author | haftmann |
Thu, 12 Aug 2010 17:56:41 +0200 | |
changeset 38393 | 7c045c03598f |
parent 37765 | 26bdfb7b680b |
child 45605 | a89b4bc311a5 |
permissions | -rw-r--r-- |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
31366
diff
changeset
|
1 |
(* Author: Jacques D. Fleuriot, University of Edinburgh |
15093
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
paulson
parents:
13958
diff
changeset
|
2 |
Conversion to Isar and new proofs by Lawrence C Paulson, 2004 |
35328 | 3 |
|
4 |
Replaced by ~~/src/HOL/Multivariate_Analysis/Real_Integral.thy . |
|
13958 | 5 |
*) |
6 |
||
35328 | 7 |
header{*Theory of Integration on real intervals*} |
8 |
||
9 |
theory Gauge_Integration |
|
10 |
imports Complex_Main |
|
11 |
begin |
|
12 |
||
13 |
text {* |
|
13958 | 14 |
|
35328 | 15 |
\textbf{Attention}: This theory defines the Integration on real |
16 |
intervals. This is just a example theory for historical / expository interests. |
|
17 |
A better replacement is found in the Multivariate Analysis library. This defines |
|
18 |
the gauge integral on real vector spaces and in the Real Integral theory |
|
19 |
is a specialization to the integral on arbitrary real intervals. The |
|
20 |
Multivariate Analysis package also provides a better support for analysis on |
|
21 |
integrals. |
|
22 |
||
23 |
*} |
|
15093
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
paulson
parents:
13958
diff
changeset
|
24 |
|
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
paulson
parents:
13958
diff
changeset
|
25 |
text{*We follow John Harrison in formalizing the Gauge integral.*} |
13958 | 26 |
|
31259
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
27 |
subsection {* Gauges *} |
15093
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
paulson
parents:
13958
diff
changeset
|
28 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
20792
diff
changeset
|
29 |
definition |
31253 | 30 |
gauge :: "[real set, real => real] => bool" where |
37765 | 31 |
"gauge E g = (\<forall>x\<in>E. 0 < g(x))" |
13958 | 32 |
|
31259
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
33 |
|
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
34 |
subsection {* Gauge-fine divisions *} |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
35 |
|
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
36 |
inductive |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
37 |
fine :: "[real \<Rightarrow> real, real \<times> real, (real \<times> real \<times> real) list] \<Rightarrow> bool" |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
38 |
for |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
39 |
\<delta> :: "real \<Rightarrow> real" |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
40 |
where |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
41 |
fine_Nil: |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
42 |
"fine \<delta> (a, a) []" |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
43 |
| fine_Cons: |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
44 |
"\<lbrakk>fine \<delta> (b, c) D; a < b; a \<le> x; x \<le> b; b - a < \<delta> x\<rbrakk> |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
45 |
\<Longrightarrow> fine \<delta> (a, c) ((a, x, b) # D)" |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
46 |
|
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
47 |
lemmas fine_induct [induct set: fine] = |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
48 |
fine.induct [of "\<delta>" "(a,b)" "D" "split P", unfolded split_conv, standard] |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
49 |
|
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
50 |
lemma fine_single: |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
51 |
"\<lbrakk>a < b; a \<le> x; x \<le> b; b - a < \<delta> x\<rbrakk> \<Longrightarrow> fine \<delta> (a, b) [(a, x, b)]" |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
52 |
by (rule fine_Cons [OF fine_Nil]) |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
53 |
|
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
54 |
lemma fine_append: |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
55 |
"\<lbrakk>fine \<delta> (a, b) D; fine \<delta> (b, c) D'\<rbrakk> \<Longrightarrow> fine \<delta> (a, c) (D @ D')" |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
56 |
by (induct set: fine, simp, simp add: fine_Cons) |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
57 |
|
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
58 |
lemma fine_imp_le: "fine \<delta> (a, b) D \<Longrightarrow> a \<le> b" |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
59 |
by (induct set: fine, simp_all) |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
60 |
|
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
61 |
lemma nonempty_fine_imp_less: "\<lbrakk>fine \<delta> (a, b) D; D \<noteq> []\<rbrakk> \<Longrightarrow> a < b" |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
62 |
apply (induct set: fine, simp) |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
63 |
apply (drule fine_imp_le, simp) |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
64 |
done |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
65 |
|
35441 | 66 |
lemma fine_Nil_iff: "fine \<delta> (a, b) [] \<longleftrightarrow> a = b" |
67 |
by (auto elim: fine.cases intro: fine.intros) |
|
31259
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
68 |
|
35441 | 69 |
lemma fine_same_iff: "fine \<delta> (a, a) D \<longleftrightarrow> D = []" |
70 |
proof |
|
71 |
assume "fine \<delta> (a, a) D" thus "D = []" |
|
72 |
by (metis nonempty_fine_imp_less less_irrefl) |
|
73 |
next |
|
74 |
assume "D = []" thus "fine \<delta> (a, a) D" |
|
75 |
by (simp add: fine_Nil) |
|
76 |
qed |
|
77 |
||
78 |
lemma empty_fine_imp_eq: "\<lbrakk>fine \<delta> (a, b) D; D = []\<rbrakk> \<Longrightarrow> a = b" |
|
79 |
by (simp add: fine_Nil_iff) |
|
31259
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
80 |
|
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
81 |
lemma mem_fine: |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
82 |
"\<lbrakk>fine \<delta> (a, b) D; (u, x, v) \<in> set D\<rbrakk> \<Longrightarrow> u < v \<and> u \<le> x \<and> x \<le> v" |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
83 |
by (induct set: fine, simp, force) |
13958 | 84 |
|
31259
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
85 |
lemma mem_fine2: "\<lbrakk>fine \<delta> (a, b) D; (u, z, v) \<in> set D\<rbrakk> \<Longrightarrow> a \<le> u \<and> v \<le> b" |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
86 |
apply (induct arbitrary: z u v set: fine, auto) |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
87 |
apply (simp add: fine_imp_le) |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
88 |
apply (erule order_trans [OF less_imp_le], simp) |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
89 |
done |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
90 |
|
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
91 |
lemma mem_fine3: "\<lbrakk>fine \<delta> (a, b) D; (u, z, v) \<in> set D\<rbrakk> \<Longrightarrow> v - u < \<delta> z" |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
92 |
by (induct arbitrary: z u v set: fine) auto |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
93 |
|
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
94 |
lemma BOLZANO: |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
95 |
fixes P :: "real \<Rightarrow> real \<Rightarrow> bool" |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
96 |
assumes 1: "a \<le> b" |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
97 |
assumes 2: "\<And>a b c. \<lbrakk>P a b; P b c; a \<le> b; b \<le> c\<rbrakk> \<Longrightarrow> P a c" |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
98 |
assumes 3: "\<And>x. \<exists>d>0. \<forall>a b. a \<le> x & x \<le> b & (b-a) < d \<longrightarrow> P a b" |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
99 |
shows "P a b" |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
100 |
apply (subgoal_tac "split P (a,b)", simp) |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
101 |
apply (rule lemma_BOLZANO [OF _ _ 1]) |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
102 |
apply (clarify, erule (3) 2) |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
103 |
apply (clarify, rule 3) |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
104 |
done |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
105 |
|
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
106 |
text{*We can always find a division that is fine wrt any gauge*} |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
107 |
|
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
108 |
lemma fine_exists: |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
109 |
assumes "a \<le> b" and "gauge {a..b} \<delta>" shows "\<exists>D. fine \<delta> (a, b) D" |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
110 |
proof - |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
111 |
{ |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
112 |
fix u v :: real assume "u \<le> v" |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
113 |
have "a \<le> u \<Longrightarrow> v \<le> b \<Longrightarrow> \<exists>D. fine \<delta> (u, v) D" |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
114 |
apply (induct u v rule: BOLZANO, rule `u \<le> v`) |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
115 |
apply (simp, fast intro: fine_append) |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
116 |
apply (case_tac "a \<le> x \<and> x \<le> b") |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
117 |
apply (rule_tac x="\<delta> x" in exI) |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
118 |
apply (rule conjI) |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
119 |
apply (simp add: `gauge {a..b} \<delta>` [unfolded gauge_def]) |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
120 |
apply (clarify, rename_tac u v) |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
121 |
apply (case_tac "u = v") |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
122 |
apply (fast intro: fine_Nil) |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
123 |
apply (subgoal_tac "u < v", fast intro: fine_single, simp) |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
124 |
apply (rule_tac x="1" in exI, clarsimp) |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
125 |
done |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
126 |
} |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
127 |
with `a \<le> b` show ?thesis by auto |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
128 |
qed |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
129 |
|
31364 | 130 |
lemma fine_covers_all: |
131 |
assumes "fine \<delta> (a, c) D" and "a < x" and "x \<le> c" |
|
132 |
shows "\<exists> N < length D. \<forall> d t e. D ! N = (d,t,e) \<longrightarrow> d < x \<and> x \<le> e" |
|
133 |
using assms |
|
134 |
proof (induct set: fine) |
|
135 |
case (2 b c D a t) |
|
136 |
thus ?case |
|
137 |
proof (cases "b < x") |
|
138 |
case True |
|
139 |
with 2 obtain N where *: "N < length D" |
|
140 |
and **: "\<And> d t e. D ! N = (d,t,e) \<Longrightarrow> d < x \<and> x \<le> e" by auto |
|
141 |
hence "Suc N < length ((a,t,b)#D) \<and> |
|
142 |
(\<forall> d t' e. ((a,t,b)#D) ! Suc N = (d,t',e) \<longrightarrow> d < x \<and> x \<le> e)" by auto |
|
143 |
thus ?thesis by auto |
|
144 |
next |
|
145 |
case False with 2 |
|
146 |
have "0 < length ((a,t,b)#D) \<and> |
|
147 |
(\<forall> d t' e. ((a,t,b)#D) ! 0 = (d,t',e) \<longrightarrow> d < x \<and> x \<le> e)" by auto |
|
148 |
thus ?thesis by auto |
|
149 |
qed |
|
150 |
qed auto |
|
151 |
||
152 |
lemma fine_append_split: |
|
153 |
assumes "fine \<delta> (a,b) D" and "D2 \<noteq> []" and "D = D1 @ D2" |
|
154 |
shows "fine \<delta> (a,fst (hd D2)) D1" (is "?fine1") |
|
155 |
and "fine \<delta> (fst (hd D2), b) D2" (is "?fine2") |
|
156 |
proof - |
|
157 |
from assms |
|
158 |
have "?fine1 \<and> ?fine2" |
|
159 |
proof (induct arbitrary: D1 D2) |
|
160 |
case (2 b c D a' x D1 D2) |
|
161 |
note induct = this |
|
162 |
||
163 |
thus ?case |
|
164 |
proof (cases D1) |
|
165 |
case Nil |
|
166 |
hence "fst (hd D2) = a'" using 2 by auto |
|
167 |
with fine_Cons[OF `fine \<delta> (b,c) D` induct(3,4,5)] Nil induct |
|
168 |
show ?thesis by (auto intro: fine_Nil) |
|
169 |
next |
|
170 |
case (Cons d1 D1') |
|
171 |
with induct(2)[OF `D2 \<noteq> []`, of D1'] induct(8) |
|
172 |
have "fine \<delta> (b, fst (hd D2)) D1'" and "fine \<delta> (fst (hd D2), c) D2" and |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
31366
diff
changeset
|
173 |
"d1 = (a', x, b)" by auto |
31364 | 174 |
with fine_Cons[OF this(1) induct(3,4,5), OF induct(6)] Cons |
175 |
show ?thesis by auto |
|
176 |
qed |
|
177 |
qed auto |
|
178 |
thus ?fine1 and ?fine2 by auto |
|
179 |
qed |
|
180 |
||
181 |
lemma fine_\<delta>_expand: |
|
182 |
assumes "fine \<delta> (a,b) D" |
|
35441 | 183 |
and "\<And>x. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> \<delta> x \<le> \<delta>' x" |
31364 | 184 |
shows "fine \<delta>' (a,b) D" |
185 |
using assms proof induct |
|
186 |
case 1 show ?case by (rule fine_Nil) |
|
187 |
next |
|
188 |
case (2 b c D a x) |
|
189 |
show ?case |
|
190 |
proof (rule fine_Cons) |
|
191 |
show "fine \<delta>' (b,c) D" using 2 by auto |
|
192 |
from fine_imp_le[OF 2(1)] 2(6) `x \<le> b` |
|
193 |
show "b - a < \<delta>' x" |
|
194 |
using 2(7)[OF `a \<le> x`] by auto |
|
195 |
qed (auto simp add: 2) |
|
196 |
qed |
|
197 |
||
198 |
lemma fine_single_boundaries: |
|
199 |
assumes "fine \<delta> (a,b) D" and "D = [(d, t, e)]" |
|
200 |
shows "a = d \<and> b = e" |
|
201 |
using assms proof induct |
|
202 |
case (2 b c D a x) |
|
203 |
hence "D = []" and "a = d" and "b = e" by auto |
|
204 |
moreover |
|
205 |
from `fine \<delta> (b,c) D` `D = []` have "b = c" |
|
206 |
by (rule empty_fine_imp_eq) |
|
207 |
ultimately show ?case by simp |
|
208 |
qed auto |
|
209 |
||
35328 | 210 |
lemma fine_listsum_eq_diff: |
211 |
fixes f :: "real \<Rightarrow> real" |
|
212 |
shows "fine \<delta> (a, b) D \<Longrightarrow> (\<Sum>(u, x, v)\<leftarrow>D. f v - f u) = f b - f a" |
|
213 |
by (induct set: fine) simp_all |
|
214 |
||
215 |
text{*Lemmas about combining gauges*} |
|
216 |
||
217 |
lemma gauge_min: |
|
218 |
"[| gauge(E) g1; gauge(E) g2 |] |
|
219 |
==> gauge(E) (%x. min (g1(x)) (g2(x)))" |
|
220 |
by (simp add: gauge_def) |
|
221 |
||
222 |
lemma fine_min: |
|
223 |
"fine (%x. min (g1(x)) (g2(x))) (a,b) D |
|
224 |
==> fine(g1) (a,b) D & fine(g2) (a,b) D" |
|
225 |
apply (erule fine.induct) |
|
226 |
apply (simp add: fine_Nil) |
|
227 |
apply (simp add: fine_Cons) |
|
228 |
done |
|
31259
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
229 |
|
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
230 |
subsection {* Riemann sum *} |
13958 | 231 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
20792
diff
changeset
|
232 |
definition |
31259
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
233 |
rsum :: "[(real \<times> real \<times> real) list, real \<Rightarrow> real] \<Rightarrow> real" where |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
234 |
"rsum D f = (\<Sum>(u, x, v)\<leftarrow>D. f x * (v - u))" |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
235 |
|
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
236 |
lemma rsum_Nil [simp]: "rsum [] f = 0" |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
237 |
unfolding rsum_def by simp |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
238 |
|
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
239 |
lemma rsum_Cons [simp]: "rsum ((u, x, v) # D) f = f x * (v - u) + rsum D f" |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
240 |
unfolding rsum_def by simp |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
241 |
|
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
242 |
lemma rsum_zero [simp]: "rsum D (\<lambda>x. 0) = 0" |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
243 |
by (induct D, auto) |
13958 | 244 |
|
31259
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
245 |
lemma rsum_left_distrib: "rsum D f * c = rsum D (\<lambda>x. f x * c)" |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
246 |
by (induct D, auto simp add: algebra_simps) |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
247 |
|
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
248 |
lemma rsum_right_distrib: "c * rsum D f = rsum D (\<lambda>x. c * f x)" |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
249 |
by (induct D, auto simp add: algebra_simps) |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
250 |
|
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
251 |
lemma rsum_add: "rsum D (\<lambda>x. f x + g x) = rsum D f + rsum D g" |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
252 |
by (induct D, auto simp add: algebra_simps) |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
253 |
|
31364 | 254 |
lemma rsum_append: "rsum (D1 @ D2) f = rsum D1 f + rsum D2 f" |
255 |
unfolding rsum_def map_append listsum_append .. |
|
256 |
||
31259
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
257 |
|
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
258 |
subsection {* Gauge integrability (definite) *} |
13958 | 259 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
20792
diff
changeset
|
260 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
20792
diff
changeset
|
261 |
Integral :: "[(real*real),real=>real,real] => bool" where |
37765 | 262 |
"Integral = (%(a,b) f k. \<forall>e > 0. |
31259
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
263 |
(\<exists>\<delta>. gauge {a .. b} \<delta> & |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
264 |
(\<forall>D. fine \<delta> (a,b) D --> |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
265 |
\<bar>rsum D f - k\<bar> < e)))" |
15093
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
paulson
parents:
13958
diff
changeset
|
266 |
|
35441 | 267 |
lemma Integral_eq: |
268 |
"Integral (a, b) f k \<longleftrightarrow> |
|
269 |
(\<forall>e>0. \<exists>\<delta>. gauge {a..b} \<delta> \<and> (\<forall>D. fine \<delta> (a,b) D \<longrightarrow> \<bar>rsum D f - k\<bar> < e))" |
|
270 |
unfolding Integral_def by simp |
|
271 |
||
272 |
lemma IntegralI: |
|
273 |
assumes "\<And>e. 0 < e \<Longrightarrow> |
|
274 |
\<exists>\<delta>. gauge {a..b} \<delta> \<and> (\<forall>D. fine \<delta> (a, b) D \<longrightarrow> \<bar>rsum D f - k\<bar> < e)" |
|
275 |
shows "Integral (a, b) f k" |
|
276 |
using assms unfolding Integral_def by auto |
|
277 |
||
278 |
lemma IntegralE: |
|
279 |
assumes "Integral (a, b) f k" and "0 < e" |
|
280 |
obtains \<delta> where "gauge {a..b} \<delta>" and "\<forall>D. fine \<delta> (a, b) D \<longrightarrow> \<bar>rsum D f - k\<bar> < e" |
|
281 |
using assms unfolding Integral_def by auto |
|
282 |
||
31252 | 283 |
lemma Integral_def2: |
31259
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
284 |
"Integral = (%(a,b) f k. \<forall>e>0. (\<exists>\<delta>. gauge {a..b} \<delta> & |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
285 |
(\<forall>D. fine \<delta> (a,b) D --> |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
286 |
\<bar>rsum D f - k\<bar> \<le> e)))" |
31252 | 287 |
unfolding Integral_def |
288 |
apply (safe intro!: ext) |
|
289 |
apply (fast intro: less_imp_le) |
|
290 |
apply (drule_tac x="e/2" in spec) |
|
291 |
apply force |
|
292 |
done |
|
293 |
||
15093
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
paulson
parents:
13958
diff
changeset
|
294 |
text{*The integral is unique if it exists*} |
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
paulson
parents:
13958
diff
changeset
|
295 |
|
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
paulson
parents:
13958
diff
changeset
|
296 |
lemma Integral_unique: |
35441 | 297 |
assumes le: "a \<le> b" |
298 |
assumes 1: "Integral (a, b) f k1" |
|
299 |
assumes 2: "Integral (a, b) f k2" |
|
300 |
shows "k1 = k2" |
|
301 |
proof (rule ccontr) |
|
302 |
assume "k1 \<noteq> k2" |
|
303 |
hence e: "0 < \<bar>k1 - k2\<bar> / 2" by simp |
|
304 |
obtain d1 where "gauge {a..b} d1" and |
|
305 |
d1: "\<forall>D. fine d1 (a, b) D \<longrightarrow> \<bar>rsum D f - k1\<bar> < \<bar>k1 - k2\<bar> / 2" |
|
306 |
using 1 e by (rule IntegralE) |
|
307 |
obtain d2 where "gauge {a..b} d2" and |
|
308 |
d2: "\<forall>D. fine d2 (a, b) D \<longrightarrow> \<bar>rsum D f - k2\<bar> < \<bar>k1 - k2\<bar> / 2" |
|
309 |
using 2 e by (rule IntegralE) |
|
310 |
have "gauge {a..b} (\<lambda>x. min (d1 x) (d2 x))" |
|
311 |
using `gauge {a..b} d1` and `gauge {a..b} d2` |
|
312 |
by (rule gauge_min) |
|
313 |
then obtain D where "fine (\<lambda>x. min (d1 x) (d2 x)) (a, b) D" |
|
314 |
using fine_exists [OF le] by fast |
|
315 |
hence "fine d1 (a, b) D" and "fine d2 (a, b) D" |
|
316 |
by (auto dest: fine_min) |
|
317 |
hence "\<bar>rsum D f - k1\<bar> < \<bar>k1 - k2\<bar> / 2" and "\<bar>rsum D f - k2\<bar> < \<bar>k1 - k2\<bar> / 2" |
|
318 |
using d1 d2 by simp_all |
|
319 |
hence "\<bar>rsum D f - k1\<bar> + \<bar>rsum D f - k2\<bar> < \<bar>k1 - k2\<bar> / 2 + \<bar>k1 - k2\<bar> / 2" |
|
320 |
by (rule add_strict_mono) |
|
321 |
thus False by auto |
|
322 |
qed |
|
323 |
||
324 |
lemma Integral_zero: "Integral(a,a) f 0" |
|
325 |
apply (rule IntegralI) |
|
326 |
apply (rule_tac x = "\<lambda>x. 1" in exI) |
|
327 |
apply (simp add: fine_same_iff gauge_def) |
|
15093
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
paulson
parents:
13958
diff
changeset
|
328 |
done |
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
paulson
parents:
13958
diff
changeset
|
329 |
|
35441 | 330 |
lemma Integral_same_iff [simp]: "Integral (a, a) f k \<longleftrightarrow> k = 0" |
331 |
by (auto intro: Integral_zero Integral_unique) |
|
332 |
||
333 |
lemma Integral_zero_fun: "Integral (a,b) (\<lambda>x. 0) 0" |
|
334 |
apply (rule IntegralI) |
|
335 |
apply (rule_tac x="\<lambda>x. 1" in exI, simp add: gauge_def) |
|
15093
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
paulson
parents:
13958
diff
changeset
|
336 |
done |
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
paulson
parents:
13958
diff
changeset
|
337 |
|
31259
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
338 |
lemma fine_rsum_const: "fine \<delta> (a,b) D \<Longrightarrow> rsum D (\<lambda>x. c) = (c * (b - a))" |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
339 |
unfolding rsum_def |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
340 |
by (induct set: fine, auto simp add: algebra_simps) |
15093
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
paulson
parents:
13958
diff
changeset
|
341 |
|
35441 | 342 |
lemma Integral_mult_const: "a \<le> b \<Longrightarrow> Integral(a,b) (\<lambda>x. c) (c * (b - a))" |
31259
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
343 |
apply (cases "a = b", simp) |
35441 | 344 |
apply (rule IntegralI) |
345 |
apply (rule_tac x = "\<lambda>x. b - a" in exI) |
|
31259
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
346 |
apply (rule conjI, simp add: gauge_def) |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
347 |
apply (clarify) |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
348 |
apply (subst fine_rsum_const, assumption, simp) |
15093
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
paulson
parents:
13958
diff
changeset
|
349 |
done |
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
paulson
parents:
13958
diff
changeset
|
350 |
|
35441 | 351 |
lemma Integral_eq_diff_bounds: "a \<le> b \<Longrightarrow> Integral(a,b) (\<lambda>x. 1) (b - a)" |
352 |
using Integral_mult_const [of a b 1] by simp |
|
15093
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
paulson
parents:
13958
diff
changeset
|
353 |
|
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
paulson
parents:
13958
diff
changeset
|
354 |
lemma Integral_mult: |
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
paulson
parents:
13958
diff
changeset
|
355 |
"[| a \<le> b; Integral(a,b) f k |] ==> Integral(a,b) (%x. c * f x) (c * k)" |
35441 | 356 |
apply (auto simp add: order_le_less) |
357 |
apply (cases "c = 0", simp add: Integral_zero_fun) |
|
358 |
apply (rule IntegralI) |
|
359 |
apply (erule_tac e="e / \<bar>c\<bar>" in IntegralE, simp add: divide_pos_pos) |
|
31259
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
360 |
apply (rule_tac x="\<delta>" in exI, clarify) |
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
361 |
apply (drule_tac x="D" in spec, clarify) |
31257 | 362 |
apply (simp add: pos_less_divide_eq abs_mult [symmetric] |
363 |
algebra_simps rsum_right_distrib) |
|
15093
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
paulson
parents:
13958
diff
changeset
|
364 |
done |
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
paulson
parents:
13958
diff
changeset
|
365 |
|
31364 | 366 |
lemma Integral_add: |
367 |
assumes "Integral (a, b) f x1" |
|
368 |
assumes "Integral (b, c) f x2" |
|
369 |
assumes "a \<le> b" and "b \<le> c" |
|
370 |
shows "Integral (a, c) f (x1 + x2)" |
|
35441 | 371 |
proof (cases "a < b \<and> b < c", rule IntegralI) |
31364 | 372 |
fix \<epsilon> :: real assume "0 < \<epsilon>" |
373 |
hence "0 < \<epsilon> / 2" by auto |
|
374 |
||
375 |
assume "a < b \<and> b < c" |
|
376 |
hence "a < b" and "b < c" by auto |
|
377 |
||
378 |
obtain \<delta>1 where \<delta>1_gauge: "gauge {a..b} \<delta>1" |
|
35441 | 379 |
and I1: "\<And> D. fine \<delta>1 (a,b) D \<Longrightarrow> \<bar> rsum D f - x1 \<bar> < (\<epsilon> / 2)" |
380 |
using IntegralE [OF `Integral (a, b) f x1` `0 < \<epsilon>/2`] by auto |
|
31364 | 381 |
|
382 |
obtain \<delta>2 where \<delta>2_gauge: "gauge {b..c} \<delta>2" |
|
35441 | 383 |
and I2: "\<And> D. fine \<delta>2 (b,c) D \<Longrightarrow> \<bar> rsum D f - x2 \<bar> < (\<epsilon> / 2)" |
384 |
using IntegralE [OF `Integral (b, c) f x2` `0 < \<epsilon>/2`] by auto |
|
31364 | 385 |
|
386 |
def \<delta> \<equiv> "\<lambda> x. if x < b then min (\<delta>1 x) (b - x) |
|
387 |
else if x = b then min (\<delta>1 b) (\<delta>2 b) |
|
388 |
else min (\<delta>2 x) (x - b)" |
|
389 |
||
390 |
have "gauge {a..c} \<delta>" |
|
391 |
using \<delta>1_gauge \<delta>2_gauge unfolding \<delta>_def gauge_def by auto |
|
35441 | 392 |
|
31364 | 393 |
moreover { |
394 |
fix D :: "(real \<times> real \<times> real) list" |
|
395 |
assume fine: "fine \<delta> (a,c) D" |
|
396 |
from fine_covers_all[OF this `a < b` `b \<le> c`] |
|
397 |
obtain N where "N < length D" |
|
398 |
and *: "\<forall> d t e. D ! N = (d, t, e) \<longrightarrow> d < b \<and> b \<le> e" |
|
399 |
by auto |
|
400 |
obtain d t e where D_eq: "D ! N = (d, t, e)" by (cases "D!N", auto) |
|
401 |
with * have "d < b" and "b \<le> e" by auto |
|
402 |
have in_D: "(d, t, e) \<in> set D" |
|
403 |
using D_eq[symmetric] using `N < length D` by auto |
|
404 |
||
405 |
from mem_fine[OF fine in_D] |
|
406 |
have "d < e" and "d \<le> t" and "t \<le> e" by auto |
|
407 |
||
408 |
have "t = b" |
|
409 |
proof (rule ccontr) |
|
410 |
assume "t \<noteq> b" |
|
411 |
with mem_fine3[OF fine in_D] `b \<le> e` `d \<le> t` `t \<le> e` `d < b` \<delta>_def |
|
412 |
show False by (cases "t < b") auto |
|
413 |
qed |
|
414 |
||
415 |
let ?D1 = "take N D" |
|
416 |
let ?D2 = "drop N D" |
|
417 |
def D1 \<equiv> "take N D @ [(d, t, b)]" |
|
418 |
def D2 \<equiv> "(if b = e then [] else [(b, t, e)]) @ drop (Suc N) D" |
|
419 |
||
420 |
have "D \<noteq> []" using `N < length D` by auto |
|
421 |
from hd_drop_conv_nth[OF this `N < length D`] |
|
422 |
have "fst (hd ?D2) = d" using `D ! N = (d, t, e)` by auto |
|
423 |
with fine_append_split[OF _ _ append_take_drop_id[symmetric]] |
|
424 |
have fine1: "fine \<delta> (a,d) ?D1" and fine2: "fine \<delta> (d,c) ?D2" |
|
425 |
using `N < length D` fine by auto |
|
426 |
||
427 |
have "fine \<delta>1 (a,b) D1" unfolding D1_def |
|
428 |
proof (rule fine_append) |
|
429 |
show "fine \<delta>1 (a, d) ?D1" |
|
430 |
proof (rule fine1[THEN fine_\<delta>_expand]) |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
31366
diff
changeset
|
431 |
fix x assume "a \<le> x" "x \<le> d" |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
31366
diff
changeset
|
432 |
hence "x \<le> b" using `d < b` `x \<le> d` by auto |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
31366
diff
changeset
|
433 |
thus "\<delta> x \<le> \<delta>1 x" unfolding \<delta>_def by auto |
31364 | 434 |
qed |
435 |
||
436 |
have "b - d < \<delta>1 t" |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
31366
diff
changeset
|
437 |
using mem_fine3[OF fine in_D] \<delta>_def `b \<le> e` `t = b` by auto |
31364 | 438 |
from `d < b` `d \<le> t` `t = b` this |
439 |
show "fine \<delta>1 (d, b) [(d, t, b)]" using fine_single by auto |
|
440 |
qed |
|
441 |
note rsum1 = I1[OF this] |
|
442 |
||
443 |
have drop_split: "drop N D = [D ! N] @ drop (Suc N) D" |
|
444 |
using nth_drop'[OF `N < length D`] by simp |
|
445 |
||
446 |
have fine2: "fine \<delta>2 (e,c) (drop (Suc N) D)" |
|
447 |
proof (cases "drop (Suc N) D = []") |
|
448 |
case True |
|
449 |
note * = fine2[simplified drop_split True D_eq append_Nil2] |
|
450 |
have "e = c" using fine_single_boundaries[OF * refl] by auto |
|
451 |
thus ?thesis unfolding True using fine_Nil by auto |
|
452 |
next |
|
453 |
case False |
|
454 |
note * = fine_append_split[OF fine2 False drop_split] |
|
455 |
from fine_single_boundaries[OF *(1)] |
|
456 |
have "fst (hd (drop (Suc N) D)) = e" using D_eq by auto |
|
457 |
with *(2) have "fine \<delta> (e,c) (drop (Suc N) D)" by auto |
|
458 |
thus ?thesis |
|
459 |
proof (rule fine_\<delta>_expand) |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
31366
diff
changeset
|
460 |
fix x assume "e \<le> x" and "x \<le> c" |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
31366
diff
changeset
|
461 |
thus "\<delta> x \<le> \<delta>2 x" using `b \<le> e` unfolding \<delta>_def by auto |
31364 | 462 |
qed |
463 |
qed |
|
464 |
||
465 |
have "fine \<delta>2 (b, c) D2" |
|
466 |
proof (cases "e = b") |
|
467 |
case True thus ?thesis using fine2 by (simp add: D1_def D2_def) |
|
468 |
next |
|
469 |
case False |
|
470 |
have "e - b < \<delta>2 b" |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
31366
diff
changeset
|
471 |
using mem_fine3[OF fine in_D] \<delta>_def `d < b` `t = b` by auto |
31364 | 472 |
with False `t = b` `b \<le> e` |
473 |
show ?thesis using D2_def |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
31366
diff
changeset
|
474 |
by (auto intro!: fine_append[OF _ fine2] fine_single |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
31366
diff
changeset
|
475 |
simp del: append_Cons) |
31364 | 476 |
qed |
477 |
note rsum2 = I2[OF this] |
|
478 |
||
479 |
have "rsum D f = rsum (take N D) f + rsum [D ! N] f + rsum (drop (Suc N) D) f" |
|
480 |
using rsum_append[symmetric] nth_drop'[OF `N < length D`] by auto |
|
481 |
also have "\<dots> = rsum D1 f + rsum D2 f" |
|
31366 | 482 |
by (cases "b = e", auto simp add: D1_def D2_def D_eq rsum_append algebra_simps) |
31364 | 483 |
finally have "\<bar>rsum D f - (x1 + x2)\<bar> < \<epsilon>" |
484 |
using add_strict_mono[OF rsum1 rsum2] by simp |
|
485 |
} |
|
486 |
ultimately show "\<exists> \<delta>. gauge {a .. c} \<delta> \<and> |
|
487 |
(\<forall>D. fine \<delta> (a,c) D \<longrightarrow> \<bar>rsum D f - (x1 + x2)\<bar> < \<epsilon>)" |
|
488 |
by blast |
|
489 |
next |
|
490 |
case False |
|
491 |
hence "a = b \<or> b = c" using `a \<le> b` and `b \<le> c` by auto |
|
492 |
thus ?thesis |
|
493 |
proof (rule disjE) |
|
494 |
assume "a = b" hence "x1 = 0" |
|
35441 | 495 |
using `Integral (a, b) f x1` by simp |
496 |
thus ?thesis using `a = b` `Integral (b, c) f x2` by simp |
|
31364 | 497 |
next |
498 |
assume "b = c" hence "x2 = 0" |
|
35441 | 499 |
using `Integral (b, c) f x2` by simp |
500 |
thus ?thesis using `b = c` `Integral (a, b) f x1` by simp |
|
31364 | 501 |
qed |
502 |
qed |
|
31259
c1b981b71dba
encode gauge-fine partitions with lists instead of functions; remove lots of unnecessary lemmas
huffman
parents:
31257
diff
changeset
|
503 |
|
15093
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
paulson
parents:
13958
diff
changeset
|
504 |
text{*Fundamental theorem of calculus (Part I)*} |
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
paulson
parents:
13958
diff
changeset
|
505 |
|
15105 | 506 |
text{*"Straddle Lemma" : Swartz and Thompson: AMM 95(7) 1988 *} |
15093
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
paulson
parents:
13958
diff
changeset
|
507 |
|
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
paulson
parents:
13958
diff
changeset
|
508 |
lemma strad1: |
31252 | 509 |
"\<lbrakk>\<forall>z::real. z \<noteq> x \<and> \<bar>z - x\<bar> < s \<longrightarrow> |
510 |
\<bar>(f z - f x) / (z - x) - f' x\<bar> < e/2; |
|
511 |
0 < s; 0 < e; a \<le> x; x \<le> b\<rbrakk> |
|
512 |
\<Longrightarrow> \<forall>z. \<bar>z - x\<bar> < s -->\<bar>f z - f x - f' x * (z - x)\<bar> \<le> e/2 * \<bar>z - x\<bar>" |
|
513 |
apply clarify |
|
31253 | 514 |
apply (case_tac "z = x", simp) |
15093
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
paulson
parents:
13958
diff
changeset
|
515 |
apply (drule_tac x = z in spec) |
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
paulson
parents:
13958
diff
changeset
|
516 |
apply (rule_tac z1 = "\<bar>inverse (z - x)\<bar>" |
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
paulson
parents:
13958
diff
changeset
|
517 |
in real_mult_le_cancel_iff2 [THEN iffD1]) |
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
paulson
parents:
13958
diff
changeset
|
518 |
apply simp |
35441 | 519 |
apply (simp del: abs_inverse add: abs_mult [symmetric] |
15093
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
paulson
parents:
13958
diff
changeset
|
520 |
mult_assoc [symmetric]) |
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
paulson
parents:
13958
diff
changeset
|
521 |
apply (subgoal_tac "inverse (z - x) * (f z - f x - f' x * (z - x)) |
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
paulson
parents:
13958
diff
changeset
|
522 |
= (f z - f x) / (z - x) - f' x") |
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
paulson
parents:
13958
diff
changeset
|
523 |
apply (simp add: abs_mult [symmetric] mult_ac diff_minus) |
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
paulson
parents:
13958
diff
changeset
|
524 |
apply (subst mult_commute) |
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
paulson
parents:
13958
diff
changeset
|
525 |
apply (simp add: left_distrib diff_minus) |
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
paulson
parents:
13958
diff
changeset
|
526 |
apply (simp add: mult_assoc divide_inverse) |
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
paulson
parents:
13958
diff
changeset
|
527 |
apply (simp add: left_distrib) |
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
paulson
parents:
13958
diff
changeset
|
528 |
done |
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
paulson
parents:
13958
diff
changeset
|
529 |
|
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
paulson
parents:
13958
diff
changeset
|
530 |
lemma lemma_straddle: |
31252 | 531 |
assumes f': "\<forall>x. a \<le> x & x \<le> b --> DERIV f x :> f'(x)" and "0 < e" |
31253 | 532 |
shows "\<exists>g. gauge {a..b} g & |
15093
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
paulson
parents:
13958
diff
changeset
|
533 |
(\<forall>x u v. a \<le> u & u \<le> x & x \<le> v & v \<le> b & (v - u) < g(x) |
15094
a7d1a3fdc30d
conversion of Hyperreal/{Fact,Filter} to Isar scripts
paulson
parents:
15093
diff
changeset
|
534 |
--> \<bar>(f(v) - f(u)) - (f'(x) * (v - u))\<bar> \<le> e * (v - u))" |
31252 | 535 |
proof - |
31253 | 536 |
have "\<forall>x\<in>{a..b}. |
15360 | 537 |
(\<exists>d > 0. \<forall>u v. u \<le> x & x \<le> v & (v - u) < d --> |
31252 | 538 |
\<bar>(f(v) - f(u)) - (f'(x) * (v - u))\<bar> \<le> e * (v - u))" |
31253 | 539 |
proof (clarsimp) |
31252 | 540 |
fix x :: real assume "a \<le> x" and "x \<le> b" |
541 |
with f' have "DERIV f x :> f'(x)" by simp |
|
542 |
then have "\<forall>r>0. \<exists>s>0. \<forall>z. z \<noteq> x \<and> \<bar>z - x\<bar> < s \<longrightarrow> \<bar>(f z - f x) / (z - x) - f' x\<bar> < r" |
|
31338
d41a8ba25b67
generalize constants from Lim.thy to class metric_space
huffman
parents:
31336
diff
changeset
|
543 |
by (simp add: DERIV_iff2 LIM_eq) |
31252 | 544 |
with `0 < e` obtain s |
545 |
where "\<forall>z. z \<noteq> x \<and> \<bar>z - x\<bar> < s \<longrightarrow> \<bar>(f z - f x) / (z - x) - f' x\<bar> < e/2" and "0 < s" |
|
546 |
by (drule_tac x="e/2" in spec, auto) |
|
547 |
then have strad [rule_format]: |
|
548 |
"\<forall>z. \<bar>z - x\<bar> < s --> \<bar>f z - f x - f' x * (z - x)\<bar> \<le> e/2 * \<bar>z - x\<bar>" |
|
549 |
using `0 < e` `a \<le> x` `x \<le> b` by (rule strad1) |
|
550 |
show "\<exists>d>0. \<forall>u v. u \<le> x \<and> x \<le> v \<and> v - u < d \<longrightarrow> \<bar>f v - f u - f' x * (v - u)\<bar> \<le> e * (v - u)" |
|
551 |
proof (safe intro!: exI) |
|
552 |
show "0 < s" by fact |
|
553 |
next |
|
554 |
fix u v :: real assume "u \<le> x" and "x \<le> v" and "v - u < s" |
|
555 |
have "\<bar>f v - f u - f' x * (v - u)\<bar> = |
|
556 |
\<bar>(f v - f x - f' x * (v - x)) + (f x - f u - f' x * (x - u))\<bar>" |
|
557 |
by (simp add: right_diff_distrib) |
|
558 |
also have "\<dots> \<le> \<bar>f v - f x - f' x * (v - x)\<bar> + \<bar>f x - f u - f' x * (x - u)\<bar>" |
|
559 |
by (rule abs_triangle_ineq) |
|
560 |
also have "\<dots> = \<bar>f v - f x - f' x * (v - x)\<bar> + \<bar>f u - f x - f' x * (u - x)\<bar>" |
|
561 |
by (simp add: right_diff_distrib) |
|
562 |
also have "\<dots> \<le> (e/2) * \<bar>v - x\<bar> + (e/2) * \<bar>u - x\<bar>" |
|
563 |
using `u \<le> x` `x \<le> v` `v - u < s` by (intro add_mono strad, simp_all) |
|
564 |
also have "\<dots> \<le> e * (v - u) / 2 + e * (v - u) / 2" |
|
565 |
using `u \<le> x` `x \<le> v` `0 < e` by (intro add_mono, simp_all) |
|
566 |
also have "\<dots> = e * (v - u)" |
|
567 |
by simp |
|
568 |
finally show "\<bar>f v - f u - f' x * (v - u)\<bar> \<le> e * (v - u)" . |
|
569 |
qed |
|
570 |
qed |
|
571 |
thus ?thesis |
|
31253 | 572 |
by (simp add: gauge_def) (drule bchoice, auto) |
31252 | 573 |
qed |
15093
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
paulson
parents:
13958
diff
changeset
|
574 |
|
35328 | 575 |
lemma fundamental_theorem_of_calculus: |
35441 | 576 |
assumes "a \<le> b" |
577 |
assumes f': "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> DERIV f x :> f'(x)" |
|
578 |
shows "Integral (a, b) f' (f(b) - f(a))" |
|
579 |
proof (cases "a = b") |
|
580 |
assume "a = b" thus ?thesis by simp |
|
581 |
next |
|
582 |
assume "a \<noteq> b" with `a \<le> b` have "a < b" by simp |
|
583 |
show ?thesis |
|
584 |
proof (simp add: Integral_def2, clarify) |
|
585 |
fix e :: real assume "0 < e" |
|
586 |
with `a < b` have "0 < e / (b - a)" by (simp add: divide_pos_pos) |
|
587 |
||
588 |
from lemma_straddle [OF f' this] |
|
589 |
obtain \<delta> where "gauge {a..b} \<delta>" |
|
590 |
and \<delta>: "\<And>x u v. \<lbrakk>a \<le> u; u \<le> x; x \<le> v; v \<le> b; v - u < \<delta> x\<rbrakk> \<Longrightarrow> |
|
591 |
\<bar>f v - f u - f' x * (v - u)\<bar> \<le> e * (v - u) / (b - a)" by auto |
|
592 |
||
593 |
have "\<forall>D. fine \<delta> (a, b) D \<longrightarrow> \<bar>rsum D f' - (f b - f a)\<bar> \<le> e" |
|
594 |
proof (clarify) |
|
595 |
fix D assume D: "fine \<delta> (a, b) D" |
|
596 |
hence "(\<Sum>(u, x, v)\<leftarrow>D. f v - f u) = f b - f a" |
|
597 |
by (rule fine_listsum_eq_diff) |
|
598 |
hence "\<bar>rsum D f' - (f b - f a)\<bar> = \<bar>rsum D f' - (\<Sum>(u, x, v)\<leftarrow>D. f v - f u)\<bar>" |
|
599 |
by simp |
|
600 |
also have "\<dots> = \<bar>(\<Sum>(u, x, v)\<leftarrow>D. f v - f u) - rsum D f'\<bar>" |
|
601 |
by (rule abs_minus_commute) |
|
602 |
also have "\<dots> = \<bar>\<Sum>(u, x, v)\<leftarrow>D. (f v - f u) - f' x * (v - u)\<bar>" |
|
603 |
by (simp only: rsum_def listsum_subtractf split_def) |
|
604 |
also have "\<dots> \<le> (\<Sum>(u, x, v)\<leftarrow>D. \<bar>(f v - f u) - f' x * (v - u)\<bar>)" |
|
605 |
by (rule ord_le_eq_trans [OF listsum_abs], simp add: o_def split_def) |
|
606 |
also have "\<dots> \<le> (\<Sum>(u, x, v)\<leftarrow>D. (e / (b - a)) * (v - u))" |
|
607 |
apply (rule listsum_mono, clarify, rename_tac u x v) |
|
608 |
using D apply (simp add: \<delta> mem_fine mem_fine2 mem_fine3) |
|
609 |
done |
|
610 |
also have "\<dots> = e" |
|
611 |
using fine_listsum_eq_diff [OF D, where f="\<lambda>x. x"] |
|
612 |
unfolding split_def listsum_const_mult |
|
613 |
using `a < b` by simp |
|
614 |
finally show "\<bar>rsum D f' - (f b - f a)\<bar> \<le> e" . |
|
615 |
qed |
|
616 |
||
617 |
with `gauge {a..b} \<delta>` |
|
618 |
show "\<exists>\<delta>. gauge {a..b} \<delta> \<and> (\<forall>D. fine \<delta> (a, b) D \<longrightarrow> \<bar>rsum D f' - (f b - f a)\<bar> \<le> e)" |
|
619 |
by auto |
|
620 |
qed |
|
621 |
qed |
|
13958 | 622 |
|
15093
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
paulson
parents:
13958
diff
changeset
|
623 |
end |