src/HOLCF/Sprod2.ML
author wenzelm
Sat, 03 Jul 1999 00:23:17 +0200
changeset 6891 7bb02d03035d
parent 4721 c8a8482a8124
child 7499 23e090051cb8
permissions -rw-r--r--
tuned print_state;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
     1
(*  Title:      HOLCF/Sprod2.ML
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
     2
    ID:         $Id$
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1168
diff changeset
     3
    Author:     Franz Regensburger
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
     4
    Copyright   1993 Technische Universitaet Muenchen
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
     5
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
     6
Lemmas for Sprod2.thy
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
     7
*)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
     8
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
     9
open Sprod2;
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    10
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    11
(* for compatibility with old HOLCF-Version *)
3842
b55686a7b22c fixed dots;
wenzelm
parents: 3323
diff changeset
    12
qed_goal "inst_sprod_po" thy "(op <<)=(%x y. Isfst x<<Isfst y&Issnd x<<Issnd y)"
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    13
 (fn prems => 
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1168
diff changeset
    14
        [
3323
194ae2e0c193 eliminated the constant less by the introduction of the axclass sq_ord
slotosch
parents: 2640
diff changeset
    15
	(fold_goals_tac [less_sprod_def]),
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    16
	(rtac refl 1)
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1168
diff changeset
    17
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    18
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    19
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    20
(* type sprod is pointed                                                    *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    21
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    22
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    23
qed_goal "minimal_sprod" thy "Ispair UU UU << p"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    24
(fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1168
diff changeset
    25
        [
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    26
        (simp_tac(Sprod0_ss addsimps[inst_sprod_po,minimal])1)
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    27
        ]);
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    28
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    29
bind_thm ("UU_sprod_def",minimal_sprod RS minimal2UU RS sym);
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    30
3842
b55686a7b22c fixed dots;
wenzelm
parents: 3323
diff changeset
    31
qed_goal "least_sprod" thy "? x::'a**'b.!y. x<<y"
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    32
(fn prems =>
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    33
        [
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    34
        (res_inst_tac [("x","Ispair UU UU")] exI 1),
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    35
        (rtac (minimal_sprod RS allI) 1)
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1168
diff changeset
    36
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    37
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    38
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    39
(* Ispair is monotone in both arguments                                     *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    40
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    41
892
d0dc8d057929 added qed, qed_goal[w]
clasohm
parents: 243
diff changeset
    42
qed_goalw "monofun_Ispair1" Sprod2.thy [monofun] "monofun(Ispair)"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    43
(fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1168
diff changeset
    44
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1168
diff changeset
    45
        (strip_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1168
diff changeset
    46
        (rtac (less_fun RS iffD2) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1168
diff changeset
    47
        (strip_tac 1),
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    48
        (res_inst_tac [("Q","xa=UU")] (excluded_middle RS disjE) 1),
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    49
        (res_inst_tac [("Q","x=UU")] (excluded_middle RS disjE) 1),
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    50
        (forward_tac [notUU_I] 1),
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1168
diff changeset
    51
        (atac 1),
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    52
        (REPEAT(asm_simp_tac(Sprod0_ss 
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    53
                addsimps[inst_sprod_po,refl_less,minimal]) 1))
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1168
diff changeset
    54
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    55
892
d0dc8d057929 added qed, qed_goal[w]
clasohm
parents: 243
diff changeset
    56
qed_goalw "monofun_Ispair2" Sprod2.thy [monofun] "monofun(Ispair(x))"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    57
(fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1168
diff changeset
    58
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1168
diff changeset
    59
        (strip_tac 1),
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    60
        (res_inst_tac [("Q","x=UU")] (excluded_middle RS disjE) 1),
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    61
        (res_inst_tac [("Q","xa=UU")] (excluded_middle RS disjE) 1),
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    62
        (forward_tac [notUU_I] 1),
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1168
diff changeset
    63
        (atac 1),
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    64
        (REPEAT(asm_simp_tac(Sprod0_ss 
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    65
                addsimps[inst_sprod_po,refl_less,minimal]) 1))
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1168
diff changeset
    66
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    67
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    68
4031
42cbf6256d60 fixed spaces in qed;
wenzelm
parents: 3842
diff changeset
    69
qed_goal "monofun_Ispair" Sprod2.thy 
1168
74be52691d62 The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents: 892
diff changeset
    70
 "[|x1<<x2; y1<<y2|] ==> Ispair x1 y1 << Ispair x2 y2"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    71
(fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1168
diff changeset
    72
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1168
diff changeset
    73
        (cut_facts_tac prems 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1168
diff changeset
    74
        (rtac trans_less 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1168
diff changeset
    75
        (rtac (monofun_Ispair1 RS monofunE RS spec RS spec RS mp RS 
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1168
diff changeset
    76
        (less_fun RS iffD1 RS spec)) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1168
diff changeset
    77
        (rtac (monofun_Ispair2 RS monofunE RS spec RS spec RS mp) 2),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1168
diff changeset
    78
        (atac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1168
diff changeset
    79
        (atac 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1168
diff changeset
    80
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    81
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    82
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    83
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    84
(* Isfst and Issnd are monotone                                             *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    85
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    86
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    87
qed_goalw "monofun_Isfst" Sprod2.thy [monofun] "monofun(Isfst)"
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    88
(fn prems => [(simp_tac (HOL_ss addsimps [inst_sprod_po]) 1)]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    89
892
d0dc8d057929 added qed, qed_goal[w]
clasohm
parents: 243
diff changeset
    90
qed_goalw "monofun_Issnd" Sprod2.thy [monofun] "monofun(Issnd)"
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    91
(fn prems => [(simp_tac (HOL_ss addsimps [inst_sprod_po]) 1)]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    92
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    93
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    94
(* the type 'a ** 'b is a cpo                                               *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    95
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    96
892
d0dc8d057929 added qed, qed_goal[w]
clasohm
parents: 243
diff changeset
    97
qed_goal "lub_sprod" Sprod2.thy 
4721
c8a8482a8124 renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents: 4031
diff changeset
    98
"[|chain(S)|] ==> range(S) <<| \
3842
b55686a7b22c fixed dots;
wenzelm
parents: 3323
diff changeset
    99
\ Ispair (lub(range(%i. Isfst(S i)))) (lub(range(%i. Issnd(S i))))"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   100
(fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1168
diff changeset
   101
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1168
diff changeset
   102
        (cut_facts_tac prems 1),
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
   103
        (rtac (conjI RS is_lubI) 1),
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
   104
        (rtac (allI RS ub_rangeI) 1),
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1168
diff changeset
   105
        (res_inst_tac [("t","S(i)")] (surjective_pairing_Sprod RS ssubst) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1168
diff changeset
   106
        (rtac monofun_Ispair 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1168
diff changeset
   107
        (rtac is_ub_thelub 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1168
diff changeset
   108
        (etac (monofun_Isfst RS ch2ch_monofun) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1168
diff changeset
   109
        (rtac is_ub_thelub 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1168
diff changeset
   110
        (etac (monofun_Issnd RS ch2ch_monofun) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1168
diff changeset
   111
        (strip_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1168
diff changeset
   112
        (res_inst_tac [("t","u")] (surjective_pairing_Sprod RS ssubst) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1168
diff changeset
   113
        (rtac monofun_Ispair 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1168
diff changeset
   114
        (rtac is_lub_thelub 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1168
diff changeset
   115
        (etac (monofun_Isfst RS ch2ch_monofun) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1168
diff changeset
   116
        (etac (monofun_Isfst RS ub2ub_monofun) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1168
diff changeset
   117
        (rtac is_lub_thelub 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1168
diff changeset
   118
        (etac (monofun_Issnd RS ch2ch_monofun) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1168
diff changeset
   119
        (etac (monofun_Issnd RS ub2ub_monofun) 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1168
diff changeset
   120
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   121
1779
1155c06fa956 introduced forgotten bind_thm calls
oheimb
parents: 1461
diff changeset
   122
bind_thm ("thelub_sprod", lub_sprod RS thelubI);
1168
74be52691d62 The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents: 892
diff changeset
   123
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   124
892
d0dc8d057929 added qed, qed_goal[w]
clasohm
parents: 243
diff changeset
   125
qed_goal "cpo_sprod" Sprod2.thy 
4721
c8a8482a8124 renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents: 4031
diff changeset
   126
        "chain(S::nat=>'a**'b)==>? x. range(S)<<| x"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   127
(fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1168
diff changeset
   128
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1168
diff changeset
   129
        (cut_facts_tac prems 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1168
diff changeset
   130
        (rtac exI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1168
diff changeset
   131
        (etac lub_sprod 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1168
diff changeset
   132
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   133
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   134
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   135
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   136
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   137
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   138
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   139
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   140