author | huffman |
Tue, 12 Jun 2007 23:14:29 +0200 | |
changeset 23347 | 7bb5dc641158 |
parent 23282 | dfc459989d24 |
child 23431 | 25ca91279a9b |
permissions | -rw-r--r-- |
923 | 1 |
(* Title: HOL/Nat.thy |
2 |
ID: $Id$ |
|
21243 | 3 |
Author: Tobias Nipkow and Lawrence C Paulson and Markus Wenzel |
923 | 4 |
|
9436
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
wenzelm
parents:
7702
diff
changeset
|
5 |
Type "nat" is a linear order, and a datatype; arithmetic operators + - |
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
wenzelm
parents:
7702
diff
changeset
|
6 |
and * (for div, mod and dvd, see theory Divides). |
923 | 7 |
*) |
8 |
||
13449 | 9 |
header {* Natural numbers *} |
10 |
||
15131 | 11 |
theory Nat |
15140 | 12 |
imports Wellfounded_Recursion Ring_and_Field |
23263 | 13 |
uses |
14 |
"~~/src/Tools/rat.ML" |
|
15 |
"~~/src/Provers/Arith/fast_lin_arith.ML" |
|
16 |
"~~/src/Provers/Arith/cancel_sums.ML" |
|
17 |
("arith_data.ML") |
|
15131 | 18 |
begin |
13449 | 19 |
|
20 |
subsection {* Type @{text ind} *} |
|
21 |
||
22 |
typedecl ind |
|
23 |
||
19573 | 24 |
axiomatization |
25 |
Zero_Rep :: ind and |
|
26 |
Suc_Rep :: "ind => ind" |
|
27 |
where |
|
13449 | 28 |
-- {* the axiom of infinity in 2 parts *} |
19573 | 29 |
inj_Suc_Rep: "inj Suc_Rep" and |
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
30 |
Suc_Rep_not_Zero_Rep: "Suc_Rep x \<noteq> Zero_Rep" |
19573 | 31 |
|
13449 | 32 |
|
33 |
subsection {* Type nat *} |
|
34 |
||
35 |
text {* Type definition *} |
|
36 |
||
22262 | 37 |
inductive2 Nat :: "ind \<Rightarrow> bool" |
38 |
where |
|
39 |
Zero_RepI: "Nat Zero_Rep" |
|
40 |
| Suc_RepI: "Nat i ==> Nat (Suc_Rep i)" |
|
13449 | 41 |
|
42 |
global |
|
43 |
||
44 |
typedef (open Nat) |
|
22262 | 45 |
nat = "Collect Nat" |
21243 | 46 |
proof |
22262 | 47 |
from Nat.Zero_RepI |
48 |
show "Zero_Rep : Collect Nat" .. |
|
21243 | 49 |
qed |
13449 | 50 |
|
51 |
text {* Abstract constants and syntax *} |
|
52 |
||
53 |
consts |
|
54 |
Suc :: "nat => nat" |
|
55 |
||
56 |
local |
|
57 |
||
58 |
defs |
|
18648 | 59 |
Suc_def: "Suc == (%n. Abs_Nat (Suc_Rep (Rep_Nat n)))" |
22718 | 60 |
|
61 |
definition |
|
62 |
pred_nat :: "(nat * nat) set" where |
|
63 |
"pred_nat = {(m, n). n = Suc m}" |
|
13449 | 64 |
|
21456 | 65 |
instance nat :: "{ord, zero, one}" |
66 |
Zero_nat_def: "0 == Abs_Nat Zero_Rep" |
|
67 |
One_nat_def [simp]: "1 == Suc 0" |
|
22262 | 68 |
less_def: "m < n == (m, n) : pred_nat^+" |
22744
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
haftmann
parents:
22718
diff
changeset
|
69 |
le_def: "m \<le> (n::nat) == ~ (n < m)" .. |
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
haftmann
parents:
22718
diff
changeset
|
70 |
|
22845 | 71 |
lemmas [code func del] = less_def le_def |
13449 | 72 |
|
73 |
text {* Induction *} |
|
923 | 74 |
|
22718 | 75 |
lemma Rep_Nat': "Nat (Rep_Nat x)" |
76 |
by (rule Rep_Nat [simplified mem_Collect_eq]) |
|
77 |
||
78 |
lemma Abs_Nat_inverse': "Nat y \<Longrightarrow> Rep_Nat (Abs_Nat y) = y" |
|
79 |
by (rule Abs_Nat_inverse [simplified mem_Collect_eq]) |
|
22262 | 80 |
|
13449 | 81 |
theorem nat_induct: "P 0 ==> (!!n. P n ==> P (Suc n)) ==> P n" |
82 |
apply (unfold Zero_nat_def Suc_def) |
|
83 |
apply (rule Rep_Nat_inverse [THEN subst]) -- {* types force good instantiation *} |
|
22262 | 84 |
apply (erule Rep_Nat' [THEN Nat.induct]) |
85 |
apply (iprover elim: Abs_Nat_inverse' [THEN subst]) |
|
13449 | 86 |
done |
87 |
||
88 |
text {* Distinctness of constructors *} |
|
89 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
90 |
lemma Suc_not_Zero [iff]: "Suc m \<noteq> 0" |
22262 | 91 |
by (simp add: Zero_nat_def Suc_def Abs_Nat_inject Rep_Nat' Suc_RepI Zero_RepI |
22718 | 92 |
Suc_Rep_not_Zero_Rep) |
13449 | 93 |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
94 |
lemma Zero_not_Suc [iff]: "0 \<noteq> Suc m" |
13449 | 95 |
by (rule not_sym, rule Suc_not_Zero not_sym) |
96 |
||
97 |
lemma Suc_neq_Zero: "Suc m = 0 ==> R" |
|
98 |
by (rule notE, rule Suc_not_Zero) |
|
99 |
||
100 |
lemma Zero_neq_Suc: "0 = Suc m ==> R" |
|
101 |
by (rule Suc_neq_Zero, erule sym) |
|
102 |
||
103 |
text {* Injectiveness of @{term Suc} *} |
|
104 |
||
16733
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
nipkow
parents:
16635
diff
changeset
|
105 |
lemma inj_Suc[simp]: "inj_on Suc N" |
22718 | 106 |
by (simp add: Suc_def inj_on_def Abs_Nat_inject Rep_Nat' Suc_RepI |
107 |
inj_Suc_Rep [THEN inj_eq] Rep_Nat_inject) |
|
13449 | 108 |
|
109 |
lemma Suc_inject: "Suc x = Suc y ==> x = y" |
|
110 |
by (rule inj_Suc [THEN injD]) |
|
111 |
||
112 |
lemma Suc_Suc_eq [iff]: "(Suc m = Suc n) = (m = n)" |
|
15413 | 113 |
by (rule inj_Suc [THEN inj_eq]) |
13449 | 114 |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
115 |
lemma nat_not_singleton: "(\<forall>x. x = (0::nat)) = False" |
13449 | 116 |
by auto |
117 |
||
21411 | 118 |
text {* size of a datatype value *} |
21243 | 119 |
|
22473 | 120 |
class size = type + |
21411 | 121 |
fixes size :: "'a \<Rightarrow> nat" |
21243 | 122 |
|
13449 | 123 |
text {* @{typ nat} is a datatype *} |
9436
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
wenzelm
parents:
7702
diff
changeset
|
124 |
|
5188
633ec5f6c155
Declaration of type 'nat' as a datatype (this allows usage of
berghofe
parents:
4640
diff
changeset
|
125 |
rep_datatype nat |
13449 | 126 |
distinct Suc_not_Zero Zero_not_Suc |
127 |
inject Suc_Suc_eq |
|
21411 | 128 |
induction nat_induct |
129 |
||
130 |
declare nat.induct [case_names 0 Suc, induct type: nat] |
|
131 |
declare nat.exhaust [case_names 0 Suc, cases type: nat] |
|
13449 | 132 |
|
21672 | 133 |
lemmas nat_rec_0 = nat.recs(1) |
134 |
and nat_rec_Suc = nat.recs(2) |
|
135 |
||
136 |
lemmas nat_case_0 = nat.cases(1) |
|
137 |
and nat_case_Suc = nat.cases(2) |
|
138 |
||
139 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
140 |
lemma n_not_Suc_n: "n \<noteq> Suc n" |
13449 | 141 |
by (induct n) simp_all |
142 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
143 |
lemma Suc_n_not_n: "Suc t \<noteq> t" |
13449 | 144 |
by (rule not_sym, rule n_not_Suc_n) |
145 |
||
146 |
text {* A special form of induction for reasoning |
|
147 |
about @{term "m < n"} and @{term "m - n"} *} |
|
148 |
||
149 |
theorem diff_induct: "(!!x. P x 0) ==> (!!y. P 0 (Suc y)) ==> |
|
150 |
(!!x y. P x y ==> P (Suc x) (Suc y)) ==> P m n" |
|
14208 | 151 |
apply (rule_tac x = m in spec) |
15251 | 152 |
apply (induct n) |
13449 | 153 |
prefer 2 |
154 |
apply (rule allI) |
|
17589 | 155 |
apply (induct_tac x, iprover+) |
13449 | 156 |
done |
157 |
||
158 |
subsection {* Basic properties of "less than" *} |
|
159 |
||
160 |
lemma wf_pred_nat: "wf pred_nat" |
|
14208 | 161 |
apply (unfold wf_def pred_nat_def, clarify) |
162 |
apply (induct_tac x, blast+) |
|
13449 | 163 |
done |
164 |
||
165 |
lemma wf_less: "wf {(x, y::nat). x < y}" |
|
166 |
apply (unfold less_def) |
|
14208 | 167 |
apply (rule wf_pred_nat [THEN wf_trancl, THEN wf_subset], blast) |
13449 | 168 |
done |
169 |
||
170 |
lemma less_eq: "((m, n) : pred_nat^+) = (m < n)" |
|
171 |
apply (unfold less_def) |
|
172 |
apply (rule refl) |
|
173 |
done |
|
174 |
||
175 |
subsubsection {* Introduction properties *} |
|
176 |
||
177 |
lemma less_trans: "i < j ==> j < k ==> i < (k::nat)" |
|
178 |
apply (unfold less_def) |
|
14208 | 179 |
apply (rule trans_trancl [THEN transD], assumption+) |
13449 | 180 |
done |
181 |
||
182 |
lemma lessI [iff]: "n < Suc n" |
|
183 |
apply (unfold less_def pred_nat_def) |
|
184 |
apply (simp add: r_into_trancl) |
|
185 |
done |
|
186 |
||
187 |
lemma less_SucI: "i < j ==> i < Suc j" |
|
14208 | 188 |
apply (rule less_trans, assumption) |
13449 | 189 |
apply (rule lessI) |
190 |
done |
|
191 |
||
192 |
lemma zero_less_Suc [iff]: "0 < Suc n" |
|
193 |
apply (induct n) |
|
194 |
apply (rule lessI) |
|
195 |
apply (erule less_trans) |
|
196 |
apply (rule lessI) |
|
197 |
done |
|
198 |
||
199 |
subsubsection {* Elimination properties *} |
|
200 |
||
201 |
lemma less_not_sym: "n < m ==> ~ m < (n::nat)" |
|
202 |
apply (unfold less_def) |
|
203 |
apply (blast intro: wf_pred_nat wf_trancl [THEN wf_asym]) |
|
204 |
done |
|
205 |
||
206 |
lemma less_asym: |
|
207 |
assumes h1: "(n::nat) < m" and h2: "~ P ==> m < n" shows P |
|
208 |
apply (rule contrapos_np) |
|
209 |
apply (rule less_not_sym) |
|
210 |
apply (rule h1) |
|
211 |
apply (erule h2) |
|
212 |
done |
|
213 |
||
214 |
lemma less_not_refl: "~ n < (n::nat)" |
|
215 |
apply (unfold less_def) |
|
216 |
apply (rule wf_pred_nat [THEN wf_trancl, THEN wf_not_refl]) |
|
217 |
done |
|
218 |
||
219 |
lemma less_irrefl [elim!]: "(n::nat) < n ==> R" |
|
220 |
by (rule notE, rule less_not_refl) |
|
221 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
222 |
lemma less_not_refl2: "n < m ==> m \<noteq> (n::nat)" by blast |
13449 | 223 |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
224 |
lemma less_not_refl3: "(s::nat) < t ==> s \<noteq> t" |
13449 | 225 |
by (rule not_sym, rule less_not_refl2) |
226 |
||
227 |
lemma lessE: |
|
228 |
assumes major: "i < k" |
|
229 |
and p1: "k = Suc i ==> P" and p2: "!!j. i < j ==> k = Suc j ==> P" |
|
230 |
shows P |
|
14208 | 231 |
apply (rule major [unfolded less_def pred_nat_def, THEN tranclE], simp_all) |
13449 | 232 |
apply (erule p1) |
233 |
apply (rule p2) |
|
14208 | 234 |
apply (simp add: less_def pred_nat_def, assumption) |
13449 | 235 |
done |
236 |
||
237 |
lemma not_less0 [iff]: "~ n < (0::nat)" |
|
238 |
by (blast elim: lessE) |
|
239 |
||
240 |
lemma less_zeroE: "(n::nat) < 0 ==> R" |
|
241 |
by (rule notE, rule not_less0) |
|
242 |
||
243 |
lemma less_SucE: assumes major: "m < Suc n" |
|
244 |
and less: "m < n ==> P" and eq: "m = n ==> P" shows P |
|
245 |
apply (rule major [THEN lessE]) |
|
14208 | 246 |
apply (rule eq, blast) |
247 |
apply (rule less, blast) |
|
13449 | 248 |
done |
249 |
||
250 |
lemma less_Suc_eq: "(m < Suc n) = (m < n | m = n)" |
|
251 |
by (blast elim!: less_SucE intro: less_trans) |
|
252 |
||
253 |
lemma less_one [iff]: "(n < (1::nat)) = (n = 0)" |
|
254 |
by (simp add: less_Suc_eq) |
|
255 |
||
256 |
lemma less_Suc0 [iff]: "(n < Suc 0) = (n = 0)" |
|
257 |
by (simp add: less_Suc_eq) |
|
258 |
||
259 |
lemma Suc_mono: "m < n ==> Suc m < Suc n" |
|
260 |
by (induct n) (fast elim: less_trans lessE)+ |
|
261 |
||
262 |
text {* "Less than" is a linear ordering *} |
|
263 |
lemma less_linear: "m < n | m = n | n < (m::nat)" |
|
15251 | 264 |
apply (induct m) |
265 |
apply (induct n) |
|
13449 | 266 |
apply (rule refl [THEN disjI1, THEN disjI2]) |
267 |
apply (rule zero_less_Suc [THEN disjI1]) |
|
268 |
apply (blast intro: Suc_mono less_SucI elim: lessE) |
|
269 |
done |
|
270 |
||
14302 | 271 |
text {* "Less than" is antisymmetric, sort of *} |
272 |
lemma less_antisym: "\<lbrakk> \<not> n < m; n < Suc m \<rbrakk> \<Longrightarrow> m = n" |
|
22718 | 273 |
apply(simp only:less_Suc_eq) |
274 |
apply blast |
|
275 |
done |
|
14302 | 276 |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
277 |
lemma nat_neq_iff: "((m::nat) \<noteq> n) = (m < n | n < m)" |
13449 | 278 |
using less_linear by blast |
279 |
||
280 |
lemma nat_less_cases: assumes major: "(m::nat) < n ==> P n m" |
|
281 |
and eqCase: "m = n ==> P n m" and lessCase: "n<m ==> P n m" |
|
282 |
shows "P n m" |
|
283 |
apply (rule less_linear [THEN disjE]) |
|
284 |
apply (erule_tac [2] disjE) |
|
285 |
apply (erule lessCase) |
|
286 |
apply (erule sym [THEN eqCase]) |
|
287 |
apply (erule major) |
|
288 |
done |
|
289 |
||
290 |
||
291 |
subsubsection {* Inductive (?) properties *} |
|
292 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
293 |
lemma Suc_lessI: "m < n ==> Suc m \<noteq> n ==> Suc m < n" |
13449 | 294 |
apply (simp add: nat_neq_iff) |
295 |
apply (blast elim!: less_irrefl less_SucE elim: less_asym) |
|
296 |
done |
|
297 |
||
298 |
lemma Suc_lessD: "Suc m < n ==> m < n" |
|
299 |
apply (induct n) |
|
300 |
apply (fast intro!: lessI [THEN less_SucI] elim: less_trans lessE)+ |
|
301 |
done |
|
302 |
||
303 |
lemma Suc_lessE: assumes major: "Suc i < k" |
|
304 |
and minor: "!!j. i < j ==> k = Suc j ==> P" shows P |
|
305 |
apply (rule major [THEN lessE]) |
|
306 |
apply (erule lessI [THEN minor]) |
|
14208 | 307 |
apply (erule Suc_lessD [THEN minor], assumption) |
13449 | 308 |
done |
309 |
||
310 |
lemma Suc_less_SucD: "Suc m < Suc n ==> m < n" |
|
311 |
by (blast elim: lessE dest: Suc_lessD) |
|
4104 | 312 |
|
16635 | 313 |
lemma Suc_less_eq [iff, code]: "(Suc m < Suc n) = (m < n)" |
13449 | 314 |
apply (rule iffI) |
315 |
apply (erule Suc_less_SucD) |
|
316 |
apply (erule Suc_mono) |
|
317 |
done |
|
318 |
||
319 |
lemma less_trans_Suc: |
|
320 |
assumes le: "i < j" shows "j < k ==> Suc i < k" |
|
14208 | 321 |
apply (induct k, simp_all) |
13449 | 322 |
apply (insert le) |
323 |
apply (simp add: less_Suc_eq) |
|
324 |
apply (blast dest: Suc_lessD) |
|
325 |
done |
|
326 |
||
16635 | 327 |
lemma [code]: "((n::nat) < 0) = False" by simp |
328 |
lemma [code]: "(0 < Suc n) = True" by simp |
|
329 |
||
13449 | 330 |
text {* Can be used with @{text less_Suc_eq} to get @{term "n = m | n < m"} *} |
331 |
lemma not_less_eq: "(~ m < n) = (n < Suc m)" |
|
22718 | 332 |
by (induct m n rule: diff_induct) simp_all |
13449 | 333 |
|
334 |
text {* Complete induction, aka course-of-values induction *} |
|
335 |
lemma nat_less_induct: |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
336 |
assumes prem: "!!n. \<forall>m::nat. m < n --> P m ==> P n" shows "P n" |
22718 | 337 |
apply (induct n rule: wf_induct [OF wf_pred_nat [THEN wf_trancl]]) |
13449 | 338 |
apply (rule prem) |
14208 | 339 |
apply (unfold less_def, assumption) |
13449 | 340 |
done |
341 |
||
14131 | 342 |
lemmas less_induct = nat_less_induct [rule_format, case_names less] |
343 |
||
21243 | 344 |
|
14131 | 345 |
subsection {* Properties of "less than or equal" *} |
13449 | 346 |
|
347 |
text {* Was @{text le_eq_less_Suc}, but this orientation is more useful *} |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
348 |
lemma less_Suc_eq_le: "(m < Suc n) = (m \<le> n)" |
22718 | 349 |
unfolding le_def by (rule not_less_eq [symmetric]) |
13449 | 350 |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
351 |
lemma le_imp_less_Suc: "m \<le> n ==> m < Suc n" |
13449 | 352 |
by (rule less_Suc_eq_le [THEN iffD2]) |
353 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
354 |
lemma le0 [iff]: "(0::nat) \<le> n" |
22718 | 355 |
unfolding le_def by (rule not_less0) |
13449 | 356 |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
357 |
lemma Suc_n_not_le_n: "~ Suc n \<le> n" |
13449 | 358 |
by (simp add: le_def) |
359 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
360 |
lemma le_0_eq [iff]: "((i::nat) \<le> 0) = (i = 0)" |
13449 | 361 |
by (induct i) (simp_all add: le_def) |
362 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
363 |
lemma le_Suc_eq: "(m \<le> Suc n) = (m \<le> n | m = Suc n)" |
13449 | 364 |
by (simp del: less_Suc_eq_le add: less_Suc_eq_le [symmetric] less_Suc_eq) |
365 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
366 |
lemma le_SucE: "m \<le> Suc n ==> (m \<le> n ==> R) ==> (m = Suc n ==> R) ==> R" |
17589 | 367 |
by (drule le_Suc_eq [THEN iffD1], iprover+) |
13449 | 368 |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
369 |
lemma Suc_leI: "m < n ==> Suc(m) \<le> n" |
13449 | 370 |
apply (simp add: le_def less_Suc_eq) |
371 |
apply (blast elim!: less_irrefl less_asym) |
|
372 |
done -- {* formerly called lessD *} |
|
373 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
374 |
lemma Suc_leD: "Suc(m) \<le> n ==> m \<le> n" |
13449 | 375 |
by (simp add: le_def less_Suc_eq) |
376 |
||
377 |
text {* Stronger version of @{text Suc_leD} *} |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
378 |
lemma Suc_le_lessD: "Suc m \<le> n ==> m < n" |
13449 | 379 |
apply (simp add: le_def less_Suc_eq) |
380 |
using less_linear |
|
381 |
apply blast |
|
382 |
done |
|
383 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
384 |
lemma Suc_le_eq: "(Suc m \<le> n) = (m < n)" |
13449 | 385 |
by (blast intro: Suc_leI Suc_le_lessD) |
386 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
387 |
lemma le_SucI: "m \<le> n ==> m \<le> Suc n" |
13449 | 388 |
by (unfold le_def) (blast dest: Suc_lessD) |
389 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
390 |
lemma less_imp_le: "m < n ==> m \<le> (n::nat)" |
13449 | 391 |
by (unfold le_def) (blast elim: less_asym) |
392 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
393 |
text {* For instance, @{text "(Suc m < Suc n) = (Suc m \<le> n) = (m < n)"} *} |
13449 | 394 |
lemmas le_simps = less_imp_le less_Suc_eq_le Suc_le_eq |
395 |
||
396 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
397 |
text {* Equivalence of @{term "m \<le> n"} and @{term "m < n | m = n"} *} |
13449 | 398 |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
399 |
lemma le_imp_less_or_eq: "m \<le> n ==> m < n | m = (n::nat)" |
22718 | 400 |
unfolding le_def |
13449 | 401 |
using less_linear |
22718 | 402 |
by (blast elim: less_irrefl less_asym) |
13449 | 403 |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
404 |
lemma less_or_eq_imp_le: "m < n | m = n ==> m \<le> (n::nat)" |
22718 | 405 |
unfolding le_def |
13449 | 406 |
using less_linear |
22718 | 407 |
by (blast elim!: less_irrefl elim: less_asym) |
13449 | 408 |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
409 |
lemma le_eq_less_or_eq: "(m \<le> (n::nat)) = (m < n | m=n)" |
17589 | 410 |
by (iprover intro: less_or_eq_imp_le le_imp_less_or_eq) |
13449 | 411 |
|
22718 | 412 |
text {* Useful with @{text blast}. *} |
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
413 |
lemma eq_imp_le: "(m::nat) = n ==> m \<le> n" |
22718 | 414 |
by (rule less_or_eq_imp_le) (rule disjI2) |
13449 | 415 |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
416 |
lemma le_refl: "n \<le> (n::nat)" |
13449 | 417 |
by (simp add: le_eq_less_or_eq) |
418 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
419 |
lemma le_less_trans: "[| i \<le> j; j < k |] ==> i < (k::nat)" |
13449 | 420 |
by (blast dest!: le_imp_less_or_eq intro: less_trans) |
421 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
422 |
lemma less_le_trans: "[| i < j; j \<le> k |] ==> i < (k::nat)" |
13449 | 423 |
by (blast dest!: le_imp_less_or_eq intro: less_trans) |
424 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
425 |
lemma le_trans: "[| i \<le> j; j \<le> k |] ==> i \<le> (k::nat)" |
13449 | 426 |
by (blast dest!: le_imp_less_or_eq intro: less_or_eq_imp_le less_trans) |
427 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
428 |
lemma le_anti_sym: "[| m \<le> n; n \<le> m |] ==> m = (n::nat)" |
13449 | 429 |
by (blast dest!: le_imp_less_or_eq elim!: less_irrefl elim: less_asym) |
430 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
431 |
lemma Suc_le_mono [iff]: "(Suc n \<le> Suc m) = (n \<le> m)" |
13449 | 432 |
by (simp add: le_simps) |
433 |
||
434 |
text {* Axiom @{text order_less_le} of class @{text order}: *} |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
435 |
lemma nat_less_le: "((m::nat) < n) = (m \<le> n & m \<noteq> n)" |
13449 | 436 |
by (simp add: le_def nat_neq_iff) (blast elim!: less_asym) |
437 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
438 |
lemma le_neq_implies_less: "(m::nat) \<le> n ==> m \<noteq> n ==> m < n" |
13449 | 439 |
by (rule iffD2, rule nat_less_le, rule conjI) |
440 |
||
441 |
text {* Axiom @{text linorder_linear} of class @{text linorder}: *} |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
442 |
lemma nat_le_linear: "(m::nat) \<le> n | n \<le> m" |
13449 | 443 |
apply (simp add: le_eq_less_or_eq) |
22718 | 444 |
using less_linear by blast |
13449 | 445 |
|
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
446 |
text {* Type {@typ nat} is a wellfounded linear order *} |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
447 |
|
22318 | 448 |
instance nat :: wellorder |
14691 | 449 |
by intro_classes |
450 |
(assumption | |
|
451 |
rule le_refl le_trans le_anti_sym nat_less_le nat_le_linear wf_less)+ |
|
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
452 |
|
22718 | 453 |
lemmas linorder_neqE_nat = linorder_neqE [where 'a = nat] |
15921 | 454 |
|
13449 | 455 |
lemma not_less_less_Suc_eq: "~ n < m ==> (n < Suc m) = (n = m)" |
456 |
by (blast elim!: less_SucE) |
|
457 |
||
458 |
text {* |
|
459 |
Rewrite @{term "n < Suc m"} to @{term "n = m"} |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
460 |
if @{term "~ n < m"} or @{term "m \<le> n"} hold. |
13449 | 461 |
Not suitable as default simprules because they often lead to looping |
462 |
*} |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
463 |
lemma le_less_Suc_eq: "m \<le> n ==> (n < Suc m) = (n = m)" |
13449 | 464 |
by (rule not_less_less_Suc_eq, rule leD) |
465 |
||
466 |
lemmas not_less_simps = not_less_less_Suc_eq le_less_Suc_eq |
|
467 |
||
468 |
||
469 |
text {* |
|
22718 | 470 |
Re-orientation of the equations @{text "0 = x"} and @{text "1 = x"}. |
471 |
No longer added as simprules (they loop) |
|
13449 | 472 |
but via @{text reorient_simproc} in Bin |
473 |
*} |
|
474 |
||
475 |
text {* Polymorphic, not just for @{typ nat} *} |
|
476 |
lemma zero_reorient: "(0 = x) = (x = 0)" |
|
477 |
by auto |
|
478 |
||
479 |
lemma one_reorient: "(1 = x) = (x = 1)" |
|
480 |
by auto |
|
481 |
||
21243 | 482 |
|
13449 | 483 |
subsection {* Arithmetic operators *} |
1660 | 484 |
|
22473 | 485 |
class power = type + |
21411 | 486 |
fixes power :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixr "\<^loc>^" 80) |
9436
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
wenzelm
parents:
7702
diff
changeset
|
487 |
|
13449 | 488 |
text {* arithmetic operators @{text "+ -"} and @{text "*"} *} |
489 |
||
21456 | 490 |
instance nat :: "{plus, minus, times}" .. |
9436
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
wenzelm
parents:
7702
diff
changeset
|
491 |
|
13449 | 492 |
primrec |
493 |
add_0: "0 + n = n" |
|
494 |
add_Suc: "Suc m + n = Suc (m + n)" |
|
495 |
||
496 |
primrec |
|
497 |
diff_0: "m - 0 = m" |
|
498 |
diff_Suc: "m - Suc n = (case m - n of 0 => 0 | Suc k => k)" |
|
9436
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
wenzelm
parents:
7702
diff
changeset
|
499 |
|
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
wenzelm
parents:
7702
diff
changeset
|
500 |
primrec |
13449 | 501 |
mult_0: "0 * n = 0" |
502 |
mult_Suc: "Suc m * n = n + (m * n)" |
|
503 |
||
22718 | 504 |
text {* These two rules ease the use of primitive recursion. |
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
505 |
NOTE USE OF @{text "=="} *} |
13449 | 506 |
lemma def_nat_rec_0: "(!!n. f n == nat_rec c h n) ==> f 0 = c" |
507 |
by simp |
|
508 |
||
509 |
lemma def_nat_rec_Suc: "(!!n. f n == nat_rec c h n) ==> f (Suc n) = h n (f n)" |
|
510 |
by simp |
|
511 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
512 |
lemma not0_implies_Suc: "n \<noteq> 0 ==> \<exists>m. n = Suc m" |
22718 | 513 |
by (cases n) simp_all |
13449 | 514 |
|
22718 | 515 |
lemma gr_implies_not0: fixes n :: nat shows "m<n ==> n \<noteq> 0" |
516 |
by (cases n) simp_all |
|
13449 | 517 |
|
22718 | 518 |
lemma neq0_conv [iff]: fixes n :: nat shows "(n \<noteq> 0) = (0 < n)" |
519 |
by (cases n) simp_all |
|
13449 | 520 |
|
521 |
text {* This theorem is useful with @{text blast} *} |
|
522 |
lemma gr0I: "((n::nat) = 0 ==> False) ==> 0 < n" |
|
17589 | 523 |
by (rule iffD1, rule neq0_conv, iprover) |
13449 | 524 |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
525 |
lemma gr0_conv_Suc: "(0 < n) = (\<exists>m. n = Suc m)" |
13449 | 526 |
by (fast intro: not0_implies_Suc) |
527 |
||
528 |
lemma not_gr0 [iff]: "!!n::nat. (~ (0 < n)) = (n = 0)" |
|
529 |
apply (rule iffI) |
|
22718 | 530 |
apply (rule ccontr) |
531 |
apply simp_all |
|
13449 | 532 |
done |
533 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
534 |
lemma Suc_le_D: "(Suc n \<le> m') ==> (? m. m' = Suc m)" |
13449 | 535 |
by (induct m') simp_all |
536 |
||
537 |
text {* Useful in certain inductive arguments *} |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
538 |
lemma less_Suc_eq_0_disj: "(m < Suc n) = (m = 0 | (\<exists>j. m = Suc j & j < n))" |
22718 | 539 |
by (cases m) simp_all |
13449 | 540 |
|
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
541 |
lemma nat_induct2: "[|P 0; P (Suc 0); !!k. P k ==> P (Suc (Suc k))|] ==> P n" |
13449 | 542 |
apply (rule nat_less_induct) |
543 |
apply (case_tac n) |
|
544 |
apply (case_tac [2] nat) |
|
545 |
apply (blast intro: less_trans)+ |
|
546 |
done |
|
547 |
||
21243 | 548 |
|
15341
254f6f00b60e
converted to Isar script, simplifying some results
paulson
parents:
15281
diff
changeset
|
549 |
subsection {* @{text LEAST} theorems for type @{typ nat}*} |
13449 | 550 |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
551 |
lemma Least_Suc: |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
552 |
"[| P n; ~ P 0 |] ==> (LEAST n. P n) = Suc (LEAST m. P(Suc m))" |
14208 | 553 |
apply (case_tac "n", auto) |
13449 | 554 |
apply (frule LeastI) |
555 |
apply (drule_tac P = "%x. P (Suc x) " in LeastI) |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
556 |
apply (subgoal_tac " (LEAST x. P x) \<le> Suc (LEAST x. P (Suc x))") |
13449 | 557 |
apply (erule_tac [2] Least_le) |
14208 | 558 |
apply (case_tac "LEAST x. P x", auto) |
13449 | 559 |
apply (drule_tac P = "%x. P (Suc x) " in Least_le) |
560 |
apply (blast intro: order_antisym) |
|
561 |
done |
|
562 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
563 |
lemma Least_Suc2: |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
564 |
"[|P n; Q m; ~P 0; !k. P (Suc k) = Q k|] ==> Least P = Suc (Least Q)" |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
565 |
by (erule (1) Least_Suc [THEN ssubst], simp) |
13449 | 566 |
|
567 |
||
568 |
subsection {* @{term min} and @{term max} *} |
|
569 |
||
570 |
lemma min_0L [simp]: "min 0 n = (0::nat)" |
|
571 |
by (rule min_leastL) simp |
|
572 |
||
573 |
lemma min_0R [simp]: "min n 0 = (0::nat)" |
|
574 |
by (rule min_leastR) simp |
|
575 |
||
576 |
lemma min_Suc_Suc [simp]: "min (Suc m) (Suc n) = Suc (min m n)" |
|
577 |
by (simp add: min_of_mono) |
|
578 |
||
22191 | 579 |
lemma min_Suc1: |
580 |
"min (Suc n) m = (case m of 0 => 0 | Suc m' => Suc(min n m'))" |
|
22718 | 581 |
by (simp split: nat.split) |
22191 | 582 |
|
583 |
lemma min_Suc2: |
|
584 |
"min m (Suc n) = (case m of 0 => 0 | Suc m' => Suc(min m' n))" |
|
585 |
by (simp split: nat.split) |
|
586 |
||
13449 | 587 |
lemma max_0L [simp]: "max 0 n = (n::nat)" |
588 |
by (rule max_leastL) simp |
|
589 |
||
590 |
lemma max_0R [simp]: "max n 0 = (n::nat)" |
|
591 |
by (rule max_leastR) simp |
|
592 |
||
593 |
lemma max_Suc_Suc [simp]: "max (Suc m) (Suc n) = Suc(max m n)" |
|
594 |
by (simp add: max_of_mono) |
|
595 |
||
22191 | 596 |
lemma max_Suc1: |
597 |
"max (Suc n) m = (case m of 0 => Suc n | Suc m' => Suc(max n m'))" |
|
22718 | 598 |
by (simp split: nat.split) |
22191 | 599 |
|
600 |
lemma max_Suc2: |
|
601 |
"max m (Suc n) = (case m of 0 => Suc n | Suc m' => Suc(max m' n))" |
|
602 |
by (simp split: nat.split) |
|
603 |
||
13449 | 604 |
|
605 |
subsection {* Basic rewrite rules for the arithmetic operators *} |
|
606 |
||
607 |
text {* Difference *} |
|
608 |
||
14193
30e41f63712e
Improved efficiency of code generated for + and -
berghofe
parents:
14131
diff
changeset
|
609 |
lemma diff_0_eq_0 [simp, code]: "0 - n = (0::nat)" |
15251 | 610 |
by (induct n) simp_all |
13449 | 611 |
|
14193
30e41f63712e
Improved efficiency of code generated for + and -
berghofe
parents:
14131
diff
changeset
|
612 |
lemma diff_Suc_Suc [simp, code]: "Suc(m) - Suc(n) = m - n" |
15251 | 613 |
by (induct n) simp_all |
13449 | 614 |
|
615 |
||
616 |
text {* |
|
617 |
Could be (and is, below) generalized in various ways |
|
618 |
However, none of the generalizations are currently in the simpset, |
|
619 |
and I dread to think what happens if I put them in |
|
620 |
*} |
|
621 |
lemma Suc_pred [simp]: "0 < n ==> Suc (n - Suc 0) = n" |
|
622 |
by (simp split add: nat.split) |
|
623 |
||
14193
30e41f63712e
Improved efficiency of code generated for + and -
berghofe
parents:
14131
diff
changeset
|
624 |
declare diff_Suc [simp del, code del] |
13449 | 625 |
|
626 |
||
627 |
subsection {* Addition *} |
|
628 |
||
629 |
lemma add_0_right [simp]: "m + 0 = (m::nat)" |
|
630 |
by (induct m) simp_all |
|
631 |
||
632 |
lemma add_Suc_right [simp]: "m + Suc n = Suc (m + n)" |
|
633 |
by (induct m) simp_all |
|
634 |
||
19890 | 635 |
lemma add_Suc_shift [code]: "Suc m + n = m + Suc n" |
636 |
by simp |
|
14193
30e41f63712e
Improved efficiency of code generated for + and -
berghofe
parents:
14131
diff
changeset
|
637 |
|
13449 | 638 |
|
639 |
text {* Associative law for addition *} |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
640 |
lemma nat_add_assoc: "(m + n) + k = m + ((n + k)::nat)" |
13449 | 641 |
by (induct m) simp_all |
642 |
||
643 |
text {* Commutative law for addition *} |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
644 |
lemma nat_add_commute: "m + n = n + (m::nat)" |
13449 | 645 |
by (induct m) simp_all |
646 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
647 |
lemma nat_add_left_commute: "x + (y + z) = y + ((x + z)::nat)" |
13449 | 648 |
apply (rule mk_left_commute [of "op +"]) |
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
649 |
apply (rule nat_add_assoc) |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
650 |
apply (rule nat_add_commute) |
13449 | 651 |
done |
652 |
||
14331 | 653 |
lemma nat_add_left_cancel [simp]: "(k + m = k + n) = (m = (n::nat))" |
13449 | 654 |
by (induct k) simp_all |
655 |
||
14331 | 656 |
lemma nat_add_right_cancel [simp]: "(m + k = n + k) = (m=(n::nat))" |
13449 | 657 |
by (induct k) simp_all |
658 |
||
14331 | 659 |
lemma nat_add_left_cancel_le [simp]: "(k + m \<le> k + n) = (m\<le>(n::nat))" |
13449 | 660 |
by (induct k) simp_all |
661 |
||
14331 | 662 |
lemma nat_add_left_cancel_less [simp]: "(k + m < k + n) = (m<(n::nat))" |
13449 | 663 |
by (induct k) simp_all |
664 |
||
665 |
text {* Reasoning about @{text "m + 0 = 0"}, etc. *} |
|
666 |
||
22718 | 667 |
lemma add_is_0 [iff]: fixes m :: nat shows "(m + n = 0) = (m = 0 & n = 0)" |
668 |
by (cases m) simp_all |
|
13449 | 669 |
|
670 |
lemma add_is_1: "(m+n= Suc 0) = (m= Suc 0 & n=0 | m=0 & n= Suc 0)" |
|
22718 | 671 |
by (cases m) simp_all |
13449 | 672 |
|
673 |
lemma one_is_add: "(Suc 0 = m + n) = (m = Suc 0 & n = 0 | m = 0 & n = Suc 0)" |
|
674 |
by (rule trans, rule eq_commute, rule add_is_1) |
|
675 |
||
676 |
lemma add_gr_0 [iff]: "!!m::nat. (0 < m + n) = (0 < m | 0 < n)" |
|
677 |
by (simp del: neq0_conv add: neq0_conv [symmetric]) |
|
678 |
||
679 |
lemma add_eq_self_zero: "!!m::nat. m + n = m ==> n = 0" |
|
680 |
apply (drule add_0_right [THEN ssubst]) |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
681 |
apply (simp add: nat_add_assoc del: add_0_right) |
13449 | 682 |
done |
683 |
||
16733
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
nipkow
parents:
16635
diff
changeset
|
684 |
lemma inj_on_add_nat[simp]: "inj_on (%n::nat. n+k) N" |
22718 | 685 |
apply (induct k) |
686 |
apply simp |
|
687 |
apply(drule comp_inj_on[OF _ inj_Suc]) |
|
688 |
apply (simp add:o_def) |
|
689 |
done |
|
16733
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
nipkow
parents:
16635
diff
changeset
|
690 |
|
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
nipkow
parents:
16635
diff
changeset
|
691 |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
692 |
subsection {* Multiplication *} |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
693 |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
694 |
text {* right annihilation in product *} |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
695 |
lemma mult_0_right [simp]: "(m::nat) * 0 = 0" |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
696 |
by (induct m) simp_all |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
697 |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
698 |
text {* right successor law for multiplication *} |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
699 |
lemma mult_Suc_right [simp]: "m * Suc n = m + (m * n)" |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
700 |
by (induct m) (simp_all add: nat_add_left_commute) |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
701 |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
702 |
text {* Commutative law for multiplication *} |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
703 |
lemma nat_mult_commute: "m * n = n * (m::nat)" |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
704 |
by (induct m) simp_all |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
705 |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
706 |
text {* addition distributes over multiplication *} |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
707 |
lemma add_mult_distrib: "(m + n) * k = (m * k) + ((n * k)::nat)" |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
708 |
by (induct m) (simp_all add: nat_add_assoc nat_add_left_commute) |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
709 |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
710 |
lemma add_mult_distrib2: "k * (m + n) = (k * m) + ((k * n)::nat)" |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
711 |
by (induct m) (simp_all add: nat_add_assoc) |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
712 |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
713 |
text {* Associative law for multiplication *} |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
714 |
lemma nat_mult_assoc: "(m * n) * k = m * ((n * k)::nat)" |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
715 |
by (induct m) (simp_all add: add_mult_distrib) |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
716 |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
717 |
|
14740 | 718 |
text{*The naturals form a @{text comm_semiring_1_cancel}*} |
14738 | 719 |
instance nat :: comm_semiring_1_cancel |
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
720 |
proof |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
721 |
fix i j k :: nat |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
722 |
show "(i + j) + k = i + (j + k)" by (rule nat_add_assoc) |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
723 |
show "i + j = j + i" by (rule nat_add_commute) |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
724 |
show "0 + i = i" by simp |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
725 |
show "(i * j) * k = i * (j * k)" by (rule nat_mult_assoc) |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
726 |
show "i * j = j * i" by (rule nat_mult_commute) |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
727 |
show "1 * i = i" by simp |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
728 |
show "(i + j) * k = i * k + j * k" by (simp add: add_mult_distrib) |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
729 |
show "0 \<noteq> (1::nat)" by simp |
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
730 |
assume "k+i = k+j" thus "i=j" by simp |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
731 |
qed |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
732 |
|
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
733 |
lemma mult_is_0 [simp]: "((m::nat) * n = 0) = (m=0 | n=0)" |
15251 | 734 |
apply (induct m) |
22718 | 735 |
apply (induct_tac [2] n) |
736 |
apply simp_all |
|
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
737 |
done |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
738 |
|
21243 | 739 |
|
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
740 |
subsection {* Monotonicity of Addition *} |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
741 |
|
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
742 |
text {* strict, in 1st argument *} |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
743 |
lemma add_less_mono1: "i < j ==> i + k < j + (k::nat)" |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
744 |
by (induct k) simp_all |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
745 |
|
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
746 |
text {* strict, in both arguments *} |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
747 |
lemma add_less_mono: "[|i < j; k < l|] ==> i + k < j + (l::nat)" |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
748 |
apply (rule add_less_mono1 [THEN less_trans], assumption+) |
15251 | 749 |
apply (induct j, simp_all) |
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
750 |
done |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
751 |
|
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
752 |
text {* Deleted @{text less_natE}; use @{text "less_imp_Suc_add RS exE"} *} |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
753 |
lemma less_imp_Suc_add: "m < n ==> (\<exists>k. n = Suc (m + k))" |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
754 |
apply (induct n) |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
755 |
apply (simp_all add: order_le_less) |
22718 | 756 |
apply (blast elim!: less_SucE |
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
757 |
intro!: add_0_right [symmetric] add_Suc_right [symmetric]) |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
758 |
done |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
759 |
|
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
760 |
text {* strict, in 1st argument; proof is by induction on @{text "k > 0"} *} |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
761 |
lemma mult_less_mono2: "(i::nat) < j ==> 0 < k ==> k * i < k * j" |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
762 |
apply (erule_tac m1 = 0 in less_imp_Suc_add [THEN exE], simp) |
22718 | 763 |
apply (induct_tac x) |
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
764 |
apply (simp_all add: add_less_mono) |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
765 |
done |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
766 |
|
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
767 |
|
14740 | 768 |
text{*The naturals form an ordered @{text comm_semiring_1_cancel}*} |
14738 | 769 |
instance nat :: ordered_semidom |
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
770 |
proof |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
771 |
fix i j k :: nat |
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
14341
diff
changeset
|
772 |
show "0 < (1::nat)" by simp |
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
773 |
show "i \<le> j ==> k + i \<le> k + j" by simp |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
774 |
show "i < j ==> 0 < k ==> k * i < k * j" by (simp add: mult_less_mono2) |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
775 |
qed |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
776 |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
777 |
lemma nat_mult_1: "(1::nat) * n = n" |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
778 |
by simp |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
779 |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
780 |
lemma nat_mult_1_right: "n * (1::nat) = n" |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
781 |
by simp |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
782 |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
783 |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
784 |
subsection {* Additional theorems about "less than" *} |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
785 |
|
19870 | 786 |
text{*An induction rule for estabilishing binary relations*} |
22718 | 787 |
lemma less_Suc_induct: |
19870 | 788 |
assumes less: "i < j" |
789 |
and step: "!!i. P i (Suc i)" |
|
790 |
and trans: "!!i j k. P i j ==> P j k ==> P i k" |
|
791 |
shows "P i j" |
|
792 |
proof - |
|
22718 | 793 |
from less obtain k where j: "j = Suc(i+k)" by (auto dest: less_imp_Suc_add) |
794 |
have "P i (Suc (i + k))" |
|
19870 | 795 |
proof (induct k) |
22718 | 796 |
case 0 |
797 |
show ?case by (simp add: step) |
|
19870 | 798 |
next |
799 |
case (Suc k) |
|
22718 | 800 |
thus ?case by (auto intro: assms) |
19870 | 801 |
qed |
22718 | 802 |
thus "P i j" by (simp add: j) |
19870 | 803 |
qed |
804 |
||
805 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
806 |
text {* A [clumsy] way of lifting @{text "<"} |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
807 |
monotonicity to @{text "\<le>"} monotonicity *} |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
808 |
lemma less_mono_imp_le_mono: |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
809 |
assumes lt_mono: "!!i j::nat. i < j ==> f i < f j" |
22718 | 810 |
and le: "i \<le> j" |
811 |
shows "f i \<le> ((f j)::nat)" |
|
812 |
using le |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
813 |
apply (simp add: order_le_less) |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
814 |
apply (blast intro!: lt_mono) |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
815 |
done |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
816 |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
817 |
text {* non-strict, in 1st argument *} |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
818 |
lemma add_le_mono1: "i \<le> j ==> i + k \<le> j + (k::nat)" |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
819 |
by (rule add_right_mono) |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
820 |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
821 |
text {* non-strict, in both arguments *} |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
822 |
lemma add_le_mono: "[| i \<le> j; k \<le> l |] ==> i + k \<le> j + (l::nat)" |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
823 |
by (rule add_mono) |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
824 |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
825 |
lemma le_add2: "n \<le> ((m + n)::nat)" |
22718 | 826 |
by (insert add_right_mono [of 0 m n], simp) |
13449 | 827 |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
828 |
lemma le_add1: "n \<le> ((n + m)::nat)" |
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
829 |
by (simp add: add_commute, rule le_add2) |
13449 | 830 |
|
831 |
lemma less_add_Suc1: "i < Suc (i + m)" |
|
832 |
by (rule le_less_trans, rule le_add1, rule lessI) |
|
833 |
||
834 |
lemma less_add_Suc2: "i < Suc (m + i)" |
|
835 |
by (rule le_less_trans, rule le_add2, rule lessI) |
|
836 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
837 |
lemma less_iff_Suc_add: "(m < n) = (\<exists>k. n = Suc (m + k))" |
17589 | 838 |
by (iprover intro!: less_add_Suc1 less_imp_Suc_add) |
13449 | 839 |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
840 |
lemma trans_le_add1: "(i::nat) \<le> j ==> i \<le> j + m" |
13449 | 841 |
by (rule le_trans, assumption, rule le_add1) |
842 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
843 |
lemma trans_le_add2: "(i::nat) \<le> j ==> i \<le> m + j" |
13449 | 844 |
by (rule le_trans, assumption, rule le_add2) |
845 |
||
846 |
lemma trans_less_add1: "(i::nat) < j ==> i < j + m" |
|
847 |
by (rule less_le_trans, assumption, rule le_add1) |
|
848 |
||
849 |
lemma trans_less_add2: "(i::nat) < j ==> i < m + j" |
|
850 |
by (rule less_le_trans, assumption, rule le_add2) |
|
851 |
||
852 |
lemma add_lessD1: "i + j < (k::nat) ==> i < k" |
|
22718 | 853 |
apply (rule le_less_trans [of _ "i+j"]) |
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
854 |
apply (simp_all add: le_add1) |
13449 | 855 |
done |
856 |
||
857 |
lemma not_add_less1 [iff]: "~ (i + j < (i::nat))" |
|
858 |
apply (rule notI) |
|
859 |
apply (erule add_lessD1 [THEN less_irrefl]) |
|
860 |
done |
|
861 |
||
862 |
lemma not_add_less2 [iff]: "~ (j + i < (i::nat))" |
|
863 |
by (simp add: add_commute not_add_less1) |
|
864 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
865 |
lemma add_leD1: "m + k \<le> n ==> m \<le> (n::nat)" |
22718 | 866 |
apply (rule order_trans [of _ "m+k"]) |
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
867 |
apply (simp_all add: le_add1) |
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
868 |
done |
13449 | 869 |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
870 |
lemma add_leD2: "m + k \<le> n ==> k \<le> (n::nat)" |
13449 | 871 |
apply (simp add: add_commute) |
872 |
apply (erule add_leD1) |
|
873 |
done |
|
874 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
875 |
lemma add_leE: "(m::nat) + k \<le> n ==> (m \<le> n ==> k \<le> n ==> R) ==> R" |
13449 | 876 |
by (blast dest: add_leD1 add_leD2) |
877 |
||
878 |
text {* needs @{text "!!k"} for @{text add_ac} to work *} |
|
879 |
lemma less_add_eq_less: "!!k::nat. k < l ==> m + l = k + n ==> m < n" |
|
880 |
by (force simp del: add_Suc_right |
|
881 |
simp add: less_iff_Suc_add add_Suc_right [symmetric] add_ac) |
|
882 |
||
883 |
||
884 |
subsection {* Difference *} |
|
885 |
||
886 |
lemma diff_self_eq_0 [simp]: "(m::nat) - m = 0" |
|
887 |
by (induct m) simp_all |
|
888 |
||
889 |
text {* Addition is the inverse of subtraction: |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
890 |
if @{term "n \<le> m"} then @{term "n + (m - n) = m"}. *} |
13449 | 891 |
lemma add_diff_inverse: "~ m < n ==> n + (m - n) = (m::nat)" |
892 |
by (induct m n rule: diff_induct) simp_all |
|
893 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
894 |
lemma le_add_diff_inverse [simp]: "n \<le> m ==> n + (m - n) = (m::nat)" |
16796 | 895 |
by (simp add: add_diff_inverse linorder_not_less) |
13449 | 896 |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
897 |
lemma le_add_diff_inverse2 [simp]: "n \<le> m ==> (m - n) + n = (m::nat)" |
13449 | 898 |
by (simp add: le_add_diff_inverse add_commute) |
899 |
||
900 |
||
901 |
subsection {* More results about difference *} |
|
902 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
903 |
lemma Suc_diff_le: "n \<le> m ==> Suc m - n = Suc (m - n)" |
13449 | 904 |
by (induct m n rule: diff_induct) simp_all |
905 |
||
906 |
lemma diff_less_Suc: "m - n < Suc m" |
|
907 |
apply (induct m n rule: diff_induct) |
|
908 |
apply (erule_tac [3] less_SucE) |
|
909 |
apply (simp_all add: less_Suc_eq) |
|
910 |
done |
|
911 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
912 |
lemma diff_le_self [simp]: "m - n \<le> (m::nat)" |
13449 | 913 |
by (induct m n rule: diff_induct) (simp_all add: le_SucI) |
914 |
||
915 |
lemma less_imp_diff_less: "(j::nat) < k ==> j - n < k" |
|
916 |
by (rule le_less_trans, rule diff_le_self) |
|
917 |
||
918 |
lemma diff_diff_left: "(i::nat) - j - k = i - (j + k)" |
|
919 |
by (induct i j rule: diff_induct) simp_all |
|
920 |
||
921 |
lemma Suc_diff_diff [simp]: "(Suc m - n) - Suc k = m - n - k" |
|
922 |
by (simp add: diff_diff_left) |
|
923 |
||
924 |
lemma diff_Suc_less [simp]: "0<n ==> n - Suc i < n" |
|
22718 | 925 |
by (cases n) (auto simp add: le_simps) |
13449 | 926 |
|
927 |
text {* This and the next few suggested by Florian Kammueller *} |
|
928 |
lemma diff_commute: "(i::nat) - j - k = i - k - j" |
|
929 |
by (simp add: diff_diff_left add_commute) |
|
930 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
931 |
lemma diff_add_assoc: "k \<le> (j::nat) ==> (i + j) - k = i + (j - k)" |
13449 | 932 |
by (induct j k rule: diff_induct) simp_all |
933 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
934 |
lemma diff_add_assoc2: "k \<le> (j::nat) ==> (j + i) - k = (j - k) + i" |
13449 | 935 |
by (simp add: add_commute diff_add_assoc) |
936 |
||
937 |
lemma diff_add_inverse: "(n + m) - n = (m::nat)" |
|
938 |
by (induct n) simp_all |
|
939 |
||
940 |
lemma diff_add_inverse2: "(m + n) - n = (m::nat)" |
|
941 |
by (simp add: diff_add_assoc) |
|
942 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
943 |
lemma le_imp_diff_is_add: "i \<le> (j::nat) ==> (j - i = k) = (j = k + i)" |
22718 | 944 |
by (auto simp add: diff_add_inverse2) |
13449 | 945 |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
946 |
lemma diff_is_0_eq [simp]: "((m::nat) - n = 0) = (m \<le> n)" |
13449 | 947 |
by (induct m n rule: diff_induct) simp_all |
948 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
949 |
lemma diff_is_0_eq' [simp]: "m \<le> n ==> (m::nat) - n = 0" |
13449 | 950 |
by (rule iffD2, rule diff_is_0_eq) |
951 |
||
952 |
lemma zero_less_diff [simp]: "(0 < n - (m::nat)) = (m < n)" |
|
953 |
by (induct m n rule: diff_induct) simp_all |
|
954 |
||
22718 | 955 |
lemma less_imp_add_positive: |
956 |
assumes "i < j" |
|
957 |
shows "\<exists>k::nat. 0 < k & i + k = j" |
|
958 |
proof |
|
959 |
from assms show "0 < j - i & i + (j - i) = j" |
|
960 |
by (simp add: add_diff_inverse less_not_sym) |
|
961 |
qed |
|
9436
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
wenzelm
parents:
7702
diff
changeset
|
962 |
|
13449 | 963 |
lemma diff_cancel: "(k + m) - (k + n) = m - (n::nat)" |
964 |
by (induct k) simp_all |
|
965 |
||
966 |
lemma diff_cancel2: "(m + k) - (n + k) = m - (n::nat)" |
|
967 |
by (simp add: diff_cancel add_commute) |
|
968 |
||
969 |
lemma diff_add_0: "n - (n + m) = (0::nat)" |
|
970 |
by (induct n) simp_all |
|
971 |
||
972 |
||
973 |
text {* Difference distributes over multiplication *} |
|
974 |
||
975 |
lemma diff_mult_distrib: "((m::nat) - n) * k = (m * k) - (n * k)" |
|
976 |
by (induct m n rule: diff_induct) (simp_all add: diff_cancel) |
|
977 |
||
978 |
lemma diff_mult_distrib2: "k * ((m::nat) - n) = (k * m) - (k * n)" |
|
979 |
by (simp add: diff_mult_distrib mult_commute [of k]) |
|
980 |
-- {* NOT added as rewrites, since sometimes they are used from right-to-left *} |
|
981 |
||
982 |
lemmas nat_distrib = |
|
983 |
add_mult_distrib add_mult_distrib2 diff_mult_distrib diff_mult_distrib2 |
|
984 |
||
985 |
||
986 |
subsection {* Monotonicity of Multiplication *} |
|
987 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
988 |
lemma mult_le_mono1: "i \<le> (j::nat) ==> i * k \<le> j * k" |
22718 | 989 |
by (simp add: mult_right_mono) |
13449 | 990 |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
991 |
lemma mult_le_mono2: "i \<le> (j::nat) ==> k * i \<le> k * j" |
22718 | 992 |
by (simp add: mult_left_mono) |
13449 | 993 |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
994 |
text {* @{text "\<le>"} monotonicity, BOTH arguments *} |
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
995 |
lemma mult_le_mono: "i \<le> (j::nat) ==> k \<le> l ==> i * k \<le> j * l" |
22718 | 996 |
by (simp add: mult_mono) |
13449 | 997 |
|
998 |
lemma mult_less_mono1: "(i::nat) < j ==> 0 < k ==> i * k < j * k" |
|
22718 | 999 |
by (simp add: mult_strict_right_mono) |
13449 | 1000 |
|
14266 | 1001 |
text{*Differs from the standard @{text zero_less_mult_iff} in that |
1002 |
there are no negative numbers.*} |
|
1003 |
lemma nat_0_less_mult_iff [simp]: "(0 < (m::nat) * n) = (0 < m & 0 < n)" |
|
13449 | 1004 |
apply (induct m) |
22718 | 1005 |
apply simp |
1006 |
apply (case_tac n) |
|
1007 |
apply simp_all |
|
13449 | 1008 |
done |
1009 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
1010 |
lemma one_le_mult_iff [simp]: "(Suc 0 \<le> m * n) = (1 \<le> m & 1 \<le> n)" |
13449 | 1011 |
apply (induct m) |
22718 | 1012 |
apply simp |
1013 |
apply (case_tac n) |
|
1014 |
apply simp_all |
|
13449 | 1015 |
done |
1016 |
||
1017 |
lemma mult_eq_1_iff [simp]: "(m * n = Suc 0) = (m = 1 & n = 1)" |
|
22718 | 1018 |
apply (induct m) |
1019 |
apply simp |
|
1020 |
apply (induct n) |
|
1021 |
apply auto |
|
13449 | 1022 |
done |
1023 |
||
1024 |
lemma one_eq_mult_iff [simp]: "(Suc 0 = m * n) = (m = 1 & n = 1)" |
|
1025 |
apply (rule trans) |
|
14208 | 1026 |
apply (rule_tac [2] mult_eq_1_iff, fastsimp) |
13449 | 1027 |
done |
1028 |
||
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
1029 |
lemma mult_less_cancel2 [simp]: "((m::nat) * k < n * k) = (0 < k & m < n)" |
13449 | 1030 |
apply (safe intro!: mult_less_mono1) |
14208 | 1031 |
apply (case_tac k, auto) |
13449 | 1032 |
apply (simp del: le_0_eq add: linorder_not_le [symmetric]) |
1033 |
apply (blast intro: mult_le_mono1) |
|
1034 |
done |
|
1035 |
||
1036 |
lemma mult_less_cancel1 [simp]: "(k * (m::nat) < k * n) = (0 < k & m < n)" |
|
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
1037 |
by (simp add: mult_commute [of k]) |
13449 | 1038 |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
1039 |
lemma mult_le_cancel1 [simp]: "(k * (m::nat) \<le> k * n) = (0 < k --> m \<le> n)" |
22718 | 1040 |
by (simp add: linorder_not_less [symmetric], auto) |
13449 | 1041 |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
1042 |
lemma mult_le_cancel2 [simp]: "((m::nat) * k \<le> n * k) = (0 < k --> m \<le> n)" |
22718 | 1043 |
by (simp add: linorder_not_less [symmetric], auto) |
13449 | 1044 |
|
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
1045 |
lemma mult_cancel2 [simp]: "(m * k = n * k) = (m = n | (k = (0::nat)))" |
14208 | 1046 |
apply (cut_tac less_linear, safe, auto) |
13449 | 1047 |
apply (drule mult_less_mono1, assumption, simp)+ |
1048 |
done |
|
1049 |
||
1050 |
lemma mult_cancel1 [simp]: "(k * m = k * n) = (m = n | (k = (0::nat)))" |
|
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14331
diff
changeset
|
1051 |
by (simp add: mult_commute [of k]) |
13449 | 1052 |
|
1053 |
lemma Suc_mult_less_cancel1: "(Suc k * m < Suc k * n) = (m < n)" |
|
1054 |
by (subst mult_less_cancel1) simp |
|
1055 |
||
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14266
diff
changeset
|
1056 |
lemma Suc_mult_le_cancel1: "(Suc k * m \<le> Suc k * n) = (m \<le> n)" |
13449 | 1057 |
by (subst mult_le_cancel1) simp |
1058 |
||
1059 |
lemma Suc_mult_cancel1: "(Suc k * m = Suc k * n) = (m = n)" |
|
1060 |
by (subst mult_cancel1) simp |
|
1061 |
||
1062 |
text {* Lemma for @{text gcd} *} |
|
1063 |
lemma mult_eq_self_implies_10: "(m::nat) = m * n ==> n = 1 | m = 0" |
|
1064 |
apply (drule sym) |
|
1065 |
apply (rule disjCI) |
|
1066 |
apply (rule nat_less_cases, erule_tac [2] _) |
|
1067 |
apply (fastsimp elim!: less_SucE) |
|
1068 |
apply (fastsimp dest: mult_less_mono2) |
|
1069 |
done |
|
9436
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
wenzelm
parents:
7702
diff
changeset
|
1070 |
|
20588 | 1071 |
|
18702 | 1072 |
subsection {* Code generator setup *} |
1073 |
||
22718 | 1074 |
lemma one_is_Suc_zero [code inline]: "1 = Suc 0" |
20355 | 1075 |
by simp |
1076 |
||
20588 | 1077 |
instance nat :: eq .. |
1078 |
||
1079 |
lemma [code func]: |
|
22718 | 1080 |
"(0\<Colon>nat) = 0 \<longleftrightarrow> True" |
1081 |
"Suc n = Suc m \<longleftrightarrow> n = m" |
|
1082 |
"Suc n = 0 \<longleftrightarrow> False" |
|
1083 |
"0 = Suc m \<longleftrightarrow> False" |
|
22348 | 1084 |
by auto |
20588 | 1085 |
|
1086 |
lemma [code func]: |
|
22718 | 1087 |
"(0\<Colon>nat) \<le> m \<longleftrightarrow> True" |
1088 |
"Suc (n\<Colon>nat) \<le> m \<longleftrightarrow> n < m" |
|
1089 |
"(n\<Colon>nat) < 0 \<longleftrightarrow> False" |
|
1090 |
"(n\<Colon>nat) < Suc m \<longleftrightarrow> n \<le> m" |
|
22348 | 1091 |
using Suc_le_eq less_Suc_eq_le by simp_all |
20588 | 1092 |
|
21243 | 1093 |
|
1094 |
subsection {* Further Arithmetic Facts Concerning the Natural Numbers *} |
|
1095 |
||
22845 | 1096 |
lemma subst_equals: |
1097 |
assumes 1: "t = s" and 2: "u = t" |
|
1098 |
shows "u = s" |
|
1099 |
using 2 1 by (rule trans) |
|
1100 |
||
21243 | 1101 |
use "arith_data.ML" |
1102 |
setup arith_setup |
|
1103 |
||
1104 |
text{*The following proofs may rely on the arithmetic proof procedures.*} |
|
1105 |
||
1106 |
lemma le_iff_add: "(m::nat) \<le> n = (\<exists>k. n = m + k)" |
|
1107 |
by (auto simp: le_eq_less_or_eq dest: less_imp_Suc_add) |
|
1108 |
||
1109 |
lemma pred_nat_trancl_eq_le: "((m, n) : pred_nat^*) = (m \<le> n)" |
|
22718 | 1110 |
by (simp add: less_eq reflcl_trancl [symmetric] del: reflcl_trancl, arith) |
21243 | 1111 |
|
1112 |
lemma nat_diff_split: |
|
22718 | 1113 |
"P(a - b::nat) = ((a<b --> P 0) & (ALL d. a = b + d --> P d))" |
21243 | 1114 |
-- {* elimination of @{text -} on @{text nat} *} |
22718 | 1115 |
by (cases "a<b" rule: case_split) (auto simp add: diff_is_0_eq [THEN iffD2]) |
21243 | 1116 |
|
1117 |
lemma nat_diff_split_asm: |
|
1118 |
"P(a - b::nat) = (~ (a < b & ~ P 0 | (EX d. a = b + d & ~ P d)))" |
|
1119 |
-- {* elimination of @{text -} on @{text nat} in assumptions *} |
|
1120 |
by (simp split: nat_diff_split) |
|
1121 |
||
1122 |
lemmas [arith_split] = nat_diff_split split_min split_max |
|
1123 |
||
1124 |
||
1125 |
lemma le_square: "m \<le> m * (m::nat)" |
|
1126 |
by (induct m) auto |
|
1127 |
||
1128 |
lemma le_cube: "(m::nat) \<le> m * (m * m)" |
|
1129 |
by (induct m) auto |
|
1130 |
||
1131 |
||
1132 |
text{*Subtraction laws, mostly by Clemens Ballarin*} |
|
1133 |
||
1134 |
lemma diff_less_mono: "[| a < (b::nat); c \<le> a |] ==> a-c < b-c" |
|
22718 | 1135 |
by arith |
21243 | 1136 |
|
1137 |
lemma less_diff_conv: "(i < j-k) = (i+k < (j::nat))" |
|
22718 | 1138 |
by arith |
21243 | 1139 |
|
1140 |
lemma le_diff_conv: "(j-k \<le> (i::nat)) = (j \<le> i+k)" |
|
22718 | 1141 |
by arith |
21243 | 1142 |
|
1143 |
lemma le_diff_conv2: "k \<le> j ==> (i \<le> j-k) = (i+k \<le> (j::nat))" |
|
22718 | 1144 |
by arith |
21243 | 1145 |
|
1146 |
lemma diff_diff_cancel [simp]: "i \<le> (n::nat) ==> n - (n - i) = i" |
|
22718 | 1147 |
by arith |
21243 | 1148 |
|
1149 |
lemma le_add_diff: "k \<le> (n::nat) ==> m \<le> n + m - k" |
|
22718 | 1150 |
by arith |
21243 | 1151 |
|
1152 |
(*Replaces the previous diff_less and le_diff_less, which had the stronger |
|
1153 |
second premise n\<le>m*) |
|
1154 |
lemma diff_less[simp]: "!!m::nat. [| 0<n; 0<m |] ==> m - n < m" |
|
22718 | 1155 |
by arith |
21243 | 1156 |
|
1157 |
||
1158 |
(** Simplification of relational expressions involving subtraction **) |
|
1159 |
||
1160 |
lemma diff_diff_eq: "[| k \<le> m; k \<le> (n::nat) |] ==> ((m-k) - (n-k)) = (m-n)" |
|
22718 | 1161 |
by (simp split add: nat_diff_split) |
21243 | 1162 |
|
1163 |
lemma eq_diff_iff: "[| k \<le> m; k \<le> (n::nat) |] ==> (m-k = n-k) = (m=n)" |
|
22718 | 1164 |
by (auto split add: nat_diff_split) |
21243 | 1165 |
|
1166 |
lemma less_diff_iff: "[| k \<le> m; k \<le> (n::nat) |] ==> (m-k < n-k) = (m<n)" |
|
22718 | 1167 |
by (auto split add: nat_diff_split) |
21243 | 1168 |
|
1169 |
lemma le_diff_iff: "[| k \<le> m; k \<le> (n::nat) |] ==> (m-k \<le> n-k) = (m\<le>n)" |
|
22718 | 1170 |
by (auto split add: nat_diff_split) |
21243 | 1171 |
|
1172 |
||
1173 |
text{*(Anti)Monotonicity of subtraction -- by Stephan Merz*} |
|
1174 |
||
1175 |
(* Monotonicity of subtraction in first argument *) |
|
1176 |
lemma diff_le_mono: "m \<le> (n::nat) ==> (m-l) \<le> (n-l)" |
|
22718 | 1177 |
by (simp split add: nat_diff_split) |
21243 | 1178 |
|
1179 |
lemma diff_le_mono2: "m \<le> (n::nat) ==> (l-n) \<le> (l-m)" |
|
22718 | 1180 |
by (simp split add: nat_diff_split) |
21243 | 1181 |
|
1182 |
lemma diff_less_mono2: "[| m < (n::nat); m<l |] ==> (l-n) < (l-m)" |
|
22718 | 1183 |
by (simp split add: nat_diff_split) |
21243 | 1184 |
|
1185 |
lemma diffs0_imp_equal: "!!m::nat. [| m-n = 0; n-m = 0 |] ==> m=n" |
|
22718 | 1186 |
by (simp split add: nat_diff_split) |
21243 | 1187 |
|
1188 |
text{*Lemmas for ex/Factorization*} |
|
1189 |
||
1190 |
lemma one_less_mult: "[| Suc 0 < n; Suc 0 < m |] ==> Suc 0 < m*n" |
|
22718 | 1191 |
by (cases m) auto |
21243 | 1192 |
|
1193 |
lemma n_less_m_mult_n: "[| Suc 0 < n; Suc 0 < m |] ==> n<m*n" |
|
22718 | 1194 |
by (cases m) auto |
21243 | 1195 |
|
1196 |
lemma n_less_n_mult_m: "[| Suc 0 < n; Suc 0 < m |] ==> n<n*m" |
|
22718 | 1197 |
by (cases m) auto |
21243 | 1198 |
|
23001
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents:
22920
diff
changeset
|
1199 |
text {* Specialized induction principles that work "backwards": *} |
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents:
22920
diff
changeset
|
1200 |
|
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents:
22920
diff
changeset
|
1201 |
lemma inc_induct[consumes 1, case_names base step]: |
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents:
22920
diff
changeset
|
1202 |
assumes less: "i <= j" |
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents:
22920
diff
changeset
|
1203 |
assumes base: "P j" |
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents:
22920
diff
changeset
|
1204 |
assumes step: "!!i. [| i < j; P (Suc i) |] ==> P i" |
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents:
22920
diff
changeset
|
1205 |
shows "P i" |
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents:
22920
diff
changeset
|
1206 |
using less |
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents:
22920
diff
changeset
|
1207 |
proof (induct d=="j - i" arbitrary: i) |
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents:
22920
diff
changeset
|
1208 |
case (0 i) |
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents:
22920
diff
changeset
|
1209 |
hence "i = j" by simp |
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents:
22920
diff
changeset
|
1210 |
with base show ?case by simp |
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents:
22920
diff
changeset
|
1211 |
next |
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents:
22920
diff
changeset
|
1212 |
case (Suc d i) |
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents:
22920
diff
changeset
|
1213 |
hence "i < j" "P (Suc i)" |
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents:
22920
diff
changeset
|
1214 |
by simp_all |
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents:
22920
diff
changeset
|
1215 |
thus "P i" by (rule step) |
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents:
22920
diff
changeset
|
1216 |
qed |
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents:
22920
diff
changeset
|
1217 |
|
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents:
22920
diff
changeset
|
1218 |
lemma strict_inc_induct[consumes 1, case_names base step]: |
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents:
22920
diff
changeset
|
1219 |
assumes less: "i < j" |
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents:
22920
diff
changeset
|
1220 |
assumes base: "!!i. j = Suc i ==> P i" |
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents:
22920
diff
changeset
|
1221 |
assumes step: "!!i. [| i < j; P (Suc i) |] ==> P i" |
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents:
22920
diff
changeset
|
1222 |
shows "P i" |
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents:
22920
diff
changeset
|
1223 |
using less |
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents:
22920
diff
changeset
|
1224 |
proof (induct d=="j - i - 1" arbitrary: i) |
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents:
22920
diff
changeset
|
1225 |
case (0 i) |
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents:
22920
diff
changeset
|
1226 |
with `i < j` have "j = Suc i" by simp |
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents:
22920
diff
changeset
|
1227 |
with base show ?case by simp |
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents:
22920
diff
changeset
|
1228 |
next |
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents:
22920
diff
changeset
|
1229 |
case (Suc d i) |
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents:
22920
diff
changeset
|
1230 |
hence "i < j" "P (Suc i)" |
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents:
22920
diff
changeset
|
1231 |
by simp_all |
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents:
22920
diff
changeset
|
1232 |
thus "P i" by (rule step) |
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents:
22920
diff
changeset
|
1233 |
qed |
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents:
22920
diff
changeset
|
1234 |
|
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents:
22920
diff
changeset
|
1235 |
lemma zero_induct_lemma: "P k ==> (!!n. P (Suc n) ==> P n) ==> P (k - i)" |
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents:
22920
diff
changeset
|
1236 |
using inc_induct[of "k - i" k P, simplified] by blast |
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents:
22920
diff
changeset
|
1237 |
|
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents:
22920
diff
changeset
|
1238 |
lemma zero_induct: "P k ==> (!!n. P (Suc n) ==> P n) ==> P 0" |
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
krauss
parents:
22920
diff
changeset
|
1239 |
using inc_induct[of 0 k P] by blast |
21243 | 1240 |
|
1241 |
text{*Rewriting to pull differences out*} |
|
1242 |
||
1243 |
lemma diff_diff_right [simp]: "k\<le>j --> i - (j - k) = i + (k::nat) - j" |
|
22718 | 1244 |
by arith |
21243 | 1245 |
|
1246 |
lemma diff_Suc_diff_eq1 [simp]: "k \<le> j ==> m - Suc (j - k) = m + k - Suc j" |
|
22718 | 1247 |
by arith |
21243 | 1248 |
|
1249 |
lemma diff_Suc_diff_eq2 [simp]: "k \<le> j ==> Suc (j - k) - m = Suc j - (k + m)" |
|
22718 | 1250 |
by arith |
21243 | 1251 |
|
1252 |
(*The others are |
|
1253 |
i - j - k = i - (j + k), |
|
1254 |
k \<le> j ==> j - k + i = j + i - k, |
|
1255 |
k \<le> j ==> i + (j - k) = i + j - k *) |
|
1256 |
lemmas add_diff_assoc = diff_add_assoc [symmetric] |
|
1257 |
lemmas add_diff_assoc2 = diff_add_assoc2[symmetric] |
|
1258 |
declare diff_diff_left [simp] add_diff_assoc [simp] add_diff_assoc2[simp] |
|
1259 |
||
1260 |
text{*At present we prove no analogue of @{text not_less_Least} or @{text |
|
1261 |
Least_Suc}, since there appears to be no need.*} |
|
1262 |
||
1263 |
ML |
|
1264 |
{* |
|
1265 |
val pred_nat_trancl_eq_le = thm "pred_nat_trancl_eq_le"; |
|
1266 |
val nat_diff_split = thm "nat_diff_split"; |
|
1267 |
val nat_diff_split_asm = thm "nat_diff_split_asm"; |
|
1268 |
val le_square = thm "le_square"; |
|
1269 |
val le_cube = thm "le_cube"; |
|
1270 |
val diff_less_mono = thm "diff_less_mono"; |
|
1271 |
val less_diff_conv = thm "less_diff_conv"; |
|
1272 |
val le_diff_conv = thm "le_diff_conv"; |
|
1273 |
val le_diff_conv2 = thm "le_diff_conv2"; |
|
1274 |
val diff_diff_cancel = thm "diff_diff_cancel"; |
|
1275 |
val le_add_diff = thm "le_add_diff"; |
|
1276 |
val diff_less = thm "diff_less"; |
|
1277 |
val diff_diff_eq = thm "diff_diff_eq"; |
|
1278 |
val eq_diff_iff = thm "eq_diff_iff"; |
|
1279 |
val less_diff_iff = thm "less_diff_iff"; |
|
1280 |
val le_diff_iff = thm "le_diff_iff"; |
|
1281 |
val diff_le_mono = thm "diff_le_mono"; |
|
1282 |
val diff_le_mono2 = thm "diff_le_mono2"; |
|
1283 |
val diff_less_mono2 = thm "diff_less_mono2"; |
|
1284 |
val diffs0_imp_equal = thm "diffs0_imp_equal"; |
|
1285 |
val one_less_mult = thm "one_less_mult"; |
|
1286 |
val n_less_m_mult_n = thm "n_less_m_mult_n"; |
|
1287 |
val n_less_n_mult_m = thm "n_less_n_mult_m"; |
|
1288 |
val diff_diff_right = thm "diff_diff_right"; |
|
1289 |
val diff_Suc_diff_eq1 = thm "diff_Suc_diff_eq1"; |
|
1290 |
val diff_Suc_diff_eq2 = thm "diff_Suc_diff_eq2"; |
|
1291 |
*} |
|
1292 |
||
22718 | 1293 |
|
1294 |
subsection{*Embedding of the Naturals into any |
|
23276
a70934b63910
generalize of_nat and related constants to class semiring_1
huffman
parents:
23263
diff
changeset
|
1295 |
@{text semiring_1}: @{term of_nat}*} |
21243 | 1296 |
|
23276
a70934b63910
generalize of_nat and related constants to class semiring_1
huffman
parents:
23263
diff
changeset
|
1297 |
consts of_nat :: "nat => 'a::semiring_1" |
21243 | 1298 |
|
1299 |
primrec |
|
1300 |
of_nat_0: "of_nat 0 = 0" |
|
1301 |
of_nat_Suc: "of_nat (Suc m) = of_nat m + 1" |
|
1302 |
||
22920 | 1303 |
lemma of_nat_id [simp]: "(of_nat n \<Colon> nat) = n" |
1304 |
by (induct n) auto |
|
1305 |
||
21243 | 1306 |
lemma of_nat_1 [simp]: "of_nat 1 = 1" |
22718 | 1307 |
by simp |
21243 | 1308 |
|
1309 |
lemma of_nat_add [simp]: "of_nat (m+n) = of_nat m + of_nat n" |
|
22718 | 1310 |
by (induct m) (simp_all add: add_ac) |
21243 | 1311 |
|
1312 |
lemma of_nat_mult [simp]: "of_nat (m*n) = of_nat m * of_nat n" |
|
22718 | 1313 |
by (induct m) (simp_all add: add_ac left_distrib) |
21243 | 1314 |
|
1315 |
lemma zero_le_imp_of_nat: "0 \<le> (of_nat m::'a::ordered_semidom)" |
|
22718 | 1316 |
apply (induct m, simp_all) |
1317 |
apply (erule order_trans) |
|
1318 |
apply (rule less_add_one [THEN order_less_imp_le]) |
|
1319 |
done |
|
21243 | 1320 |
|
1321 |
lemma less_imp_of_nat_less: |
|
22718 | 1322 |
"m < n ==> of_nat m < (of_nat n::'a::ordered_semidom)" |
1323 |
apply (induct m n rule: diff_induct, simp_all) |
|
1324 |
apply (insert add_le_less_mono [OF zero_le_imp_of_nat zero_less_one], force) |
|
1325 |
done |
|
21243 | 1326 |
|
1327 |
lemma of_nat_less_imp_less: |
|
22718 | 1328 |
"of_nat m < (of_nat n::'a::ordered_semidom) ==> m < n" |
1329 |
apply (induct m n rule: diff_induct, simp_all) |
|
1330 |
apply (insert zero_le_imp_of_nat) |
|
1331 |
apply (force simp add: linorder_not_less [symmetric]) |
|
1332 |
done |
|
21243 | 1333 |
|
1334 |
lemma of_nat_less_iff [simp]: |
|
22718 | 1335 |
"(of_nat m < (of_nat n::'a::ordered_semidom)) = (m<n)" |
1336 |
by (blast intro: of_nat_less_imp_less less_imp_of_nat_less) |
|
21243 | 1337 |
|
1338 |
text{*Special cases where either operand is zero*} |
|
22718 | 1339 |
|
1340 |
lemma of_nat_0_less_iff [simp]: "((0::'a::ordered_semidom) < of_nat n) = (0 < n)" |
|
1341 |
by (rule of_nat_less_iff [of 0, simplified]) |
|
1342 |
||
1343 |
lemma of_nat_less_0_iff [simp]: "\<not> of_nat m < (0::'a::ordered_semidom)" |
|
1344 |
by (rule of_nat_less_iff [of _ 0, simplified]) |
|
21243 | 1345 |
|
1346 |
lemma of_nat_le_iff [simp]: |
|
22718 | 1347 |
"(of_nat m \<le> (of_nat n::'a::ordered_semidom)) = (m \<le> n)" |
1348 |
by (simp add: linorder_not_less [symmetric]) |
|
21243 | 1349 |
|
1350 |
text{*Special cases where either operand is zero*} |
|
22718 | 1351 |
lemma of_nat_0_le_iff [simp]: "(0::'a::ordered_semidom) \<le> of_nat n" |
1352 |
by (rule of_nat_le_iff [of 0, simplified]) |
|
1353 |
lemma of_nat_le_0_iff [simp]: "(of_nat m \<le> (0::'a::ordered_semidom)) = (m = 0)" |
|
1354 |
by (rule of_nat_le_iff [of _ 0, simplified]) |
|
21243 | 1355 |
|
23282
dfc459989d24
add axclass semiring_char_0 for types where of_nat is injective
huffman
parents:
23276
diff
changeset
|
1356 |
text{*Class for unital semirings with characteristic zero. |
dfc459989d24
add axclass semiring_char_0 for types where of_nat is injective
huffman
parents:
23276
diff
changeset
|
1357 |
Includes non-ordered rings like the complex numbers.*} |
dfc459989d24
add axclass semiring_char_0 for types where of_nat is injective
huffman
parents:
23276
diff
changeset
|
1358 |
axclass semiring_char_0 < semiring_1 |
dfc459989d24
add axclass semiring_char_0 for types where of_nat is injective
huffman
parents:
23276
diff
changeset
|
1359 |
of_nat_eq_iff [simp]: "(of_nat m = of_nat n) = (m = n)" |
dfc459989d24
add axclass semiring_char_0 for types where of_nat is injective
huffman
parents:
23276
diff
changeset
|
1360 |
|
dfc459989d24
add axclass semiring_char_0 for types where of_nat is injective
huffman
parents:
23276
diff
changeset
|
1361 |
text{*Every @{text ordered_semidom} has characteristic zero.*} |
dfc459989d24
add axclass semiring_char_0 for types where of_nat is injective
huffman
parents:
23276
diff
changeset
|
1362 |
instance ordered_semidom < semiring_char_0 |
dfc459989d24
add axclass semiring_char_0 for types where of_nat is injective
huffman
parents:
23276
diff
changeset
|
1363 |
by intro_classes (simp add: order_eq_iff) |
21243 | 1364 |
|
1365 |
text{*Special cases where either operand is zero*} |
|
23282
dfc459989d24
add axclass semiring_char_0 for types where of_nat is injective
huffman
parents:
23276
diff
changeset
|
1366 |
lemma of_nat_0_eq_iff [simp]: "((0::'a::semiring_char_0) = of_nat n) = (0 = n)" |
22718 | 1367 |
by (rule of_nat_eq_iff [of 0, simplified]) |
23282
dfc459989d24
add axclass semiring_char_0 for types where of_nat is injective
huffman
parents:
23276
diff
changeset
|
1368 |
lemma of_nat_eq_0_iff [simp]: "(of_nat m = (0::'a::semiring_char_0)) = (m = 0)" |
22718 | 1369 |
by (rule of_nat_eq_iff [of _ 0, simplified]) |
21243 | 1370 |
|
23347 | 1371 |
lemma inj_of_nat: "inj (of_nat :: nat \<Rightarrow> 'a::semiring_char_0)" |
1372 |
by (simp add: inj_on_def) |
|
1373 |
||
21243 | 1374 |
lemma of_nat_diff [simp]: |
22718 | 1375 |
"n \<le> m ==> of_nat (m - n) = of_nat m - (of_nat n :: 'a::ring_1)" |
1376 |
by (simp del: of_nat_add |
|
1377 |
add: compare_rls of_nat_add [symmetric] split add: nat_diff_split) |
|
21243 | 1378 |
|
22483 | 1379 |
instance nat :: distrib_lattice |
1380 |
"inf \<equiv> min" |
|
1381 |
"sup \<equiv> max" |
|
1382 |
by intro_classes (auto simp add: inf_nat_def sup_nat_def) |
|
1383 |
||
22157 | 1384 |
|
1385 |
subsection {* Size function *} |
|
1386 |
||
22920 | 1387 |
lemma nat_size [simp, code func]: "size (n\<Colon>nat) = n" |
22157 | 1388 |
by (induct n) simp_all |
1389 |
||
923 | 1390 |
end |