| author | haftmann | 
| Tue, 01 Jun 2010 09:12:12 +0200 | |
| changeset 37219 | 7c5311e54ea4 | 
| parent 36635 | 080b755377c0 | 
| child 37770 | cddb3106adb8 | 
| permissions | -rw-r--r-- | 
| 25904 | 1 | (* Title: HOLCF/ConvexPD.thy | 
| 2 | Author: Brian Huffman | |
| 3 | *) | |
| 4 | ||
| 5 | header {* Convex powerdomain *}
 | |
| 6 | ||
| 7 | theory ConvexPD | |
| 8 | imports UpperPD LowerPD | |
| 9 | begin | |
| 10 | ||
| 11 | subsection {* Basis preorder *}
 | |
| 12 | ||
| 13 | definition | |
| 14 | convex_le :: "'a pd_basis \<Rightarrow> 'a pd_basis \<Rightarrow> bool" (infix "\<le>\<natural>" 50) where | |
| 15 | "convex_le = (\<lambda>u v. u \<le>\<sharp> v \<and> u \<le>\<flat> v)" | |
| 16 | ||
| 17 | lemma convex_le_refl [simp]: "t \<le>\<natural> t" | |
| 18 | unfolding convex_le_def by (fast intro: upper_le_refl lower_le_refl) | |
| 19 | ||
| 20 | lemma convex_le_trans: "\<lbrakk>t \<le>\<natural> u; u \<le>\<natural> v\<rbrakk> \<Longrightarrow> t \<le>\<natural> v" | |
| 21 | unfolding convex_le_def by (fast intro: upper_le_trans lower_le_trans) | |
| 22 | ||
| 30729 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 wenzelm parents: 
29990diff
changeset | 23 | interpretation convex_le: preorder convex_le | 
| 25904 | 24 | by (rule preorder.intro, rule convex_le_refl, rule convex_le_trans) | 
| 25 | ||
| 26 | lemma upper_le_minimal [simp]: "PDUnit compact_bot \<le>\<natural> t" | |
| 27 | unfolding convex_le_def Rep_PDUnit by simp | |
| 28 | ||
| 26420 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 29 | lemma PDUnit_convex_mono: "x \<sqsubseteq> y \<Longrightarrow> PDUnit x \<le>\<natural> PDUnit y" | 
| 25904 | 30 | unfolding convex_le_def by (fast intro: PDUnit_upper_mono PDUnit_lower_mono) | 
| 31 | ||
| 32 | lemma PDPlus_convex_mono: "\<lbrakk>s \<le>\<natural> t; u \<le>\<natural> v\<rbrakk> \<Longrightarrow> PDPlus s u \<le>\<natural> PDPlus t v" | |
| 33 | unfolding convex_le_def by (fast intro: PDPlus_upper_mono PDPlus_lower_mono) | |
| 34 | ||
| 35 | lemma convex_le_PDUnit_PDUnit_iff [simp]: | |
| 26420 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 36 | "(PDUnit a \<le>\<natural> PDUnit b) = a \<sqsubseteq> b" | 
| 25904 | 37 | unfolding convex_le_def upper_le_def lower_le_def Rep_PDUnit by fast | 
| 38 | ||
| 39 | lemma convex_le_PDUnit_lemma1: | |
| 26420 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 40 | "(PDUnit a \<le>\<natural> t) = (\<forall>b\<in>Rep_pd_basis t. a \<sqsubseteq> b)" | 
| 25904 | 41 | unfolding convex_le_def upper_le_def lower_le_def Rep_PDUnit | 
| 42 | using Rep_pd_basis_nonempty [of t, folded ex_in_conv] by fast | |
| 43 | ||
| 44 | lemma convex_le_PDUnit_PDPlus_iff [simp]: | |
| 45 | "(PDUnit a \<le>\<natural> PDPlus t u) = (PDUnit a \<le>\<natural> t \<and> PDUnit a \<le>\<natural> u)" | |
| 46 | unfolding convex_le_PDUnit_lemma1 Rep_PDPlus by fast | |
| 47 | ||
| 48 | lemma convex_le_PDUnit_lemma2: | |
| 26420 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 49 | "(t \<le>\<natural> PDUnit b) = (\<forall>a\<in>Rep_pd_basis t. a \<sqsubseteq> b)" | 
| 25904 | 50 | unfolding convex_le_def upper_le_def lower_le_def Rep_PDUnit | 
| 51 | using Rep_pd_basis_nonempty [of t, folded ex_in_conv] by fast | |
| 52 | ||
| 53 | lemma convex_le_PDPlus_PDUnit_iff [simp]: | |
| 54 | "(PDPlus t u \<le>\<natural> PDUnit a) = (t \<le>\<natural> PDUnit a \<and> u \<le>\<natural> PDUnit a)" | |
| 55 | unfolding convex_le_PDUnit_lemma2 Rep_PDPlus by fast | |
| 56 | ||
| 57 | lemma convex_le_PDPlus_lemma: | |
| 58 | assumes z: "PDPlus t u \<le>\<natural> z" | |
| 59 | shows "\<exists>v w. z = PDPlus v w \<and> t \<le>\<natural> v \<and> u \<le>\<natural> w" | |
| 60 | proof (intro exI conjI) | |
| 26420 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 61 |   let ?A = "{b\<in>Rep_pd_basis z. \<exists>a\<in>Rep_pd_basis t. a \<sqsubseteq> b}"
 | 
| 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 62 |   let ?B = "{b\<in>Rep_pd_basis z. \<exists>a\<in>Rep_pd_basis u. a \<sqsubseteq> b}"
 | 
| 25904 | 63 | let ?v = "Abs_pd_basis ?A" | 
| 64 | let ?w = "Abs_pd_basis ?B" | |
| 65 | have Rep_v: "Rep_pd_basis ?v = ?A" | |
| 66 | apply (rule Abs_pd_basis_inverse) | |
| 67 | apply (rule Rep_pd_basis_nonempty [of t, folded ex_in_conv, THEN exE]) | |
| 68 | apply (cut_tac z, simp only: convex_le_def lower_le_def, clarify) | |
| 69 | apply (drule_tac x=x in bspec, simp add: Rep_PDPlus, erule bexE) | |
| 70 | apply (simp add: pd_basis_def) | |
| 71 | apply fast | |
| 72 | done | |
| 73 | have Rep_w: "Rep_pd_basis ?w = ?B" | |
| 74 | apply (rule Abs_pd_basis_inverse) | |
| 75 | apply (rule Rep_pd_basis_nonempty [of u, folded ex_in_conv, THEN exE]) | |
| 76 | apply (cut_tac z, simp only: convex_le_def lower_le_def, clarify) | |
| 77 | apply (drule_tac x=x in bspec, simp add: Rep_PDPlus, erule bexE) | |
| 78 | apply (simp add: pd_basis_def) | |
| 79 | apply fast | |
| 80 | done | |
| 81 | show "z = PDPlus ?v ?w" | |
| 82 | apply (insert z) | |
| 83 | apply (simp add: convex_le_def, erule conjE) | |
| 84 | apply (simp add: Rep_pd_basis_inject [symmetric] Rep_PDPlus) | |
| 85 | apply (simp add: Rep_v Rep_w) | |
| 86 | apply (rule equalityI) | |
| 87 | apply (rule subsetI) | |
| 88 | apply (simp only: upper_le_def) | |
| 89 | apply (drule (1) bspec, erule bexE) | |
| 90 | apply (simp add: Rep_PDPlus) | |
| 91 | apply fast | |
| 92 | apply fast | |
| 93 | done | |
| 94 | show "t \<le>\<natural> ?v" "u \<le>\<natural> ?w" | |
| 95 | apply (insert z) | |
| 96 | apply (simp_all add: convex_le_def upper_le_def lower_le_def Rep_PDPlus Rep_v Rep_w) | |
| 97 | apply fast+ | |
| 98 | done | |
| 99 | qed | |
| 100 | ||
| 101 | lemma convex_le_induct [induct set: convex_le]: | |
| 102 | assumes le: "t \<le>\<natural> u" | |
| 103 | assumes 2: "\<And>t u v. \<lbrakk>P t u; P u v\<rbrakk> \<Longrightarrow> P t v" | |
| 26420 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 104 | assumes 3: "\<And>a b. a \<sqsubseteq> b \<Longrightarrow> P (PDUnit a) (PDUnit b)" | 
| 25904 | 105 | assumes 4: "\<And>t u v w. \<lbrakk>P t v; P u w\<rbrakk> \<Longrightarrow> P (PDPlus t u) (PDPlus v w)" | 
| 106 | shows "P t u" | |
| 107 | using le apply (induct t arbitrary: u rule: pd_basis_induct) | |
| 108 | apply (erule rev_mp) | |
| 109 | apply (induct_tac u rule: pd_basis_induct1) | |
| 110 | apply (simp add: 3) | |
| 111 | apply (simp, clarify, rename_tac a b t) | |
| 112 | apply (subgoal_tac "P (PDPlus (PDUnit a) (PDUnit a)) (PDPlus (PDUnit b) t)") | |
| 113 | apply (simp add: PDPlus_absorb) | |
| 114 | apply (erule (1) 4 [OF 3]) | |
| 115 | apply (drule convex_le_PDPlus_lemma, clarify) | |
| 116 | apply (simp add: 4) | |
| 117 | done | |
| 118 | ||
| 27405 | 119 | lemma pd_take_convex_chain: | 
| 120 | "pd_take n t \<le>\<natural> pd_take (Suc n) t" | |
| 25904 | 121 | apply (induct t rule: pd_basis_induct) | 
| 27289 | 122 | apply (simp add: compact_basis.take_chain) | 
| 25904 | 123 | apply (simp add: PDPlus_convex_mono) | 
| 124 | done | |
| 125 | ||
| 27405 | 126 | lemma pd_take_convex_le: "pd_take i t \<le>\<natural> t" | 
| 25904 | 127 | apply (induct t rule: pd_basis_induct) | 
| 27289 | 128 | apply (simp add: compact_basis.take_less) | 
| 25904 | 129 | apply (simp add: PDPlus_convex_mono) | 
| 130 | done | |
| 131 | ||
| 27405 | 132 | lemma pd_take_convex_mono: | 
| 133 | "t \<le>\<natural> u \<Longrightarrow> pd_take n t \<le>\<natural> pd_take n u" | |
| 25904 | 134 | apply (erule convex_le_induct) | 
| 135 | apply (erule (1) convex_le_trans) | |
| 27289 | 136 | apply (simp add: compact_basis.take_mono) | 
| 25904 | 137 | apply (simp add: PDPlus_convex_mono) | 
| 138 | done | |
| 139 | ||
| 140 | ||
| 141 | subsection {* Type definition *}
 | |
| 142 | ||
| 27373 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 143 | typedef (open) 'a convex_pd = | 
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 144 |   "{S::'a pd_basis set. convex_le.ideal S}"
 | 
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 145 | by (fast intro: convex_le.ideal_principal) | 
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 146 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 147 | instantiation convex_pd :: (profinite) below | 
| 27373 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 148 | begin | 
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 149 | |
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 150 | definition | 
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 151 | "x \<sqsubseteq> y \<longleftrightarrow> Rep_convex_pd x \<subseteq> Rep_convex_pd y" | 
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 152 | |
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 153 | instance .. | 
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 154 | end | 
| 25904 | 155 | |
| 27373 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 156 | instance convex_pd :: (profinite) po | 
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 157 | by (rule convex_le.typedef_ideal_po | 
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 158 | [OF type_definition_convex_pd below_convex_pd_def]) | 
| 27373 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 159 | |
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 160 | instance convex_pd :: (profinite) cpo | 
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 161 | by (rule convex_le.typedef_ideal_cpo | 
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 162 | [OF type_definition_convex_pd below_convex_pd_def]) | 
| 27373 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 163 | |
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 164 | lemma Rep_convex_pd_lub: | 
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 165 | "chain Y \<Longrightarrow> Rep_convex_pd (\<Squnion>i. Y i) = (\<Union>i. Rep_convex_pd (Y i))" | 
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 166 | by (rule convex_le.typedef_ideal_rep_contlub | 
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 167 | [OF type_definition_convex_pd below_convex_pd_def]) | 
| 27373 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 168 | |
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 169 | lemma ideal_Rep_convex_pd: "convex_le.ideal (Rep_convex_pd xs)" | 
| 26927 | 170 | by (rule Rep_convex_pd [unfolded mem_Collect_eq]) | 
| 25904 | 171 | |
| 172 | definition | |
| 173 | convex_principal :: "'a pd_basis \<Rightarrow> 'a convex_pd" where | |
| 27373 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 174 |   "convex_principal t = Abs_convex_pd {u. u \<le>\<natural> t}"
 | 
| 25904 | 175 | |
| 176 | lemma Rep_convex_principal: | |
| 27373 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 177 |   "Rep_convex_pd (convex_principal t) = {u. u \<le>\<natural> t}"
 | 
| 25904 | 178 | unfolding convex_principal_def | 
| 27297 
2c42b1505f25
removed SetPcpo.thy and cpo instance for type bool;
 huffman parents: 
27289diff
changeset | 179 | by (simp add: Abs_convex_pd_inverse convex_le.ideal_principal) | 
| 25904 | 180 | |
| 30729 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 wenzelm parents: 
29990diff
changeset | 181 | interpretation convex_pd: | 
| 29237 | 182 | ideal_completion convex_le pd_take convex_principal Rep_convex_pd | 
| 25904 | 183 | apply unfold_locales | 
| 27405 | 184 | apply (rule pd_take_convex_le) | 
| 185 | apply (rule pd_take_idem) | |
| 186 | apply (erule pd_take_convex_mono) | |
| 187 | apply (rule pd_take_convex_chain) | |
| 188 | apply (rule finite_range_pd_take) | |
| 189 | apply (rule pd_take_covers) | |
| 26420 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 190 | apply (rule ideal_Rep_convex_pd) | 
| 27373 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 191 | apply (erule Rep_convex_pd_lub) | 
| 26420 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 192 | apply (rule Rep_convex_principal) | 
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 193 | apply (simp only: below_convex_pd_def) | 
| 25904 | 194 | done | 
| 195 | ||
| 27289 | 196 | text {* Convex powerdomain is pointed *}
 | 
| 25904 | 197 | |
| 198 | lemma convex_pd_minimal: "convex_principal (PDUnit compact_bot) \<sqsubseteq> ys" | |
| 199 | by (induct ys rule: convex_pd.principal_induct, simp, simp) | |
| 200 | ||
| 201 | instance convex_pd :: (bifinite) pcpo | |
| 26927 | 202 | by intro_classes (fast intro: convex_pd_minimal) | 
| 25904 | 203 | |
| 204 | lemma inst_convex_pd_pcpo: "\<bottom> = convex_principal (PDUnit compact_bot)" | |
| 205 | by (rule convex_pd_minimal [THEN UU_I, symmetric]) | |
| 206 | ||
| 27289 | 207 | text {* Convex powerdomain is profinite *}
 | 
| 25904 | 208 | |
| 26962 
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
 huffman parents: 
26927diff
changeset | 209 | instantiation convex_pd :: (profinite) profinite | 
| 
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
 huffman parents: 
26927diff
changeset | 210 | begin | 
| 25904 | 211 | |
| 26962 
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
 huffman parents: 
26927diff
changeset | 212 | definition | 
| 
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
 huffman parents: 
26927diff
changeset | 213 | approx_convex_pd_def: "approx = convex_pd.completion_approx" | 
| 26927 | 214 | |
| 26962 
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
 huffman parents: 
26927diff
changeset | 215 | instance | 
| 26927 | 216 | apply (intro_classes, unfold approx_convex_pd_def) | 
| 27310 | 217 | apply (rule convex_pd.chain_completion_approx) | 
| 26927 | 218 | apply (rule convex_pd.lub_completion_approx) | 
| 219 | apply (rule convex_pd.completion_approx_idem) | |
| 220 | apply (rule convex_pd.finite_fixes_completion_approx) | |
| 221 | done | |
| 222 | ||
| 26962 
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
 huffman parents: 
26927diff
changeset | 223 | end | 
| 
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
 huffman parents: 
26927diff
changeset | 224 | |
| 26927 | 225 | instance convex_pd :: (bifinite) bifinite .. | 
| 25904 | 226 | |
| 227 | lemma approx_convex_principal [simp]: | |
| 27405 | 228 | "approx n\<cdot>(convex_principal t) = convex_principal (pd_take n t)" | 
| 25904 | 229 | unfolding approx_convex_pd_def | 
| 26927 | 230 | by (rule convex_pd.completion_approx_principal) | 
| 25904 | 231 | |
| 232 | lemma approx_eq_convex_principal: | |
| 27405 | 233 | "\<exists>t\<in>Rep_convex_pd xs. approx n\<cdot>xs = convex_principal (pd_take n t)" | 
| 25904 | 234 | unfolding approx_convex_pd_def | 
| 26927 | 235 | by (rule convex_pd.completion_approx_eq_principal) | 
| 26407 
562a1d615336
rename class bifinite_cpo to profinite; generalize powerdomains from bifinite to profinite
 huffman parents: 
26041diff
changeset | 236 | |
| 25904 | 237 | |
| 26927 | 238 | subsection {* Monadic unit and plus *}
 | 
| 25904 | 239 | |
| 240 | definition | |
| 241 | convex_unit :: "'a \<rightarrow> 'a convex_pd" where | |
| 242 | "convex_unit = compact_basis.basis_fun (\<lambda>a. convex_principal (PDUnit a))" | |
| 243 | ||
| 244 | definition | |
| 245 | convex_plus :: "'a convex_pd \<rightarrow> 'a convex_pd \<rightarrow> 'a convex_pd" where | |
| 246 | "convex_plus = convex_pd.basis_fun (\<lambda>t. convex_pd.basis_fun (\<lambda>u. | |
| 247 | convex_principal (PDPlus t u)))" | |
| 248 | ||
| 249 | abbreviation | |
| 250 | convex_add :: "'a convex_pd \<Rightarrow> 'a convex_pd \<Rightarrow> 'a convex_pd" | |
| 251 | (infixl "+\<natural>" 65) where | |
| 252 | "xs +\<natural> ys == convex_plus\<cdot>xs\<cdot>ys" | |
| 253 | ||
| 26927 | 254 | syntax | 
| 255 |   "_convex_pd" :: "args \<Rightarrow> 'a convex_pd" ("{_}\<natural>")
 | |
| 256 | ||
| 257 | translations | |
| 258 |   "{x,xs}\<natural>" == "{x}\<natural> +\<natural> {xs}\<natural>"
 | |
| 259 |   "{x}\<natural>" == "CONST convex_unit\<cdot>x"
 | |
| 260 | ||
| 261 | lemma convex_unit_Rep_compact_basis [simp]: | |
| 262 |   "{Rep_compact_basis a}\<natural> = convex_principal (PDUnit a)"
 | |
| 263 | unfolding convex_unit_def | |
| 27289 | 264 | by (simp add: compact_basis.basis_fun_principal PDUnit_convex_mono) | 
| 26927 | 265 | |
| 25904 | 266 | lemma convex_plus_principal [simp]: | 
| 26927 | 267 | "convex_principal t +\<natural> convex_principal u = convex_principal (PDPlus t u)" | 
| 25904 | 268 | unfolding convex_plus_def | 
| 269 | by (simp add: convex_pd.basis_fun_principal | |
| 270 | convex_pd.basis_fun_mono PDPlus_convex_mono) | |
| 271 | ||
| 26927 | 272 | lemma approx_convex_unit [simp]: | 
| 273 |   "approx n\<cdot>{x}\<natural> = {approx n\<cdot>x}\<natural>"
 | |
| 27289 | 274 | apply (induct x rule: compact_basis.principal_induct, simp) | 
| 26927 | 275 | apply (simp add: approx_Rep_compact_basis) | 
| 276 | done | |
| 277 | ||
| 25904 | 278 | lemma approx_convex_plus [simp]: | 
| 26927 | 279 | "approx n\<cdot>(xs +\<natural> ys) = approx n\<cdot>xs +\<natural> approx n\<cdot>ys" | 
| 27289 | 280 | by (induct xs ys rule: convex_pd.principal_induct2, simp, simp, simp) | 
| 25904 | 281 | |
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 282 | interpretation convex_add!: semilattice convex_add proof | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 283 | fix xs ys zs :: "'a convex_pd" | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 284 | show "(xs +\<natural> ys) +\<natural> zs = xs +\<natural> (ys +\<natural> zs)" | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 285 | apply (induct xs ys arbitrary: zs rule: convex_pd.principal_induct2, simp, simp) | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 286 | apply (rule_tac x=zs in convex_pd.principal_induct, simp) | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 287 | apply (simp add: PDPlus_assoc) | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 288 | done | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 289 | show "xs +\<natural> ys = ys +\<natural> xs" | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 290 | apply (induct xs ys rule: convex_pd.principal_induct2, simp, simp) | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 291 | apply (simp add: PDPlus_commute) | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 292 | done | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 293 | show "xs +\<natural> xs = xs" | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 294 | apply (induct xs rule: convex_pd.principal_induct, simp) | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 295 | apply (simp add: PDPlus_absorb) | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 296 | done | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 297 | qed | 
| 26927 | 298 | |
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 299 | lemmas convex_plus_assoc = convex_add.assoc | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 300 | lemmas convex_plus_commute = convex_add.commute | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 301 | lemmas convex_plus_absorb = convex_add.idem | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 302 | lemmas convex_plus_left_commute = convex_add.left_commute | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 303 | lemmas convex_plus_left_absorb = convex_add.left_idem | 
| 26927 | 304 | |
| 29990 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 huffman parents: 
29672diff
changeset | 305 | text {* Useful for @{text "simp add: convex_plus_ac"} *}
 | 
| 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 huffman parents: 
29672diff
changeset | 306 | lemmas convex_plus_ac = | 
| 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 huffman parents: 
29672diff
changeset | 307 | convex_plus_assoc convex_plus_commute convex_plus_left_commute | 
| 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 huffman parents: 
29672diff
changeset | 308 | |
| 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 huffman parents: 
29672diff
changeset | 309 | text {* Useful for @{text "simp only: convex_plus_aci"} *}
 | 
| 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 huffman parents: 
29672diff
changeset | 310 | lemmas convex_plus_aci = | 
| 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 huffman parents: 
29672diff
changeset | 311 | convex_plus_ac convex_plus_absorb convex_plus_left_absorb | 
| 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 huffman parents: 
29672diff
changeset | 312 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 313 | lemma convex_unit_below_plus_iff [simp]: | 
| 26927 | 314 |   "{x}\<natural> \<sqsubseteq> ys +\<natural> zs \<longleftrightarrow> {x}\<natural> \<sqsubseteq> ys \<and> {x}\<natural> \<sqsubseteq> zs"
 | 
| 25904 | 315 | apply (rule iffI) | 
| 316 | apply (subgoal_tac | |
| 26927 | 317 |     "adm (\<lambda>f. f\<cdot>{x}\<natural> \<sqsubseteq> f\<cdot>ys \<and> f\<cdot>{x}\<natural> \<sqsubseteq> f\<cdot>zs)")
 | 
| 25925 | 318 | apply (drule admD, rule chain_approx) | 
| 25904 | 319 | apply (drule_tac f="approx i" in monofun_cfun_arg) | 
| 27289 | 320 | apply (cut_tac x="approx i\<cdot>x" in compact_basis.compact_imp_principal, simp) | 
| 321 | apply (cut_tac x="approx i\<cdot>ys" in convex_pd.compact_imp_principal, simp) | |
| 322 | apply (cut_tac x="approx i\<cdot>zs" in convex_pd.compact_imp_principal, simp) | |
| 25904 | 323 | apply (clarify, simp) | 
| 324 | apply simp | |
| 325 | apply simp | |
| 326 | apply (erule conjE) | |
| 26927 | 327 |  apply (subst convex_plus_absorb [of "{x}\<natural>", symmetric])
 | 
| 25904 | 328 | apply (erule (1) monofun_cfun [OF monofun_cfun_arg]) | 
| 329 | done | |
| 330 | ||
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 331 | lemma convex_plus_below_unit_iff [simp]: | 
| 26927 | 332 |   "xs +\<natural> ys \<sqsubseteq> {z}\<natural> \<longleftrightarrow> xs \<sqsubseteq> {z}\<natural> \<and> ys \<sqsubseteq> {z}\<natural>"
 | 
| 25904 | 333 | apply (rule iffI) | 
| 334 | apply (subgoal_tac | |
| 26927 | 335 |     "adm (\<lambda>f. f\<cdot>xs \<sqsubseteq> f\<cdot>{z}\<natural> \<and> f\<cdot>ys \<sqsubseteq> f\<cdot>{z}\<natural>)")
 | 
| 25925 | 336 | apply (drule admD, rule chain_approx) | 
| 25904 | 337 | apply (drule_tac f="approx i" in monofun_cfun_arg) | 
| 27289 | 338 | apply (cut_tac x="approx i\<cdot>xs" in convex_pd.compact_imp_principal, simp) | 
| 339 | apply (cut_tac x="approx i\<cdot>ys" in convex_pd.compact_imp_principal, simp) | |
| 340 | apply (cut_tac x="approx i\<cdot>z" in compact_basis.compact_imp_principal, simp) | |
| 25904 | 341 | apply (clarify, simp) | 
| 342 | apply simp | |
| 343 | apply simp | |
| 344 | apply (erule conjE) | |
| 26927 | 345 |  apply (subst convex_plus_absorb [of "{z}\<natural>", symmetric])
 | 
| 25904 | 346 | apply (erule (1) monofun_cfun [OF monofun_cfun_arg]) | 
| 347 | done | |
| 348 | ||
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 349 | lemma convex_unit_below_iff [simp]: "{x}\<natural> \<sqsubseteq> {y}\<natural> \<longleftrightarrow> x \<sqsubseteq> y"
 | 
| 26927 | 350 | apply (rule iffI) | 
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 351 | apply (rule profinite_below_ext) | 
| 26927 | 352 | apply (drule_tac f="approx i" in monofun_cfun_arg, simp) | 
| 27289 | 353 | apply (cut_tac x="approx i\<cdot>x" in compact_basis.compact_imp_principal, simp) | 
| 354 | apply (cut_tac x="approx i\<cdot>y" in compact_basis.compact_imp_principal, simp) | |
| 355 | apply clarsimp | |
| 26927 | 356 | apply (erule monofun_cfun_arg) | 
| 357 | done | |
| 358 | ||
| 359 | lemma convex_unit_eq_iff [simp]: "{x}\<natural> = {y}\<natural> \<longleftrightarrow> x = y"
 | |
| 360 | unfolding po_eq_conv by simp | |
| 361 | ||
| 362 | lemma convex_unit_strict [simp]: "{\<bottom>}\<natural> = \<bottom>"
 | |
| 363 | unfolding inst_convex_pd_pcpo Rep_compact_bot [symmetric] by simp | |
| 364 | ||
| 365 | lemma convex_unit_strict_iff [simp]: "{x}\<natural> = \<bottom> \<longleftrightarrow> x = \<bottom>"
 | |
| 366 | unfolding convex_unit_strict [symmetric] by (rule convex_unit_eq_iff) | |
| 367 | ||
| 368 | lemma compact_convex_unit_iff [simp]: | |
| 369 |   "compact {x}\<natural> \<longleftrightarrow> compact x"
 | |
| 27309 | 370 | unfolding profinite_compact_iff by simp | 
| 26927 | 371 | |
| 372 | lemma compact_convex_plus [simp]: | |
| 373 | "\<lbrakk>compact xs; compact ys\<rbrakk> \<Longrightarrow> compact (xs +\<natural> ys)" | |
| 27289 | 374 | by (auto dest!: convex_pd.compact_imp_principal) | 
| 26927 | 375 | |
| 25904 | 376 | |
| 377 | subsection {* Induction rules *}
 | |
| 378 | ||
| 379 | lemma convex_pd_induct1: | |
| 380 | assumes P: "adm P" | |
| 26927 | 381 |   assumes unit: "\<And>x. P {x}\<natural>"
 | 
| 382 |   assumes insert: "\<And>x ys. \<lbrakk>P {x}\<natural>; P ys\<rbrakk> \<Longrightarrow> P ({x}\<natural> +\<natural> ys)"
 | |
| 25904 | 383 | shows "P (xs::'a convex_pd)" | 
| 27289 | 384 | apply (induct xs rule: convex_pd.principal_induct, rule P) | 
| 385 | apply (induct_tac a rule: pd_basis_induct1) | |
| 25904 | 386 | apply (simp only: convex_unit_Rep_compact_basis [symmetric]) | 
| 387 | apply (rule unit) | |
| 388 | apply (simp only: convex_unit_Rep_compact_basis [symmetric] | |
| 389 | convex_plus_principal [symmetric]) | |
| 390 | apply (erule insert [OF unit]) | |
| 391 | done | |
| 392 | ||
| 393 | lemma convex_pd_induct: | |
| 394 | assumes P: "adm P" | |
| 26927 | 395 |   assumes unit: "\<And>x. P {x}\<natural>"
 | 
| 396 | assumes plus: "\<And>xs ys. \<lbrakk>P xs; P ys\<rbrakk> \<Longrightarrow> P (xs +\<natural> ys)" | |
| 25904 | 397 | shows "P (xs::'a convex_pd)" | 
| 27289 | 398 | apply (induct xs rule: convex_pd.principal_induct, rule P) | 
| 399 | apply (induct_tac a rule: pd_basis_induct) | |
| 25904 | 400 | apply (simp only: convex_unit_Rep_compact_basis [symmetric] unit) | 
| 401 | apply (simp only: convex_plus_principal [symmetric] plus) | |
| 402 | done | |
| 403 | ||
| 404 | ||
| 405 | subsection {* Monadic bind *}
 | |
| 406 | ||
| 407 | definition | |
| 408 | convex_bind_basis :: | |
| 409 |   "'a pd_basis \<Rightarrow> ('a \<rightarrow> 'b convex_pd) \<rightarrow> 'b convex_pd" where
 | |
| 410 | "convex_bind_basis = fold_pd | |
| 411 | (\<lambda>a. \<Lambda> f. f\<cdot>(Rep_compact_basis a)) | |
| 26927 | 412 | (\<lambda>x y. \<Lambda> f. x\<cdot>f +\<natural> y\<cdot>f)" | 
| 25904 | 413 | |
| 26927 | 414 | lemma ACI_convex_bind: | 
| 36635 
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
 haftmann parents: 
35901diff
changeset | 415 | "class.ab_semigroup_idem_mult (\<lambda>x y. \<Lambda> f. x\<cdot>f +\<natural> y\<cdot>f)" | 
| 25904 | 416 | apply unfold_locales | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25925diff
changeset | 417 | apply (simp add: convex_plus_assoc) | 
| 25904 | 418 | apply (simp add: convex_plus_commute) | 
| 29990 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 huffman parents: 
29672diff
changeset | 419 | apply (simp add: eta_cfun) | 
| 25904 | 420 | done | 
| 421 | ||
| 422 | lemma convex_bind_basis_simps [simp]: | |
| 423 | "convex_bind_basis (PDUnit a) = | |
| 424 | (\<Lambda> f. f\<cdot>(Rep_compact_basis a))" | |
| 425 | "convex_bind_basis (PDPlus t u) = | |
| 26927 | 426 | (\<Lambda> f. convex_bind_basis t\<cdot>f +\<natural> convex_bind_basis u\<cdot>f)" | 
| 25904 | 427 | unfolding convex_bind_basis_def | 
| 428 | apply - | |
| 26927 | 429 | apply (rule fold_pd_PDUnit [OF ACI_convex_bind]) | 
| 430 | apply (rule fold_pd_PDPlus [OF ACI_convex_bind]) | |
| 25904 | 431 | done | 
| 432 | ||
| 433 | lemma monofun_LAM: | |
| 434 | "\<lbrakk>cont f; cont g; \<And>x. f x \<sqsubseteq> g x\<rbrakk> \<Longrightarrow> (\<Lambda> x. f x) \<sqsubseteq> (\<Lambda> x. g x)" | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 435 | by (simp add: expand_cfun_below) | 
| 25904 | 436 | |
| 437 | lemma convex_bind_basis_mono: | |
| 438 | "t \<le>\<natural> u \<Longrightarrow> convex_bind_basis t \<sqsubseteq> convex_bind_basis u" | |
| 439 | apply (erule convex_le_induct) | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 440 | apply (erule (1) below_trans) | 
| 27289 | 441 | apply (simp add: monofun_LAM monofun_cfun) | 
| 442 | apply (simp add: monofun_LAM monofun_cfun) | |
| 25904 | 443 | done | 
| 444 | ||
| 445 | definition | |
| 446 |   convex_bind :: "'a convex_pd \<rightarrow> ('a \<rightarrow> 'b convex_pd) \<rightarrow> 'b convex_pd" where
 | |
| 447 | "convex_bind = convex_pd.basis_fun convex_bind_basis" | |
| 448 | ||
| 449 | lemma convex_bind_principal [simp]: | |
| 450 | "convex_bind\<cdot>(convex_principal t) = convex_bind_basis t" | |
| 451 | unfolding convex_bind_def | |
| 452 | apply (rule convex_pd.basis_fun_principal) | |
| 453 | apply (erule convex_bind_basis_mono) | |
| 454 | done | |
| 455 | ||
| 456 | lemma convex_bind_unit [simp]: | |
| 26927 | 457 |   "convex_bind\<cdot>{x}\<natural>\<cdot>f = f\<cdot>x"
 | 
| 27289 | 458 | by (induct x rule: compact_basis.principal_induct, simp, simp) | 
| 25904 | 459 | |
| 460 | lemma convex_bind_plus [simp]: | |
| 26927 | 461 | "convex_bind\<cdot>(xs +\<natural> ys)\<cdot>f = convex_bind\<cdot>xs\<cdot>f +\<natural> convex_bind\<cdot>ys\<cdot>f" | 
| 27289 | 462 | by (induct xs ys rule: convex_pd.principal_induct2, simp, simp, simp) | 
| 25904 | 463 | |
| 464 | lemma convex_bind_strict [simp]: "convex_bind\<cdot>\<bottom>\<cdot>f = f\<cdot>\<bottom>" | |
| 465 | unfolding convex_unit_strict [symmetric] by (rule convex_bind_unit) | |
| 466 | ||
| 467 | ||
| 468 | subsection {* Map and join *}
 | |
| 469 | ||
| 470 | definition | |
| 471 |   convex_map :: "('a \<rightarrow> 'b) \<rightarrow> 'a convex_pd \<rightarrow> 'b convex_pd" where
 | |
| 26927 | 472 |   "convex_map = (\<Lambda> f xs. convex_bind\<cdot>xs\<cdot>(\<Lambda> x. {f\<cdot>x}\<natural>))"
 | 
| 25904 | 473 | |
| 474 | definition | |
| 475 | convex_join :: "'a convex_pd convex_pd \<rightarrow> 'a convex_pd" where | |
| 476 | "convex_join = (\<Lambda> xss. convex_bind\<cdot>xss\<cdot>(\<Lambda> xs. xs))" | |
| 477 | ||
| 478 | lemma convex_map_unit [simp]: | |
| 479 | "convex_map\<cdot>f\<cdot>(convex_unit\<cdot>x) = convex_unit\<cdot>(f\<cdot>x)" | |
| 480 | unfolding convex_map_def by simp | |
| 481 | ||
| 482 | lemma convex_map_plus [simp]: | |
| 26927 | 483 | "convex_map\<cdot>f\<cdot>(xs +\<natural> ys) = convex_map\<cdot>f\<cdot>xs +\<natural> convex_map\<cdot>f\<cdot>ys" | 
| 25904 | 484 | unfolding convex_map_def by simp | 
| 485 | ||
| 486 | lemma convex_join_unit [simp]: | |
| 26927 | 487 |   "convex_join\<cdot>{xs}\<natural> = xs"
 | 
| 25904 | 488 | unfolding convex_join_def by simp | 
| 489 | ||
| 490 | lemma convex_join_plus [simp]: | |
| 26927 | 491 | "convex_join\<cdot>(xss +\<natural> yss) = convex_join\<cdot>xss +\<natural> convex_join\<cdot>yss" | 
| 25904 | 492 | unfolding convex_join_def by simp | 
| 493 | ||
| 494 | lemma convex_map_ident: "convex_map\<cdot>(\<Lambda> x. x)\<cdot>xs = xs" | |
| 495 | by (induct xs rule: convex_pd_induct, simp_all) | |
| 496 | ||
| 33808 | 497 | lemma convex_map_ID: "convex_map\<cdot>ID = ID" | 
| 498 | by (simp add: expand_cfun_eq ID_def convex_map_ident) | |
| 499 | ||
| 25904 | 500 | lemma convex_map_map: | 
| 501 | "convex_map\<cdot>f\<cdot>(convex_map\<cdot>g\<cdot>xs) = convex_map\<cdot>(\<Lambda> x. f\<cdot>(g\<cdot>x))\<cdot>xs" | |
| 502 | by (induct xs rule: convex_pd_induct, simp_all) | |
| 503 | ||
| 504 | lemma convex_join_map_unit: | |
| 505 | "convex_join\<cdot>(convex_map\<cdot>convex_unit\<cdot>xs) = xs" | |
| 506 | by (induct xs rule: convex_pd_induct, simp_all) | |
| 507 | ||
| 508 | lemma convex_join_map_join: | |
| 509 | "convex_join\<cdot>(convex_map\<cdot>convex_join\<cdot>xsss) = convex_join\<cdot>(convex_join\<cdot>xsss)" | |
| 510 | by (induct xsss rule: convex_pd_induct, simp_all) | |
| 511 | ||
| 512 | lemma convex_join_map_map: | |
| 513 | "convex_join\<cdot>(convex_map\<cdot>(convex_map\<cdot>f)\<cdot>xss) = | |
| 514 | convex_map\<cdot>f\<cdot>(convex_join\<cdot>xss)" | |
| 515 | by (induct xss rule: convex_pd_induct, simp_all) | |
| 516 | ||
| 517 | lemma convex_map_approx: "convex_map\<cdot>(approx n)\<cdot>xs = approx n\<cdot>xs" | |
| 518 | by (induct xs rule: convex_pd_induct, simp_all) | |
| 519 | ||
| 35901 
12f09bf2c77f
fix LaTeX overfull hbox warnings in HOLCF document
 huffman parents: 
34973diff
changeset | 520 | lemma ep_pair_convex_map: | 
| 
12f09bf2c77f
fix LaTeX overfull hbox warnings in HOLCF document
 huffman parents: 
34973diff
changeset | 521 | "ep_pair e p \<Longrightarrow> ep_pair (convex_map\<cdot>e) (convex_map\<cdot>p)" | 
| 33585 
8d39394fe5cf
ep_pair and deflation lemmas for powerdomain map functions
 huffman parents: 
31076diff
changeset | 522 | apply default | 
| 
8d39394fe5cf
ep_pair and deflation lemmas for powerdomain map functions
 huffman parents: 
31076diff
changeset | 523 | apply (induct_tac x rule: convex_pd_induct, simp_all add: ep_pair.e_inverse) | 
| 35901 
12f09bf2c77f
fix LaTeX overfull hbox warnings in HOLCF document
 huffman parents: 
34973diff
changeset | 524 | apply (induct_tac y rule: convex_pd_induct) | 
| 
12f09bf2c77f
fix LaTeX overfull hbox warnings in HOLCF document
 huffman parents: 
34973diff
changeset | 525 | apply (simp_all add: ep_pair.e_p_below monofun_cfun) | 
| 33585 
8d39394fe5cf
ep_pair and deflation lemmas for powerdomain map functions
 huffman parents: 
31076diff
changeset | 526 | done | 
| 
8d39394fe5cf
ep_pair and deflation lemmas for powerdomain map functions
 huffman parents: 
31076diff
changeset | 527 | |
| 
8d39394fe5cf
ep_pair and deflation lemmas for powerdomain map functions
 huffman parents: 
31076diff
changeset | 528 | lemma deflation_convex_map: "deflation d \<Longrightarrow> deflation (convex_map\<cdot>d)" | 
| 
8d39394fe5cf
ep_pair and deflation lemmas for powerdomain map functions
 huffman parents: 
31076diff
changeset | 529 | apply default | 
| 
8d39394fe5cf
ep_pair and deflation lemmas for powerdomain map functions
 huffman parents: 
31076diff
changeset | 530 | apply (induct_tac x rule: convex_pd_induct, simp_all add: deflation.idem) | 
| 35901 
12f09bf2c77f
fix LaTeX overfull hbox warnings in HOLCF document
 huffman parents: 
34973diff
changeset | 531 | apply (induct_tac x rule: convex_pd_induct) | 
| 
12f09bf2c77f
fix LaTeX overfull hbox warnings in HOLCF document
 huffman parents: 
34973diff
changeset | 532 | apply (simp_all add: deflation.below monofun_cfun) | 
| 33585 
8d39394fe5cf
ep_pair and deflation lemmas for powerdomain map functions
 huffman parents: 
31076diff
changeset | 533 | done | 
| 
8d39394fe5cf
ep_pair and deflation lemmas for powerdomain map functions
 huffman parents: 
31076diff
changeset | 534 | |
| 25904 | 535 | |
| 536 | subsection {* Conversions to other powerdomains *}
 | |
| 537 | ||
| 538 | text {* Convex to upper *}
 | |
| 539 | ||
| 540 | lemma convex_le_imp_upper_le: "t \<le>\<natural> u \<Longrightarrow> t \<le>\<sharp> u" | |
| 541 | unfolding convex_le_def by simp | |
| 542 | ||
| 543 | definition | |
| 544 | convex_to_upper :: "'a convex_pd \<rightarrow> 'a upper_pd" where | |
| 545 | "convex_to_upper = convex_pd.basis_fun upper_principal" | |
| 546 | ||
| 547 | lemma convex_to_upper_principal [simp]: | |
| 548 | "convex_to_upper\<cdot>(convex_principal t) = upper_principal t" | |
| 549 | unfolding convex_to_upper_def | |
| 550 | apply (rule convex_pd.basis_fun_principal) | |
| 27289 | 551 | apply (rule upper_pd.principal_mono) | 
| 25904 | 552 | apply (erule convex_le_imp_upper_le) | 
| 553 | done | |
| 554 | ||
| 555 | lemma convex_to_upper_unit [simp]: | |
| 26927 | 556 |   "convex_to_upper\<cdot>{x}\<natural> = {x}\<sharp>"
 | 
| 27289 | 557 | by (induct x rule: compact_basis.principal_induct, simp, simp) | 
| 25904 | 558 | |
| 559 | lemma convex_to_upper_plus [simp]: | |
| 26927 | 560 | "convex_to_upper\<cdot>(xs +\<natural> ys) = convex_to_upper\<cdot>xs +\<sharp> convex_to_upper\<cdot>ys" | 
| 27289 | 561 | by (induct xs ys rule: convex_pd.principal_induct2, simp, simp, simp) | 
| 25904 | 562 | |
| 563 | lemma approx_convex_to_upper: | |
| 564 | "approx i\<cdot>(convex_to_upper\<cdot>xs) = convex_to_upper\<cdot>(approx i\<cdot>xs)" | |
| 565 | by (induct xs rule: convex_pd_induct, simp, simp, simp) | |
| 566 | ||
| 27289 | 567 | lemma convex_to_upper_bind [simp]: | 
| 568 | "convex_to_upper\<cdot>(convex_bind\<cdot>xs\<cdot>f) = | |
| 569 | upper_bind\<cdot>(convex_to_upper\<cdot>xs)\<cdot>(convex_to_upper oo f)" | |
| 570 | by (induct xs rule: convex_pd_induct, simp, simp, simp) | |
| 571 | ||
| 572 | lemma convex_to_upper_map [simp]: | |
| 573 | "convex_to_upper\<cdot>(convex_map\<cdot>f\<cdot>xs) = upper_map\<cdot>f\<cdot>(convex_to_upper\<cdot>xs)" | |
| 574 | by (simp add: convex_map_def upper_map_def cfcomp_LAM) | |
| 575 | ||
| 576 | lemma convex_to_upper_join [simp]: | |
| 577 | "convex_to_upper\<cdot>(convex_join\<cdot>xss) = | |
| 578 | upper_bind\<cdot>(convex_to_upper\<cdot>xss)\<cdot>convex_to_upper" | |
| 579 | by (simp add: convex_join_def upper_join_def cfcomp_LAM eta_cfun) | |
| 580 | ||
| 25904 | 581 | text {* Convex to lower *}
 | 
| 582 | ||
| 583 | lemma convex_le_imp_lower_le: "t \<le>\<natural> u \<Longrightarrow> t \<le>\<flat> u" | |
| 584 | unfolding convex_le_def by simp | |
| 585 | ||
| 586 | definition | |
| 587 | convex_to_lower :: "'a convex_pd \<rightarrow> 'a lower_pd" where | |
| 588 | "convex_to_lower = convex_pd.basis_fun lower_principal" | |
| 589 | ||
| 590 | lemma convex_to_lower_principal [simp]: | |
| 591 | "convex_to_lower\<cdot>(convex_principal t) = lower_principal t" | |
| 592 | unfolding convex_to_lower_def | |
| 593 | apply (rule convex_pd.basis_fun_principal) | |
| 27289 | 594 | apply (rule lower_pd.principal_mono) | 
| 25904 | 595 | apply (erule convex_le_imp_lower_le) | 
| 596 | done | |
| 597 | ||
| 598 | lemma convex_to_lower_unit [simp]: | |
| 26927 | 599 |   "convex_to_lower\<cdot>{x}\<natural> = {x}\<flat>"
 | 
| 27289 | 600 | by (induct x rule: compact_basis.principal_induct, simp, simp) | 
| 25904 | 601 | |
| 602 | lemma convex_to_lower_plus [simp]: | |
| 26927 | 603 | "convex_to_lower\<cdot>(xs +\<natural> ys) = convex_to_lower\<cdot>xs +\<flat> convex_to_lower\<cdot>ys" | 
| 27289 | 604 | by (induct xs ys rule: convex_pd.principal_induct2, simp, simp, simp) | 
| 25904 | 605 | |
| 606 | lemma approx_convex_to_lower: | |
| 607 | "approx i\<cdot>(convex_to_lower\<cdot>xs) = convex_to_lower\<cdot>(approx i\<cdot>xs)" | |
| 608 | by (induct xs rule: convex_pd_induct, simp, simp, simp) | |
| 609 | ||
| 27289 | 610 | lemma convex_to_lower_bind [simp]: | 
| 611 | "convex_to_lower\<cdot>(convex_bind\<cdot>xs\<cdot>f) = | |
| 612 | lower_bind\<cdot>(convex_to_lower\<cdot>xs)\<cdot>(convex_to_lower oo f)" | |
| 613 | by (induct xs rule: convex_pd_induct, simp, simp, simp) | |
| 614 | ||
| 615 | lemma convex_to_lower_map [simp]: | |
| 616 | "convex_to_lower\<cdot>(convex_map\<cdot>f\<cdot>xs) = lower_map\<cdot>f\<cdot>(convex_to_lower\<cdot>xs)" | |
| 617 | by (simp add: convex_map_def lower_map_def cfcomp_LAM) | |
| 618 | ||
| 619 | lemma convex_to_lower_join [simp]: | |
| 620 | "convex_to_lower\<cdot>(convex_join\<cdot>xss) = | |
| 621 | lower_bind\<cdot>(convex_to_lower\<cdot>xss)\<cdot>convex_to_lower" | |
| 622 | by (simp add: convex_join_def lower_join_def cfcomp_LAM eta_cfun) | |
| 623 | ||
| 25904 | 624 | text {* Ordering property *}
 | 
| 625 | ||
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 626 | lemma convex_pd_below_iff: | 
| 25904 | 627 | "(xs \<sqsubseteq> ys) = | 
| 628 | (convex_to_upper\<cdot>xs \<sqsubseteq> convex_to_upper\<cdot>ys \<and> | |
| 629 | convex_to_lower\<cdot>xs \<sqsubseteq> convex_to_lower\<cdot>ys)" | |
| 630 | apply (safe elim!: monofun_cfun_arg) | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 631 | apply (rule profinite_below_ext) | 
| 25904 | 632 | apply (drule_tac f="approx i" in monofun_cfun_arg) | 
| 633 | apply (drule_tac f="approx i" in monofun_cfun_arg) | |
| 27289 | 634 | apply (cut_tac x="approx i\<cdot>xs" in convex_pd.compact_imp_principal, simp) | 
| 635 | apply (cut_tac x="approx i\<cdot>ys" in convex_pd.compact_imp_principal, simp) | |
| 25904 | 636 | apply clarify | 
| 637 | apply (simp add: approx_convex_to_upper approx_convex_to_lower convex_le_def) | |
| 638 | done | |
| 639 | ||
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 640 | lemmas convex_plus_below_plus_iff = | 
| 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 641 | convex_pd_below_iff [where xs="xs +\<natural> ys" and ys="zs +\<natural> ws", standard] | 
| 26927 | 642 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 643 | lemmas convex_pd_below_simps = | 
| 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 644 | convex_unit_below_plus_iff | 
| 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 645 | convex_plus_below_unit_iff | 
| 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 646 | convex_plus_below_plus_iff | 
| 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 647 | convex_unit_below_iff | 
| 26927 | 648 | convex_to_upper_unit | 
| 649 | convex_to_upper_plus | |
| 650 | convex_to_lower_unit | |
| 651 | convex_to_lower_plus | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 652 | upper_pd_below_simps | 
| 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 653 | lower_pd_below_simps | 
| 26927 | 654 | |
| 25904 | 655 | end |