author | nipkow |
Mon, 28 Aug 2017 18:27:16 +0200 | |
changeset 66527 | 7ca69030a2af |
parent 62143 | 3c9a0985e6be |
child 69593 | 3dda49e08b9d |
permissions | -rw-r--r-- |
17456 | 1 |
(* Title: CCL/Type.thy |
0 | 2 |
Author: Martin Coen |
3 |
Copyright 1993 University of Cambridge |
|
4 |
*) |
|
5 |
||
60770 | 6 |
section \<open>Types in CCL are defined as sets of terms\<close> |
17456 | 7 |
|
8 |
theory Type |
|
9 |
imports Term |
|
10 |
begin |
|
0 | 11 |
|
62143 | 12 |
definition Subtype :: "['a set, 'a \<Rightarrow> o] \<Rightarrow> 'a set" |
13 |
where "Subtype(A, P) == {x. x:A \<and> P(x)}" |
|
0 | 14 |
|
14765 | 15 |
syntax |
62143 | 16 |
"_Subtype" :: "[idt, 'a set, o] \<Rightarrow> 'a set" ("(1{_: _ ./ _})") |
17 |
translations |
|
18 |
"{x: A. B}" == "CONST Subtype(A, \<lambda>x. B)" |
|
999
9bf3816298d0
Gave tighter priorities to SUM and PROD to reduce ambiguities.
lcp
parents:
22
diff
changeset
|
19 |
|
62143 | 20 |
definition Unit :: "i set" |
21 |
where "Unit == {x. x=one}" |
|
22 |
||
23 |
definition Bool :: "i set" |
|
24 |
where "Bool == {x. x=true | x=false}" |
|
25 |
||
26 |
definition Plus :: "[i set, i set] \<Rightarrow> i set" (infixr "+" 55) |
|
27 |
where "A+B == {x. (EX a:A. x=inl(a)) | (EX b:B. x=inr(b))}" |
|
17456 | 28 |
|
62143 | 29 |
definition Pi :: "[i set, i \<Rightarrow> i set] \<Rightarrow> i set" |
30 |
where "Pi(A,B) == {x. EX b. x=lam x. b(x) \<and> (ALL x:A. b(x):B(x))}" |
|
31 |
||
32 |
definition Sigma :: "[i set, i \<Rightarrow> i set] \<Rightarrow> i set" |
|
33 |
where "Sigma(A,B) == {x. EX a:A. EX b:B(a).x=<a,b>}" |
|
0 | 34 |
|
62143 | 35 |
syntax |
36 |
"_Pi" :: "[idt, i set, i set] \<Rightarrow> i set" ("(3PROD _:_./ _)" [0,0,60] 60) |
|
37 |
"_Sigma" :: "[idt, i set, i set] \<Rightarrow> i set" ("(3SUM _:_./ _)" [0,0,60] 60) |
|
38 |
"_arrow" :: "[i set, i set] \<Rightarrow> i set" ("(_ ->/ _)" [54, 53] 53) |
|
39 |
"_star" :: "[i set, i set] \<Rightarrow> i set" ("(_ */ _)" [56, 55] 55) |
|
0 | 40 |
translations |
62143 | 41 |
"PROD x:A. B" \<rightharpoonup> "CONST Pi(A, \<lambda>x. B)" |
42 |
"A -> B" \<rightharpoonup> "CONST Pi(A, \<lambda>_. B)" |
|
43 |
"SUM x:A. B" \<rightharpoonup> "CONST Sigma(A, \<lambda>x. B)" |
|
44 |
"A * B" \<rightharpoonup> "CONST Sigma(A, \<lambda>_. B)" |
|
60770 | 45 |
print_translation \<open> |
42284 | 46 |
[(@{const_syntax Pi}, |
52143 | 47 |
fn _ => Syntax_Trans.dependent_tr' (@{syntax_const "_Pi"}, @{syntax_const "_arrow"})), |
42284 | 48 |
(@{const_syntax Sigma}, |
52143 | 49 |
fn _ => Syntax_Trans.dependent_tr' (@{syntax_const "_Sigma"}, @{syntax_const "_star"}))] |
60770 | 50 |
\<close> |
0 | 51 |
|
62143 | 52 |
definition Nat :: "i set" |
53 |
where "Nat == lfp(\<lambda>X. Unit + X)" |
|
54 |
||
55 |
definition List :: "i set \<Rightarrow> i set" |
|
56 |
where "List(A) == lfp(\<lambda>X. Unit + A*X)" |
|
57 |
||
58 |
definition Lists :: "i set \<Rightarrow> i set" |
|
59 |
where "Lists(A) == gfp(\<lambda>X. Unit + A*X)" |
|
60 |
||
61 |
definition ILists :: "i set \<Rightarrow> i set" |
|
62 |
where "ILists(A) == gfp(\<lambda>X.{} + A*X)" |
|
0 | 63 |
|
62143 | 64 |
|
65 |
definition TAll :: "(i set \<Rightarrow> i set) \<Rightarrow> i set" (binder "TALL " 55) |
|
66 |
where "TALL X. B(X) == Inter({X. EX Y. X=B(Y)})" |
|
0 | 67 |
|
62143 | 68 |
definition TEx :: "(i set \<Rightarrow> i set) \<Rightarrow> i set" (binder "TEX " 55) |
69 |
where "TEX X. B(X) == Union({X. EX Y. X=B(Y)})" |
|
0 | 70 |
|
62143 | 71 |
definition Lift :: "i set \<Rightarrow> i set" ("(3[_])") |
72 |
where "[A] == A Un {bot}" |
|
73 |
||
74 |
definition SPLIT :: "[i, [i, i] \<Rightarrow> i set] \<Rightarrow> i set" |
|
75 |
where "SPLIT(p,B) == Union({A. EX x y. p=<x,y> \<and> A=B(x,y)})" |
|
17456 | 76 |
|
20140 | 77 |
|
78 |
lemmas simp_type_defs = |
|
62143 | 79 |
Subtype_def Unit_def Bool_def Plus_def Sigma_def Pi_def Lift_def TAll_def TEx_def |
20140 | 80 |
and ind_type_defs = Nat_def List_def |
81 |
and simp_data_defs = one_def inl_def inr_def |
|
82 |
and ind_data_defs = zero_def succ_def nil_def cons_def |
|
83 |
||
58977 | 84 |
lemma subsetXH: "A <= B \<longleftrightarrow> (ALL x. x:A \<longrightarrow> x:B)" |
20140 | 85 |
by blast |
86 |
||
87 |
||
60770 | 88 |
subsection \<open>Exhaustion Rules\<close> |
20140 | 89 |
|
58977 | 90 |
lemma EmptyXH: "\<And>a. a : {} \<longleftrightarrow> False" |
91 |
and SubtypeXH: "\<And>a A P. a : {x:A. P(x)} \<longleftrightarrow> (a:A \<and> P(a))" |
|
92 |
and UnitXH: "\<And>a. a : Unit \<longleftrightarrow> a=one" |
|
93 |
and BoolXH: "\<And>a. a : Bool \<longleftrightarrow> a=true | a=false" |
|
94 |
and PlusXH: "\<And>a A B. a : A+B \<longleftrightarrow> (EX x:A. a=inl(x)) | (EX x:B. a=inr(x))" |
|
95 |
and PiXH: "\<And>a A B. a : PROD x:A. B(x) \<longleftrightarrow> (EX b. a=lam x. b(x) \<and> (ALL x:A. b(x):B(x)))" |
|
96 |
and SgXH: "\<And>a A B. a : SUM x:A. B(x) \<longleftrightarrow> (EX x:A. EX y:B(x).a=<x,y>)" |
|
20140 | 97 |
unfolding simp_type_defs by blast+ |
98 |
||
99 |
lemmas XHs = EmptyXH SubtypeXH UnitXH BoolXH PlusXH PiXH SgXH |
|
100 |
||
58977 | 101 |
lemma LiftXH: "a : [A] \<longleftrightarrow> (a=bot | a:A)" |
102 |
and TallXH: "a : TALL X. B(X) \<longleftrightarrow> (ALL X. a:B(X))" |
|
103 |
and TexXH: "a : TEX X. B(X) \<longleftrightarrow> (EX X. a:B(X))" |
|
20140 | 104 |
unfolding simp_type_defs by blast+ |
105 |
||
60770 | 106 |
ML \<open>ML_Thms.bind_thms ("case_rls", XH_to_Es @{thms XHs})\<close> |
20140 | 107 |
|
108 |
||
60770 | 109 |
subsection \<open>Canonical Type Rules\<close> |
20140 | 110 |
|
111 |
lemma oneT: "one : Unit" |
|
112 |
and trueT: "true : Bool" |
|
113 |
and falseT: "false : Bool" |
|
58977 | 114 |
and lamT: "\<And>b B. (\<And>x. x:A \<Longrightarrow> b(x):B(x)) \<Longrightarrow> lam x. b(x) : Pi(A,B)" |
115 |
and pairT: "\<And>b B. \<lbrakk>a:A; b:B(a)\<rbrakk> \<Longrightarrow> <a,b>:Sigma(A,B)" |
|
116 |
and inlT: "a:A \<Longrightarrow> inl(a) : A+B" |
|
117 |
and inrT: "b:B \<Longrightarrow> inr(b) : A+B" |
|
20140 | 118 |
by (blast intro: XHs [THEN iffD2])+ |
119 |
||
120 |
lemmas canTs = oneT trueT falseT pairT lamT inlT inrT |
|
121 |
||
122 |
||
60770 | 123 |
subsection \<open>Non-Canonical Type Rules\<close> |
20140 | 124 |
|
58977 | 125 |
lemma lem: "\<lbrakk>a:B(u); u = v\<rbrakk> \<Longrightarrow> a : B(v)" |
20140 | 126 |
by blast |
127 |
||
128 |
||
60770 | 129 |
ML \<open> |
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
130 |
fun mk_ncanT_tac top_crls crls = |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
131 |
SUBPROOF (fn {context = ctxt, prems = major :: prems, ...} => |
59498
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents:
58977
diff
changeset
|
132 |
resolve_tac ctxt ([major] RL top_crls) 1 THEN |
59499 | 133 |
REPEAT_SOME (eresolve_tac ctxt (crls @ @{thms exE bexE conjE disjE})) THEN |
51717
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents:
42814
diff
changeset
|
134 |
ALLGOALS (asm_simp_tac ctxt) THEN |
59499 | 135 |
ALLGOALS (assume_tac ctxt ORELSE' resolve_tac ctxt (prems RL [@{thm lem}]) |
136 |
ORELSE' eresolve_tac ctxt @{thms bspec}) THEN |
|
42793 | 137 |
safe_tac (ctxt addSIs prems)) |
60770 | 138 |
\<close> |
20140 | 139 |
|
60770 | 140 |
method_setup ncanT = \<open> |
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
141 |
Scan.succeed (SIMPLE_METHOD' o mk_ncanT_tac @{thms case_rls} @{thms case_rls}) |
60770 | 142 |
\<close> |
20140 | 143 |
|
58977 | 144 |
lemma ifT: "\<lbrakk>b:Bool; b=true \<Longrightarrow> t:A(true); b=false \<Longrightarrow> u:A(false)\<rbrakk> \<Longrightarrow> if b then t else u : A(b)" |
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
145 |
by ncanT |
20140 | 146 |
|
58977 | 147 |
lemma applyT: "\<lbrakk>f : Pi(A,B); a:A\<rbrakk> \<Longrightarrow> f ` a : B(a)" |
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
148 |
by ncanT |
20140 | 149 |
|
58977 | 150 |
lemma splitT: "\<lbrakk>p:Sigma(A,B); \<And>x y. \<lbrakk>x:A; y:B(x); p=<x,y>\<rbrakk> \<Longrightarrow> c(x,y):C(<x,y>)\<rbrakk> \<Longrightarrow> split(p,c):C(p)" |
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
151 |
by ncanT |
20140 | 152 |
|
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
153 |
lemma whenT: |
58977 | 154 |
"\<lbrakk>p:A+B; |
155 |
\<And>x. \<lbrakk>x:A; p=inl(x)\<rbrakk> \<Longrightarrow> a(x):C(inl(x)); |
|
156 |
\<And>y. \<lbrakk>y:B; p=inr(y)\<rbrakk> \<Longrightarrow> b(y):C(inr(y))\<rbrakk> \<Longrightarrow> when(p,a,b) : C(p)" |
|
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
157 |
by ncanT |
20140 | 158 |
|
159 |
lemmas ncanTs = ifT applyT splitT whenT |
|
160 |
||
161 |
||
60770 | 162 |
subsection \<open>Subtypes\<close> |
20140 | 163 |
|
58977 | 164 |
lemma SubtypeD1: "a : Subtype(A, P) \<Longrightarrow> a : A" |
165 |
and SubtypeD2: "a : Subtype(A, P) \<Longrightarrow> P(a)" |
|
20140 | 166 |
by (simp_all add: SubtypeXH) |
167 |
||
58977 | 168 |
lemma SubtypeI: "\<lbrakk>a:A; P(a)\<rbrakk> \<Longrightarrow> a : {x:A. P(x)}" |
20140 | 169 |
by (simp add: SubtypeXH) |
170 |
||
58977 | 171 |
lemma SubtypeE: "\<lbrakk>a : {x:A. P(x)}; \<lbrakk>a:A; P(a)\<rbrakk> \<Longrightarrow> Q\<rbrakk> \<Longrightarrow> Q" |
20140 | 172 |
by (simp add: SubtypeXH) |
173 |
||
174 |
||
60770 | 175 |
subsection \<open>Monotonicity\<close> |
20140 | 176 |
|
58977 | 177 |
lemma idM: "mono (\<lambda>X. X)" |
20140 | 178 |
apply (rule monoI) |
179 |
apply assumption |
|
180 |
done |
|
181 |
||
58977 | 182 |
lemma constM: "mono(\<lambda>X. A)" |
20140 | 183 |
apply (rule monoI) |
184 |
apply (rule subset_refl) |
|
185 |
done |
|
186 |
||
58977 | 187 |
lemma "mono(\<lambda>X. A(X)) \<Longrightarrow> mono(\<lambda>X.[A(X)])" |
20140 | 188 |
apply (rule subsetI [THEN monoI]) |
189 |
apply (drule LiftXH [THEN iffD1]) |
|
190 |
apply (erule disjE) |
|
191 |
apply (erule disjI1 [THEN LiftXH [THEN iffD2]]) |
|
192 |
apply (rule disjI2 [THEN LiftXH [THEN iffD2]]) |
|
193 |
apply (drule (1) monoD) |
|
194 |
apply blast |
|
195 |
done |
|
196 |
||
197 |
lemma SgM: |
|
58977 | 198 |
"\<lbrakk>mono(\<lambda>X. A(X)); \<And>x X. x:A(X) \<Longrightarrow> mono(\<lambda>X. B(X,x))\<rbrakk> \<Longrightarrow> |
199 |
mono(\<lambda>X. Sigma(A(X),B(X)))" |
|
20140 | 200 |
by (blast intro!: subsetI [THEN monoI] canTs elim!: case_rls |
201 |
dest!: monoD [THEN subsetD]) |
|
202 |
||
58977 | 203 |
lemma PiM: "(\<And>x. x:A \<Longrightarrow> mono(\<lambda>X. B(X,x))) \<Longrightarrow> mono(\<lambda>X. Pi(A,B(X)))" |
20140 | 204 |
by (blast intro!: subsetI [THEN monoI] canTs elim!: case_rls |
205 |
dest!: monoD [THEN subsetD]) |
|
206 |
||
58977 | 207 |
lemma PlusM: "\<lbrakk>mono(\<lambda>X. A(X)); mono(\<lambda>X. B(X))\<rbrakk> \<Longrightarrow> mono(\<lambda>X. A(X)+B(X))" |
20140 | 208 |
by (blast intro!: subsetI [THEN monoI] canTs elim!: case_rls |
209 |
dest!: monoD [THEN subsetD]) |
|
210 |
||
211 |
||
60770 | 212 |
subsection \<open>Recursive types\<close> |
20140 | 213 |
|
60770 | 214 |
subsubsection \<open>Conversion Rules for Fixed Points via monotonicity and Tarski\<close> |
20140 | 215 |
|
58977 | 216 |
lemma NatM: "mono(\<lambda>X. Unit+X)" |
20140 | 217 |
apply (rule PlusM constM idM)+ |
218 |
done |
|
219 |
||
220 |
lemma def_NatB: "Nat = Unit + Nat" |
|
221 |
apply (rule def_lfp_Tarski [OF Nat_def]) |
|
222 |
apply (rule NatM) |
|
223 |
done |
|
224 |
||
58977 | 225 |
lemma ListM: "mono(\<lambda>X.(Unit+Sigma(A,\<lambda>y. X)))" |
20140 | 226 |
apply (rule PlusM SgM constM idM)+ |
227 |
done |
|
228 |
||
229 |
lemma def_ListB: "List(A) = Unit + A * List(A)" |
|
230 |
apply (rule def_lfp_Tarski [OF List_def]) |
|
231 |
apply (rule ListM) |
|
232 |
done |
|
233 |
||
234 |
lemma def_ListsB: "Lists(A) = Unit + A * Lists(A)" |
|
235 |
apply (rule def_gfp_Tarski [OF Lists_def]) |
|
236 |
apply (rule ListM) |
|
237 |
done |
|
238 |
||
58977 | 239 |
lemma IListsM: "mono(\<lambda>X.({} + Sigma(A,\<lambda>y. X)))" |
20140 | 240 |
apply (rule PlusM SgM constM idM)+ |
241 |
done |
|
242 |
||
243 |
lemma def_IListsB: "ILists(A) = {} + A * ILists(A)" |
|
244 |
apply (rule def_gfp_Tarski [OF ILists_def]) |
|
245 |
apply (rule IListsM) |
|
246 |
done |
|
247 |
||
248 |
lemmas ind_type_eqs = def_NatB def_ListB def_ListsB def_IListsB |
|
249 |
||
250 |
||
60770 | 251 |
subsection \<open>Exhaustion Rules\<close> |
20140 | 252 |
|
58977 | 253 |
lemma NatXH: "a : Nat \<longleftrightarrow> (a=zero | (EX x:Nat. a=succ(x)))" |
254 |
and ListXH: "a : List(A) \<longleftrightarrow> (a=[] | (EX x:A. EX xs:List(A).a=x$xs))" |
|
255 |
and ListsXH: "a : Lists(A) \<longleftrightarrow> (a=[] | (EX x:A. EX xs:Lists(A).a=x$xs))" |
|
256 |
and IListsXH: "a : ILists(A) \<longleftrightarrow> (EX x:A. EX xs:ILists(A).a=x$xs)" |
|
20140 | 257 |
unfolding ind_data_defs |
258 |
by (rule ind_type_eqs [THEN XHlemma1], blast intro!: canTs elim!: case_rls)+ |
|
259 |
||
260 |
lemmas iXHs = NatXH ListXH |
|
261 |
||
60770 | 262 |
ML \<open>ML_Thms.bind_thms ("icase_rls", XH_to_Es @{thms iXHs})\<close> |
20140 | 263 |
|
264 |
||
60770 | 265 |
subsection \<open>Type Rules\<close> |
20140 | 266 |
|
267 |
lemma zeroT: "zero : Nat" |
|
58977 | 268 |
and succT: "n:Nat \<Longrightarrow> succ(n) : Nat" |
20140 | 269 |
and nilT: "[] : List(A)" |
58977 | 270 |
and consT: "\<lbrakk>h:A; t:List(A)\<rbrakk> \<Longrightarrow> h$t : List(A)" |
20140 | 271 |
by (blast intro: iXHs [THEN iffD2])+ |
272 |
||
273 |
lemmas icanTs = zeroT succT nilT consT |
|
274 |
||
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
275 |
|
60770 | 276 |
method_setup incanT = \<open> |
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
277 |
Scan.succeed (SIMPLE_METHOD' o mk_ncanT_tac @{thms icase_rls} @{thms case_rls}) |
60770 | 278 |
\<close> |
20140 | 279 |
|
58977 | 280 |
lemma ncaseT: "\<lbrakk>n:Nat; n=zero \<Longrightarrow> b:C(zero); \<And>x. \<lbrakk>x:Nat; n=succ(x)\<rbrakk> \<Longrightarrow> c(x):C(succ(x))\<rbrakk> |
281 |
\<Longrightarrow> ncase(n,b,c) : C(n)" |
|
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
282 |
by incanT |
20140 | 283 |
|
58977 | 284 |
lemma lcaseT: "\<lbrakk>l:List(A); l = [] \<Longrightarrow> b:C([]); \<And>h t. \<lbrakk>h:A; t:List(A); l=h$t\<rbrakk> \<Longrightarrow> c(h,t):C(h$t)\<rbrakk> |
285 |
\<Longrightarrow> lcase(l,b,c) : C(l)" |
|
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
286 |
by incanT |
20140 | 287 |
|
288 |
lemmas incanTs = ncaseT lcaseT |
|
289 |
||
290 |
||
60770 | 291 |
subsection \<open>Induction Rules\<close> |
20140 | 292 |
|
293 |
lemmas ind_Ms = NatM ListM |
|
294 |
||
58977 | 295 |
lemma Nat_ind: "\<lbrakk>n:Nat; P(zero); \<And>x. \<lbrakk>x:Nat; P(x)\<rbrakk> \<Longrightarrow> P(succ(x))\<rbrakk> \<Longrightarrow> P(n)" |
20140 | 296 |
apply (unfold ind_data_defs) |
297 |
apply (erule def_induct [OF Nat_def _ NatM]) |
|
298 |
apply (blast intro: canTs elim!: case_rls) |
|
299 |
done |
|
300 |
||
58977 | 301 |
lemma List_ind: "\<lbrakk>l:List(A); P([]); \<And>x xs. \<lbrakk>x:A; xs:List(A); P(xs)\<rbrakk> \<Longrightarrow> P(x$xs)\<rbrakk> \<Longrightarrow> P(l)" |
20140 | 302 |
apply (unfold ind_data_defs) |
303 |
apply (erule def_induct [OF List_def _ ListM]) |
|
304 |
apply (blast intro: canTs elim!: case_rls) |
|
305 |
done |
|
306 |
||
307 |
lemmas inds = Nat_ind List_ind |
|
308 |
||
309 |
||
60770 | 310 |
subsection \<open>Primitive Recursive Rules\<close> |
20140 | 311 |
|
58977 | 312 |
lemma nrecT: "\<lbrakk>n:Nat; b:C(zero); \<And>x g. \<lbrakk>x:Nat; g:C(x)\<rbrakk> \<Longrightarrow> c(x,g):C(succ(x))\<rbrakk> |
313 |
\<Longrightarrow> nrec(n,b,c) : C(n)" |
|
20140 | 314 |
by (erule Nat_ind) auto |
315 |
||
58977 | 316 |
lemma lrecT: "\<lbrakk>l:List(A); b:C([]); \<And>x xs g. \<lbrakk>x:A; xs:List(A); g:C(xs)\<rbrakk> \<Longrightarrow> c(x,xs,g):C(x$xs) \<rbrakk> |
317 |
\<Longrightarrow> lrec(l,b,c) : C(l)" |
|
20140 | 318 |
by (erule List_ind) auto |
319 |
||
320 |
lemmas precTs = nrecT lrecT |
|
321 |
||
322 |
||
60770 | 323 |
subsection \<open>Theorem proving\<close> |
20140 | 324 |
|
58977 | 325 |
lemma SgE2: "\<lbrakk><a,b> : Sigma(A,B); \<lbrakk>a:A; b:B(a)\<rbrakk> \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P" |
20140 | 326 |
unfolding SgXH by blast |
327 |
||
328 |
(* General theorem proving ignores non-canonical term-formers, *) |
|
329 |
(* - intro rules are type rules for canonical terms *) |
|
330 |
(* - elim rules are case rules (no non-canonical terms appear) *) |
|
331 |
||
60770 | 332 |
ML \<open>ML_Thms.bind_thms ("XHEs", XH_to_Es @{thms XHs})\<close> |
20140 | 333 |
|
334 |
lemmas [intro!] = SubtypeI canTs icanTs |
|
335 |
and [elim!] = SubtypeE XHEs |
|
336 |
||
337 |
||
60770 | 338 |
subsection \<open>Infinite Data Types\<close> |
20140 | 339 |
|
58977 | 340 |
lemma lfp_subset_gfp: "mono(f) \<Longrightarrow> lfp(f) <= gfp(f)" |
20140 | 341 |
apply (rule lfp_lowerbound [THEN subset_trans]) |
342 |
apply (erule gfp_lemma3) |
|
343 |
apply (rule subset_refl) |
|
344 |
done |
|
345 |
||
346 |
lemma gfpI: |
|
347 |
assumes "a:A" |
|
58977 | 348 |
and "\<And>x X. \<lbrakk>x:A; ALL y:A. t(y):X\<rbrakk> \<Longrightarrow> t(x) : B(X)" |
20140 | 349 |
shows "t(a) : gfp(B)" |
350 |
apply (rule coinduct) |
|
58977 | 351 |
apply (rule_tac P = "\<lambda>x. EX y:A. x=t (y)" in CollectI) |
41526 | 352 |
apply (blast intro!: assms)+ |
20140 | 353 |
done |
354 |
||
58977 | 355 |
lemma def_gfpI: "\<lbrakk>C == gfp(B); a:A; \<And>x X. \<lbrakk>x:A; ALL y:A. t(y):X\<rbrakk> \<Longrightarrow> t(x) : B(X)\<rbrakk> \<Longrightarrow> t(a) : C" |
20140 | 356 |
apply unfold |
357 |
apply (erule gfpI) |
|
358 |
apply blast |
|
359 |
done |
|
360 |
||
361 |
(* EG *) |
|
362 |
lemma "letrec g x be zero$g(x) in g(bot) : Lists(Nat)" |
|
363 |
apply (rule refl [THEN UnitXH [THEN iffD2], THEN Lists_def [THEN def_gfpI]]) |
|
364 |
apply (subst letrecB) |
|
365 |
apply (unfold cons_def) |
|
366 |
apply blast |
|
367 |
done |
|
368 |
||
369 |
||
62020 | 370 |
subsection \<open>Lemmas and tactics for using the rule \<open>coinduct3\<close> on \<open>[=\<close> and \<open>=\<close>\<close> |
20140 | 371 |
|
58977 | 372 |
lemma lfpI: "\<lbrakk>mono(f); a : f(lfp(f))\<rbrakk> \<Longrightarrow> a : lfp(f)" |
20140 | 373 |
apply (erule lfp_Tarski [THEN ssubst]) |
374 |
apply assumption |
|
375 |
done |
|
376 |
||
58977 | 377 |
lemma ssubst_single: "\<lbrakk>a = a'; a' : A\<rbrakk> \<Longrightarrow> a : A" |
20140 | 378 |
by simp |
379 |
||
58977 | 380 |
lemma ssubst_pair: "\<lbrakk>a = a'; b = b'; <a',b'> : A\<rbrakk> \<Longrightarrow> <a,b> : A" |
20140 | 381 |
by simp |
382 |
||
383 |
||
60770 | 384 |
ML \<open> |
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
385 |
val coinduct3_tac = SUBPROOF (fn {context = ctxt, prems = mono :: prems, ...} => |
42793 | 386 |
fast_tac (ctxt addIs (mono RS @{thm coinduct3_mono_lemma} RS @{thm lfpI}) :: prems) 1); |
60770 | 387 |
\<close> |
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
388 |
|
60770 | 389 |
method_setup coinduct3 = \<open>Scan.succeed (SIMPLE_METHOD' o coinduct3_tac)\<close> |
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
390 |
|
58977 | 391 |
lemma ci3_RI: "\<lbrakk>mono(Agen); a : R\<rbrakk> \<Longrightarrow> a : lfp(\<lambda>x. Agen(x) Un R Un A)" |
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
392 |
by coinduct3 |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
393 |
|
58977 | 394 |
lemma ci3_AgenI: "\<lbrakk>mono(Agen); a : Agen(lfp(\<lambda>x. Agen(x) Un R Un A))\<rbrakk> \<Longrightarrow> |
395 |
a : lfp(\<lambda>x. Agen(x) Un R Un A)" |
|
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
396 |
by coinduct3 |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
397 |
|
58977 | 398 |
lemma ci3_AI: "\<lbrakk>mono(Agen); a : A\<rbrakk> \<Longrightarrow> a : lfp(\<lambda>x. Agen(x) Un R Un A)" |
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
399 |
by coinduct3 |
20140 | 400 |
|
60770 | 401 |
ML \<open> |
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
402 |
fun genIs_tac ctxt genXH gen_mono = |
60754 | 403 |
resolve_tac ctxt [genXH RS @{thm iffD2}] THEN' |
51717
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents:
42814
diff
changeset
|
404 |
simp_tac ctxt THEN' |
42793 | 405 |
TRY o fast_tac |
406 |
(ctxt addIs [genXH RS @{thm iffD2}, gen_mono RS @{thm coinduct3_mono_lemma} RS @{thm lfpI}]) |
|
60770 | 407 |
\<close> |
20140 | 408 |
|
60770 | 409 |
method_setup genIs = \<open> |
42814 | 410 |
Attrib.thm -- Attrib.thm >> |
411 |
(fn (genXH, gen_mono) => fn ctxt => SIMPLE_METHOD' (genIs_tac ctxt genXH gen_mono)) |
|
60770 | 412 |
\<close> |
20140 | 413 |
|
414 |
||
60770 | 415 |
subsection \<open>POgen\<close> |
20140 | 416 |
|
417 |
lemma PO_refl: "<a,a> : PO" |
|
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
418 |
by (rule po_refl [THEN PO_iff [THEN iffD1]]) |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
419 |
|
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
420 |
lemma POgenIs: |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
421 |
"<true,true> : POgen(R)" |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
422 |
"<false,false> : POgen(R)" |
58977 | 423 |
"\<lbrakk><a,a'> : R; <b,b'> : R\<rbrakk> \<Longrightarrow> <<a,b>,<a',b'>> : POgen(R)" |
424 |
"\<And>b b'. (\<And>x. <b(x),b'(x)> : R) \<Longrightarrow> <lam x. b(x),lam x. b'(x)> : POgen(R)" |
|
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
425 |
"<one,one> : POgen(R)" |
58977 | 426 |
"<a,a'> : lfp(\<lambda>x. POgen(x) Un R Un PO) \<Longrightarrow> |
427 |
<inl(a),inl(a')> : POgen(lfp(\<lambda>x. POgen(x) Un R Un PO))" |
|
428 |
"<b,b'> : lfp(\<lambda>x. POgen(x) Un R Un PO) \<Longrightarrow> |
|
429 |
<inr(b),inr(b')> : POgen(lfp(\<lambda>x. POgen(x) Un R Un PO))" |
|
430 |
"<zero,zero> : POgen(lfp(\<lambda>x. POgen(x) Un R Un PO))" |
|
431 |
"<n,n'> : lfp(\<lambda>x. POgen(x) Un R Un PO) \<Longrightarrow> |
|
432 |
<succ(n),succ(n')> : POgen(lfp(\<lambda>x. POgen(x) Un R Un PO))" |
|
433 |
"<[],[]> : POgen(lfp(\<lambda>x. POgen(x) Un R Un PO))" |
|
434 |
"\<lbrakk><h,h'> : lfp(\<lambda>x. POgen(x) Un R Un PO); <t,t'> : lfp(\<lambda>x. POgen(x) Un R Un PO)\<rbrakk> |
|
435 |
\<Longrightarrow> <h$t,h'$t'> : POgen(lfp(\<lambda>x. POgen(x) Un R Un PO))" |
|
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
436 |
unfolding data_defs by (genIs POgenXH POgen_mono)+ |
20140 | 437 |
|
60770 | 438 |
ML \<open> |
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
439 |
fun POgen_tac ctxt (rla, rlb) i = |
42793 | 440 |
SELECT_GOAL (safe_tac ctxt) i THEN |
60754 | 441 |
resolve_tac ctxt [rlb RS (rla RS @{thm ssubst_pair})] i THEN |
59498
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents:
58977
diff
changeset
|
442 |
(REPEAT (resolve_tac ctxt |
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
443 |
(@{thms POgenIs} @ [@{thm PO_refl} RS (@{thm POgen_mono} RS @{thm ci3_AI})] @ |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
444 |
(@{thms POgenIs} RL [@{thm POgen_mono} RS @{thm ci3_AgenI}]) @ |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
445 |
[@{thm POgen_mono} RS @{thm ci3_RI}]) i)) |
60770 | 446 |
\<close> |
20140 | 447 |
|
448 |
||
60770 | 449 |
subsection \<open>EQgen\<close> |
20140 | 450 |
|
451 |
lemma EQ_refl: "<a,a> : EQ" |
|
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
452 |
by (rule refl [THEN EQ_iff [THEN iffD1]]) |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
453 |
|
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
454 |
lemma EQgenIs: |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
455 |
"<true,true> : EQgen(R)" |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
456 |
"<false,false> : EQgen(R)" |
58977 | 457 |
"\<lbrakk><a,a'> : R; <b,b'> : R\<rbrakk> \<Longrightarrow> <<a,b>,<a',b'>> : EQgen(R)" |
458 |
"\<And>b b'. (\<And>x. <b(x),b'(x)> : R) \<Longrightarrow> <lam x. b(x),lam x. b'(x)> : EQgen(R)" |
|
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
459 |
"<one,one> : EQgen(R)" |
58977 | 460 |
"<a,a'> : lfp(\<lambda>x. EQgen(x) Un R Un EQ) \<Longrightarrow> |
461 |
<inl(a),inl(a')> : EQgen(lfp(\<lambda>x. EQgen(x) Un R Un EQ))" |
|
462 |
"<b,b'> : lfp(\<lambda>x. EQgen(x) Un R Un EQ) \<Longrightarrow> |
|
463 |
<inr(b),inr(b')> : EQgen(lfp(\<lambda>x. EQgen(x) Un R Un EQ))" |
|
464 |
"<zero,zero> : EQgen(lfp(\<lambda>x. EQgen(x) Un R Un EQ))" |
|
465 |
"<n,n'> : lfp(\<lambda>x. EQgen(x) Un R Un EQ) \<Longrightarrow> |
|
466 |
<succ(n),succ(n')> : EQgen(lfp(\<lambda>x. EQgen(x) Un R Un EQ))" |
|
467 |
"<[],[]> : EQgen(lfp(\<lambda>x. EQgen(x) Un R Un EQ))" |
|
468 |
"\<lbrakk><h,h'> : lfp(\<lambda>x. EQgen(x) Un R Un EQ); <t,t'> : lfp(\<lambda>x. EQgen(x) Un R Un EQ)\<rbrakk> |
|
469 |
\<Longrightarrow> <h$t,h'$t'> : EQgen(lfp(\<lambda>x. EQgen(x) Un R Un EQ))" |
|
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
470 |
unfolding data_defs by (genIs EQgenXH EQgen_mono)+ |
20140 | 471 |
|
60770 | 472 |
ML \<open> |
59498
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents:
58977
diff
changeset
|
473 |
fun EQgen_raw_tac ctxt i = |
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents:
58977
diff
changeset
|
474 |
(REPEAT (resolve_tac ctxt (@{thms EQgenIs} @ |
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
475 |
[@{thm EQ_refl} RS (@{thm EQgen_mono} RS @{thm ci3_AI})] @ |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
476 |
(@{thms EQgenIs} RL [@{thm EQgen_mono} RS @{thm ci3_AgenI}]) @ |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
477 |
[@{thm EQgen_mono} RS @{thm ci3_RI}]) i)) |
20140 | 478 |
|
479 |
(* Goals of the form R <= EQgen(R) - rewrite elements <a,b> : EQgen(R) using rews and *) |
|
480 |
(* then reduce this to a goal <a',b'> : R (hopefully?) *) |
|
481 |
(* rews are rewrite rules that would cause looping in the simpifier *) |
|
482 |
||
23894
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
wenzelm
parents:
20140
diff
changeset
|
483 |
fun EQgen_tac ctxt rews i = |
20140 | 484 |
SELECT_GOAL |
42793 | 485 |
(TRY (safe_tac ctxt) THEN |
59498
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents:
58977
diff
changeset
|
486 |
resolve_tac ctxt ((rews @ [@{thm refl}]) RL ((rews @ [@{thm refl}]) RL [@{thm ssubst_pair}])) i THEN |
51717
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents:
42814
diff
changeset
|
487 |
ALLGOALS (simp_tac ctxt) THEN |
59498
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents:
58977
diff
changeset
|
488 |
ALLGOALS (EQgen_raw_tac ctxt)) i |
60770 | 489 |
\<close> |
0 | 490 |
|
60770 | 491 |
method_setup EQgen = \<open> |
58971 | 492 |
Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD' (EQgen_tac ctxt ths)) |
60770 | 493 |
\<close> |
58971 | 494 |
|
0 | 495 |
end |