| 
10751
 | 
     1  | 
(*  Title       : HSeries.thy
  | 
| 
 | 
     2  | 
    Author      : Jacques D. Fleuriot
  | 
| 
 | 
     3  | 
    Copyright   : 1998  University of Cambridge
  | 
| 
14413
 | 
     4  | 
  | 
| 
 | 
     5  | 
Converted to Isar and polished by lcp    
  | 
| 
10751
 | 
     6  | 
*) 
  | 
| 
 | 
     7  | 
  | 
| 
14413
 | 
     8  | 
header{*Finite Summation and Infinite Series for Hyperreals*}
 | 
| 
10751
 | 
     9  | 
  | 
| 
14413
 | 
    10  | 
theory HSeries = Series:
  | 
| 
10751
 | 
    11  | 
  | 
| 
14413
 | 
    12  | 
constdefs 
  | 
| 
 | 
    13  | 
  sumhr :: "(hypnat * hypnat * (nat=>real)) => hypreal"
  | 
| 
 | 
    14  | 
   "sumhr p == 
  | 
| 
 | 
    15  | 
      (%(M,N,f). Abs_hypreal(\<Union>X \<in> Rep_hypnat(M). \<Union>Y \<in> Rep_hypnat(N).  
  | 
| 
 | 
    16  | 
                             hyprel ``{%n::nat. sumr (X n) (Y n) f})) p"
 | 
| 
10751
 | 
    17  | 
  | 
| 
14413
 | 
    18  | 
  NSsums  :: "[nat=>real,real] => bool"     (infixr "NSsums" 80)
  | 
| 
10751
 | 
    19  | 
   "f NSsums s  == (%n. sumr 0 n f) ----NS> s"
  | 
| 
 | 
    20  | 
  | 
| 
14413
 | 
    21  | 
  NSsummable :: "(nat=>real) => bool"
  | 
| 
 | 
    22  | 
   "NSsummable f == (\<exists>s. f NSsums s)"
  | 
| 
10751
 | 
    23  | 
  | 
| 
14413
 | 
    24  | 
  NSsuminf   :: "(nat=>real) => real"
  | 
| 
10751
 | 
    25  | 
   "NSsuminf f == (@s. f NSsums s)"
  | 
| 
 | 
    26  | 
  | 
| 
14413
 | 
    27  | 
  | 
| 
 | 
    28  | 
lemma sumhr: 
  | 
| 
 | 
    29  | 
     "sumhr(Abs_hypnat(hypnatrel``{%n. M n}),  
 | 
| 
 | 
    30  | 
            Abs_hypnat(hypnatrel``{%n. N n}), f) =  
 | 
| 
 | 
    31  | 
      Abs_hypreal(hyprel `` {%n. sumr (M n) (N n) f})"
 | 
| 
 | 
    32  | 
apply (simp add: sumhr_def)
  | 
| 
 | 
    33  | 
apply (rule arg_cong [where f = Abs_hypreal]) 
  | 
| 
 | 
    34  | 
apply (auto, ultra)
  | 
| 
 | 
    35  | 
done
  | 
| 
 | 
    36  | 
  | 
| 
 | 
    37  | 
text{*Base case in definition of @{term sumr}*}
 | 
| 
 | 
    38  | 
lemma sumhr_zero [simp]: "sumhr (m,0,f) = 0"
  | 
| 
 | 
    39  | 
apply (rule eq_Abs_hypnat [of m])
  | 
| 
 | 
    40  | 
apply (simp add: hypnat_zero_def sumhr symmetric hypreal_zero_def)
  | 
| 
 | 
    41  | 
done
  | 
| 
 | 
    42  | 
  | 
| 
 | 
    43  | 
text{*Recursive case in definition of @{term sumr}*}
 | 
| 
 | 
    44  | 
lemma sumhr_if: 
  | 
| 
 | 
    45  | 
     "sumhr(m,n+1,f) = 
  | 
| 
 | 
    46  | 
      (if n + 1 \<le> m then 0 else sumhr(m,n,f) + ( *fNat* f) n)"
  | 
| 
 | 
    47  | 
apply (rule eq_Abs_hypnat [of m])
  | 
| 
 | 
    48  | 
apply (rule eq_Abs_hypnat [of n])
  | 
| 
 | 
    49  | 
apply (auto simp add: hypnat_one_def sumhr hypnat_add hypnat_le starfunNat
  | 
| 
 | 
    50  | 
           hypreal_add hypreal_zero_def,   ultra+)
  | 
| 
 | 
    51  | 
done
  | 
| 
 | 
    52  | 
  | 
| 
 | 
    53  | 
lemma sumhr_Suc_zero [simp]: "sumhr (n + 1, n, f) = 0"
  | 
| 
 | 
    54  | 
apply (rule eq_Abs_hypnat [of n])
  | 
| 
 | 
    55  | 
apply (simp add: hypnat_one_def sumhr hypnat_add hypreal_zero_def)
  | 
| 
 | 
    56  | 
done
  | 
| 
 | 
    57  | 
  | 
| 
 | 
    58  | 
lemma sumhr_eq_bounds [simp]: "sumhr (n,n,f) = 0"
  | 
| 
 | 
    59  | 
apply (rule eq_Abs_hypnat [of n])
  | 
| 
 | 
    60  | 
apply (simp add: sumhr hypreal_zero_def)
  | 
| 
 | 
    61  | 
done
  | 
| 
 | 
    62  | 
  | 
| 
 | 
    63  | 
lemma sumhr_Suc [simp]: "sumhr (m,m + 1,f) = ( *fNat* f) m"
  | 
| 
 | 
    64  | 
apply (rule eq_Abs_hypnat [of m])
  | 
| 
 | 
    65  | 
apply (simp add: sumhr hypnat_one_def  hypnat_add starfunNat)
  | 
| 
 | 
    66  | 
done
  | 
| 
 | 
    67  | 
  | 
| 
 | 
    68  | 
lemma sumhr_add_lbound_zero [simp]: "sumhr(m+k,k,f) = 0"
  | 
| 
 | 
    69  | 
apply (rule eq_Abs_hypnat [of m])
  | 
| 
 | 
    70  | 
apply (rule eq_Abs_hypnat [of k])
  | 
| 
 | 
    71  | 
apply (simp add: sumhr hypnat_add hypreal_zero_def)
  | 
| 
 | 
    72  | 
done
  | 
| 
 | 
    73  | 
  | 
| 
 | 
    74  | 
lemma sumhr_add: "sumhr (m,n,f) + sumhr(m,n,g) = sumhr(m,n,%i. f i + g i)"
  | 
| 
 | 
    75  | 
apply (rule eq_Abs_hypnat [of m])
  | 
| 
 | 
    76  | 
apply (rule eq_Abs_hypnat [of n])
  | 
| 
 | 
    77  | 
apply (simp add: sumhr hypreal_add sumr_add)
  | 
| 
 | 
    78  | 
done
  | 
| 
 | 
    79  | 
  | 
| 
 | 
    80  | 
lemma sumhr_mult: "hypreal_of_real r * sumhr(m,n,f) = sumhr(m,n,%n. r * f n)"
  | 
| 
 | 
    81  | 
apply (rule eq_Abs_hypnat [of m])
  | 
| 
 | 
    82  | 
apply (rule eq_Abs_hypnat [of n])
  | 
| 
 | 
    83  | 
apply (simp add: sumhr hypreal_of_real_def hypreal_mult sumr_mult)
  | 
| 
 | 
    84  | 
done
  | 
| 
 | 
    85  | 
  | 
| 
 | 
    86  | 
lemma sumhr_split_add: "n < p ==> sumhr(0,n,f) + sumhr(n,p,f) = sumhr(0,p,f)"
  | 
| 
 | 
    87  | 
apply (rule eq_Abs_hypnat [of n])
  | 
| 
 | 
    88  | 
apply (rule eq_Abs_hypnat [of p])
  | 
| 
 | 
    89  | 
apply (auto elim!: FreeUltrafilterNat_subset simp 
  | 
| 
 | 
    90  | 
            add: hypnat_zero_def sumhr hypreal_add hypnat_less sumr_split_add)
  | 
| 
 | 
    91  | 
done
  | 
| 
 | 
    92  | 
  | 
| 
 | 
    93  | 
lemma sumhr_split_diff: "n<p ==> sumhr(0,p,f) - sumhr(0,n,f) = sumhr(n,p,f)"
  | 
| 
 | 
    94  | 
by (drule_tac f1 = f in sumhr_split_add [symmetric], simp)
  | 
| 
 | 
    95  | 
  | 
| 
 | 
    96  | 
lemma sumhr_hrabs: "abs(sumhr(m,n,f)) \<le> sumhr(m,n,%i. abs(f i))"
  | 
| 
 | 
    97  | 
apply (rule eq_Abs_hypnat [of n])
  | 
| 
 | 
    98  | 
apply (rule eq_Abs_hypnat [of m])
  | 
| 
 | 
    99  | 
apply (simp add: sumhr hypreal_le hypreal_hrabs sumr_rabs)
  | 
| 
 | 
   100  | 
done
  | 
| 
 | 
   101  | 
  | 
| 
 | 
   102  | 
text{* other general version also needed *}
 | 
| 
 | 
   103  | 
lemma sumhr_fun_hypnat_eq:
  | 
| 
 | 
   104  | 
   "(\<forall>r. m \<le> r & r < n --> f r = g r) -->  
  | 
| 
 | 
   105  | 
      sumhr(hypnat_of_nat m, hypnat_of_nat n, f) =  
  | 
| 
 | 
   106  | 
      sumhr(hypnat_of_nat m, hypnat_of_nat n, g)"
  | 
| 
 | 
   107  | 
apply (safe, drule sumr_fun_eq)
  | 
| 
 | 
   108  | 
apply (simp add: sumhr hypnat_of_nat_eq)
  | 
| 
 | 
   109  | 
done
  | 
| 
 | 
   110  | 
  | 
| 
 | 
   111  | 
lemma sumhr_const: "sumhr(0,n,%i. r) = hypreal_of_hypnat n*hypreal_of_real r"
  | 
| 
 | 
   112  | 
apply (rule eq_Abs_hypnat [of n])
  | 
| 
 | 
   113  | 
apply (simp add: sumhr hypnat_zero_def hypreal_of_real_def hypreal_of_hypnat hypreal_mult)
  | 
| 
 | 
   114  | 
done
  | 
| 
 | 
   115  | 
  | 
| 
 | 
   116  | 
lemma sumhr_add_mult_const: 
  | 
| 
 | 
   117  | 
     "sumhr(0,n,f) + -(hypreal_of_hypnat n*hypreal_of_real r) =  
  | 
| 
 | 
   118  | 
      sumhr(0,n,%i. f i + -r)"
  | 
| 
 | 
   119  | 
apply (rule eq_Abs_hypnat [of n])
  | 
| 
 | 
   120  | 
apply (simp add: sumhr hypnat_zero_def hypreal_of_real_def hypreal_of_hypnat 
  | 
| 
 | 
   121  | 
                 hypreal_mult hypreal_add hypreal_minus sumr_add [symmetric])
  | 
| 
 | 
   122  | 
done
  | 
| 
 | 
   123  | 
  | 
| 
 | 
   124  | 
lemma sumhr_less_bounds_zero [simp]: "n < m ==> sumhr(m,n,f) = 0"
  | 
| 
 | 
   125  | 
apply (rule eq_Abs_hypnat [of m])
  | 
| 
 | 
   126  | 
apply (rule eq_Abs_hypnat [of n])
  | 
| 
 | 
   127  | 
apply (auto elim: FreeUltrafilterNat_subset 
  | 
| 
 | 
   128  | 
            simp add: sumhr hypnat_less hypreal_zero_def)
  | 
| 
 | 
   129  | 
done
  | 
| 
 | 
   130  | 
  | 
| 
 | 
   131  | 
lemma sumhr_minus: "sumhr(m, n, %i. - f i) = - sumhr(m, n, f)"
  | 
| 
 | 
   132  | 
apply (rule eq_Abs_hypnat [of m])
  | 
| 
 | 
   133  | 
apply (rule eq_Abs_hypnat [of n])
  | 
| 
 | 
   134  | 
apply (simp add: sumhr hypreal_minus sumr_minus)
  | 
| 
 | 
   135  | 
done
  | 
| 
 | 
   136  | 
  | 
| 
 | 
   137  | 
lemma sumhr_shift_bounds:
  | 
| 
 | 
   138  | 
     "sumhr(m+hypnat_of_nat k,n+hypnat_of_nat k,f) = sumhr(m,n,%i. f(i + k))"
  | 
| 
 | 
   139  | 
apply (rule eq_Abs_hypnat [of m])
  | 
| 
 | 
   140  | 
apply (rule eq_Abs_hypnat [of n])
  | 
| 
 | 
   141  | 
apply (simp add: sumhr hypnat_add sumr_shift_bounds hypnat_of_nat_eq)
  | 
| 
 | 
   142  | 
done
  | 
| 
 | 
   143  | 
  | 
| 
 | 
   144  | 
  | 
| 
 | 
   145  | 
subsection{*Nonstandard Sums*}
 | 
| 
 | 
   146  | 
  | 
| 
 | 
   147  | 
text{*Infinite sums are obtained by summing to some infinite hypernatural
 | 
| 
 | 
   148  | 
 (such as @{term whn})*}
 | 
| 
 | 
   149  | 
lemma sumhr_hypreal_of_hypnat_omega: 
  | 
| 
 | 
   150  | 
      "sumhr(0,whn,%i. 1) = hypreal_of_hypnat whn"
  | 
| 
 | 
   151  | 
by (simp add: hypnat_omega_def hypnat_zero_def sumhr hypreal_of_hypnat)
  | 
| 
 | 
   152  | 
  | 
| 
 | 
   153  | 
lemma sumhr_hypreal_omega_minus_one: "sumhr(0, whn, %i. 1) = omega - 1"
  | 
| 
 | 
   154  | 
by (simp add: hypnat_omega_def hypnat_zero_def omega_def hypreal_one_def
  | 
| 
 | 
   155  | 
              sumhr hypreal_diff real_of_nat_Suc)
  | 
| 
 | 
   156  | 
  | 
| 
 | 
   157  | 
lemma sumhr_minus_one_realpow_zero [simp]: 
  | 
| 
 | 
   158  | 
     "sumhr(0, whn + whn, %i. (-1) ^ (i+1)) = 0"
  | 
| 
 | 
   159  | 
by (simp del: realpow_Suc 
  | 
| 
 | 
   160  | 
         add: sumhr hypnat_add double_lemma hypreal_zero_def 
  | 
| 
 | 
   161  | 
              hypnat_zero_def hypnat_omega_def)
  | 
| 
 | 
   162  | 
  | 
| 
 | 
   163  | 
lemma sumhr_interval_const:
  | 
| 
 | 
   164  | 
     "(\<forall>n. m \<le> Suc n --> f n = r) & m \<le> na  
  | 
| 
 | 
   165  | 
      ==> sumhr(hypnat_of_nat m,hypnat_of_nat na,f) =  
  | 
| 
 | 
   166  | 
          (hypreal_of_nat (na - m) * hypreal_of_real r)"
  | 
| 
 | 
   167  | 
by (auto dest!: sumr_interval_const 
  | 
| 
 | 
   168  | 
         simp add: hypreal_of_real_def sumhr hypreal_of_nat_eq 
  | 
| 
 | 
   169  | 
                   hypnat_of_nat_eq hypreal_of_real_def hypreal_mult)
  | 
| 
 | 
   170  | 
  | 
| 
 | 
   171  | 
lemma starfunNat_sumr: "( *fNat* (%n. sumr 0 n f)) N = sumhr(0,N,f)"
  | 
| 
 | 
   172  | 
apply (rule eq_Abs_hypnat [of N])
  | 
| 
 | 
   173  | 
apply (simp add: hypnat_zero_def starfunNat sumhr)
  | 
| 
 | 
   174  | 
done
  | 
| 
 | 
   175  | 
  | 
| 
 | 
   176  | 
lemma sumhr_hrabs_approx [simp]: "sumhr(0, M, f) @= sumhr(0, N, f)  
  | 
| 
 | 
   177  | 
      ==> abs (sumhr(M, N, f)) @= 0"
  | 
| 
 | 
   178  | 
apply (cut_tac x = M and y = N in linorder_less_linear)
  | 
| 
 | 
   179  | 
apply (auto simp add: approx_refl)
  | 
| 
 | 
   180  | 
apply (drule approx_sym [THEN approx_minus_iff [THEN iffD1]])
  | 
| 
 | 
   181  | 
apply (auto dest: approx_hrabs 
  | 
| 
 | 
   182  | 
            simp add: sumhr_split_diff diff_minus [symmetric])
  | 
| 
 | 
   183  | 
done
  | 
| 
 | 
   184  | 
  | 
| 
 | 
   185  | 
(*----------------------------------------------------------------
  | 
| 
 | 
   186  | 
      infinite sums: Standard and NS theorems
  | 
| 
 | 
   187  | 
 ----------------------------------------------------------------*)
  | 
| 
 | 
   188  | 
lemma sums_NSsums_iff: "(f sums l) = (f NSsums l)"
  | 
| 
 | 
   189  | 
by (simp add: sums_def NSsums_def LIMSEQ_NSLIMSEQ_iff)
  | 
| 
 | 
   190  | 
  | 
| 
 | 
   191  | 
lemma summable_NSsummable_iff: "(summable f) = (NSsummable f)"
  | 
| 
 | 
   192  | 
by (simp add: summable_def NSsummable_def sums_NSsums_iff)
  | 
| 
 | 
   193  | 
  | 
| 
 | 
   194  | 
lemma suminf_NSsuminf_iff: "(suminf f) = (NSsuminf f)"
  | 
| 
 | 
   195  | 
by (simp add: suminf_def NSsuminf_def sums_NSsums_iff)
  | 
| 
 | 
   196  | 
  | 
| 
 | 
   197  | 
lemma NSsums_NSsummable: "f NSsums l ==> NSsummable f"
  | 
| 
 | 
   198  | 
by (simp add: NSsums_def NSsummable_def, blast)
  | 
| 
 | 
   199  | 
  | 
| 
 | 
   200  | 
lemma NSsummable_NSsums: "NSsummable f ==> f NSsums (NSsuminf f)"
  | 
| 
 | 
   201  | 
apply (simp add: NSsummable_def NSsuminf_def)
  | 
| 
 | 
   202  | 
apply (blast intro: someI2)
  | 
| 
 | 
   203  | 
done
  | 
| 
 | 
   204  | 
  | 
| 
 | 
   205  | 
lemma NSsums_unique: "f NSsums s ==> (s = NSsuminf f)"
  | 
| 
 | 
   206  | 
by (simp add: suminf_NSsuminf_iff [symmetric] sums_NSsums_iff sums_unique)
  | 
| 
 | 
   207  | 
  | 
| 
 | 
   208  | 
lemma NSseries_zero: "\<forall>m. n \<le> Suc m --> f(m) = 0 ==> f NSsums (sumr 0 n f)"
  | 
| 
 | 
   209  | 
by (simp add: sums_NSsums_iff [symmetric] series_zero)
  | 
| 
 | 
   210  | 
  | 
| 
 | 
   211  | 
lemma NSsummable_NSCauchy:
  | 
| 
 | 
   212  | 
     "NSsummable f =  
  | 
| 
 | 
   213  | 
      (\<forall>M \<in> HNatInfinite. \<forall>N \<in> HNatInfinite. abs (sumhr(M,N,f)) @= 0)"
  | 
| 
 | 
   214  | 
apply (auto simp add: summable_NSsummable_iff [symmetric] 
  | 
| 
 | 
   215  | 
       summable_convergent_sumr_iff convergent_NSconvergent_iff 
  | 
| 
 | 
   216  | 
       NSCauchy_NSconvergent_iff [symmetric] NSCauchy_def starfunNat_sumr)
  | 
| 
 | 
   217  | 
apply (cut_tac x = M and y = N in linorder_less_linear)
  | 
| 
 | 
   218  | 
apply (auto simp add: approx_refl)
  | 
| 
 | 
   219  | 
apply (rule approx_minus_iff [THEN iffD2, THEN approx_sym])
  | 
| 
 | 
   220  | 
apply (rule_tac [2] approx_minus_iff [THEN iffD2])
  | 
| 
 | 
   221  | 
apply (auto dest: approx_hrabs_zero_cancel 
  | 
| 
 | 
   222  | 
            simp add: sumhr_split_diff diff_minus [symmetric])
  | 
| 
 | 
   223  | 
done
  | 
| 
 | 
   224  | 
  | 
| 
 | 
   225  | 
  | 
| 
 | 
   226  | 
text{*Terms of a convergent series tend to zero*}
 | 
| 
 | 
   227  | 
lemma NSsummable_NSLIMSEQ_zero: "NSsummable f ==> f ----NS> 0"
  | 
| 
 | 
   228  | 
apply (auto simp add: NSLIMSEQ_def NSsummable_NSCauchy)
  | 
| 
 | 
   229  | 
apply (drule bspec, auto)
  | 
| 
 | 
   230  | 
apply (drule_tac x = "N + 1 " in bspec)
  | 
| 
 | 
   231  | 
apply (auto intro: HNatInfinite_add_one approx_hrabs_zero_cancel)
  | 
| 
 | 
   232  | 
done
  | 
| 
 | 
   233  | 
  | 
| 
 | 
   234  | 
text{* Easy to prove stsandard case now *}
 | 
| 
 | 
   235  | 
lemma summable_LIMSEQ_zero: "summable f ==> f ----> 0"
  | 
| 
 | 
   236  | 
by (simp add: summable_NSsummable_iff LIMSEQ_NSLIMSEQ_iff NSsummable_NSLIMSEQ_zero)
  | 
| 
 | 
   237  | 
  | 
| 
 | 
   238  | 
text{*Nonstandard comparison test*}
 | 
| 
 | 
   239  | 
lemma NSsummable_comparison_test:
  | 
| 
 | 
   240  | 
     "[| \<exists>N. \<forall>n. N \<le> n --> abs(f n) \<le> g n; NSsummable g |] ==> NSsummable f"
  | 
| 
 | 
   241  | 
by (auto intro: summable_comparison_test 
  | 
| 
 | 
   242  | 
         simp add: summable_NSsummable_iff [symmetric])
  | 
| 
 | 
   243  | 
  | 
| 
 | 
   244  | 
lemma NSsummable_rabs_comparison_test:
  | 
| 
 | 
   245  | 
     "[| \<exists>N. \<forall>n. N \<le> n --> abs(f n) \<le> g n; NSsummable g |]
  | 
| 
 | 
   246  | 
      ==> NSsummable (%k. abs (f k))"
  | 
| 
 | 
   247  | 
apply (rule NSsummable_comparison_test)
  | 
| 
 | 
   248  | 
apply (auto simp add: abs_idempotent)
  | 
| 
 | 
   249  | 
done
  | 
| 
 | 
   250  | 
  | 
| 
 | 
   251  | 
ML
  | 
| 
 | 
   252  | 
{*
 | 
| 
 | 
   253  | 
val sumhr = thm "sumhr";
  | 
| 
 | 
   254  | 
val sumhr_zero = thm "sumhr_zero";
  | 
| 
 | 
   255  | 
val sumhr_if = thm "sumhr_if";
  | 
| 
 | 
   256  | 
val sumhr_Suc_zero = thm "sumhr_Suc_zero";
  | 
| 
 | 
   257  | 
val sumhr_eq_bounds = thm "sumhr_eq_bounds";
  | 
| 
 | 
   258  | 
val sumhr_Suc = thm "sumhr_Suc";
  | 
| 
 | 
   259  | 
val sumhr_add_lbound_zero = thm "sumhr_add_lbound_zero";
  | 
| 
 | 
   260  | 
val sumhr_add = thm "sumhr_add";
  | 
| 
 | 
   261  | 
val sumhr_mult = thm "sumhr_mult";
  | 
| 
 | 
   262  | 
val sumhr_split_add = thm "sumhr_split_add";
  | 
| 
 | 
   263  | 
val sumhr_split_diff = thm "sumhr_split_diff";
  | 
| 
 | 
   264  | 
val sumhr_hrabs = thm "sumhr_hrabs";
  | 
| 
 | 
   265  | 
val sumhr_fun_hypnat_eq = thm "sumhr_fun_hypnat_eq";
  | 
| 
 | 
   266  | 
val sumhr_const = thm "sumhr_const";
  | 
| 
 | 
   267  | 
val sumhr_add_mult_const = thm "sumhr_add_mult_const";
  | 
| 
 | 
   268  | 
val sumhr_less_bounds_zero = thm "sumhr_less_bounds_zero";
  | 
| 
 | 
   269  | 
val sumhr_minus = thm "sumhr_minus";
  | 
| 
 | 
   270  | 
val sumhr_shift_bounds = thm "sumhr_shift_bounds";
  | 
| 
 | 
   271  | 
val sumhr_hypreal_of_hypnat_omega = thm "sumhr_hypreal_of_hypnat_omega";
  | 
| 
 | 
   272  | 
val sumhr_hypreal_omega_minus_one = thm "sumhr_hypreal_omega_minus_one";
  | 
| 
 | 
   273  | 
val sumhr_minus_one_realpow_zero = thm "sumhr_minus_one_realpow_zero";
  | 
| 
 | 
   274  | 
val sumhr_interval_const = thm "sumhr_interval_const";
  | 
| 
 | 
   275  | 
val starfunNat_sumr = thm "starfunNat_sumr";
  | 
| 
 | 
   276  | 
val sumhr_hrabs_approx = thm "sumhr_hrabs_approx";
  | 
| 
 | 
   277  | 
val sums_NSsums_iff = thm "sums_NSsums_iff";
  | 
| 
 | 
   278  | 
val summable_NSsummable_iff = thm "summable_NSsummable_iff";
  | 
| 
 | 
   279  | 
val suminf_NSsuminf_iff = thm "suminf_NSsuminf_iff";
  | 
| 
 | 
   280  | 
val NSsums_NSsummable = thm "NSsums_NSsummable";
  | 
| 
 | 
   281  | 
val NSsummable_NSsums = thm "NSsummable_NSsums";
  | 
| 
 | 
   282  | 
val NSsums_unique = thm "NSsums_unique";
  | 
| 
 | 
   283  | 
val NSseries_zero = thm "NSseries_zero";
  | 
| 
 | 
   284  | 
val NSsummable_NSCauchy = thm "NSsummable_NSCauchy";
  | 
| 
 | 
   285  | 
val NSsummable_NSLIMSEQ_zero = thm "NSsummable_NSLIMSEQ_zero";
  | 
| 
 | 
   286  | 
val summable_LIMSEQ_zero = thm "summable_LIMSEQ_zero";
  | 
| 
 | 
   287  | 
val NSsummable_comparison_test = thm "NSsummable_comparison_test";
  | 
| 
 | 
   288  | 
val NSsummable_rabs_comparison_test = thm "NSsummable_rabs_comparison_test";
  | 
| 
 | 
   289  | 
*}
  | 
| 
 | 
   290  | 
  | 
| 
10751
 | 
   291  | 
end
  |