<cdot>(cast\<cdot>A) oo udom_prj" |
|
243 |
unfolding convex_defl_def |
|
244 |
apply (rule cast_TypeRep_fun1) |
|
245 |
apply (erule finite_deflation_convex_map) |
|
246 |
done |
|
247 |
||
248 |
lemma REP_upper: "REP('a upper_pd) = upper_defl\<cdot>REP('a)" |
|
249 |
apply (rule cast_eq_imp_eq, rule ext_cfun) |
|
250 |
apply (simp add: cast_REP cast_upper_defl) |
|
251 |
apply (simp add: prj_upper_pd_def) |
|
252 |
apply (simp add: emb_upper_pd_def) |
|
253 |
apply (simp add: upper_map_map cfcomp1) |
|
254 |
done |
|
255 |
||
256 |
lemma REP_lower: "REP('a lower_pd) = lower_defl\<cdot>REP('a)" |
|
257 |
apply (rule cast_eq_imp_eq, rule ext_cfun) |
|
258 |
apply (simp add: cast_REP cast_lower_defl) |
|
259 |
apply (simp add: prj_lower_pd_def) |
|
260 |
apply (simp add: emb_lower_pd_def) |
|
261 |
apply (simp add: lower_map_map cfcomp1) |
|
262 |
done |
|
263 |
||
264 |
lemma REP_convex: "REP('a convex_pd) = convex_defl\<cdot>REP('a)" |
|
265 |
apply (rule cast_eq_imp_eq, rule ext_cfun) |
|
266 |
apply (simp add: cast_REP cast_convex_defl) |
|
267 |
apply (simp add: prj_convex_pd_def) |
|
268 |
apply (simp add: emb_convex_pd_def) |
|
269 |
apply (simp add: convex_map_map cfcomp1) |
|
270 |
done |
|
271 |
||
272 |
lemma isodefl_upper: |
|
273 |
"isodefl d t \<Longrightarrow> isodefl (upper_map\<cdot>d) (upper_defl\<cdot>t)" |
|
274 |
apply (rule isodeflI) |
|
275 |
apply (simp add: cast_upper_defl cast_isodefl) |
|
276 |
apply (simp add: emb_upper_pd_def prj_upper_pd_def) |
|
277 |
apply (simp add: upper_map_map) |
|
278 |
done |
|
279 |
||
280 |
lemma isodefl_lower: |
|
281 |
"isodefl d t \<Longrightarrow> isodefl (lower_map\<cdot>d) (lower_defl\<cdot>t)" |
|
282 |
apply (rule isodeflI) |
|
283 |
apply (simp add: cast_lower_defl cast_isodefl) |
|
284 |
apply (simp add: emb_lower_pd_def prj_lower_pd_def) |
|
285 |
apply (simp add: lower_map_map) |
|
286 |
done |
|
287 |
||
288 |
lemma isodefl_convex: |
|
289 |
"isodefl d t \<Longrightarrow> isodefl (convex_map\<cdot>d) (convex_defl\<cdot>t)" |
|
290 |
apply (rule isodeflI) |
|
291 |
apply (simp add: cast_convex_defl cast_isodefl) |
|
292 |
apply (simp add: emb_convex_pd_def prj_convex_pd_def) |
|
293 |
apply (simp add: convex_map_map) |
|
294 |
done |
|
295 |
||
296 |
subsection {* Domain package setup for powerdomains *} |
|
297 |
||
298 |
setup {* |
|
299 |
fold Domain_Isomorphism.add_type_constructor |
|
300 |
[(@{type_name "upper_pd"}, @{term upper_defl}, @{const_name upper_map}, |
|
35479
dffffe36344a
store deflation thms for map functions in theory data
huffman
parents:
35473
diff
changeset
|
301 |
@{thm REP_upper}, @{thm isodefl_upper}, @{thm upper_map_ID}, |
dffffe36344a
store deflation thms for map functions in theory data
huffman
parents:
35473
diff
changeset
|
302 |
@{thm deflation_upper_map}), |
35473 | 303 |
|
304 |
(@{type_name "lower_pd"}, @{term lower_defl}, @{const_name lower_map}, |
|
35479
dffffe36344a
store deflation thms for map functions in theory data
huffman
parents:
35473
diff
changeset
|
305 |
@{thm REP_lower}, @{thm isodefl_lower}, @{thm lower_map_ID}, |
dffffe36344a
store deflation thms for map functions in theory data
huffman
parents:
35473
diff
changeset
|
306 |
@{thm deflation_lower_map}), |
35473 | 307 |
|
308 |
(@{type_name "convex_pd"}, @{term convex_defl}, @{const_name convex_map}, |
|
35479
dffffe36344a
store deflation thms for map functions in theory data
huffman
parents:
35473
diff
changeset
|
309 |
@{thm REP_convex}, @{thm isodefl_convex}, @{thm convex_map_ID}, |
dffffe36344a
store deflation thms for map functions in theory data
huffman
parents:
35473
diff
changeset
|
310 |
@{thm deflation_convex_map})] |
35473 | 311 |
*} |
312 |
||
313 |
end |