| author | bulwahn | 
| Wed, 28 Oct 2009 12:29:00 +0100 | |
| changeset 33326 | 7d0288d90535 | 
| parent 32010 | cb1a1c94b4cd | 
| child 33388 | d64545e6cba5 | 
| permissions | -rw-r--r-- | 
| 13404 | 1 | (* Title: HOL/Tools/rewrite_hol_proof.ML | 
| 2 | Author: Stefan Berghofer, TU Muenchen | |
| 3 | ||
| 4 | Rewrite rules for HOL proofs | |
| 5 | *) | |
| 6 | ||
| 7 | signature REWRITE_HOL_PROOF = | |
| 8 | sig | |
| 9 | val rews: (Proofterm.proof * Proofterm.proof) list | |
| 10 | val elim_cong: typ list -> Proofterm.proof -> Proofterm.proof option | |
| 11 | end; | |
| 12 | ||
| 13 | structure RewriteHOLProof : REWRITE_HOL_PROOF = | |
| 14 | struct | |
| 15 | ||
| 16 | open Proofterm; | |
| 17 | ||
| 32010 | 18 | val rews = map (pairself (ProofSyntax.proof_of_term @{theory} true) o
 | 
| 19 |     Logic.dest_equals o Logic.varify o ProofSyntax.read_term @{theory} propT)
 | |
| 13404 | 20 | |
| 21 | (** eliminate meta-equality rules **) | |
| 22 | ||
| 23 | ["(equal_elim % x1 % x2 %% \ | |
| 24 |  \    (combination % TYPE('T1) % TYPE('T2) % Trueprop % x3 % A % B %%  \
 | |
| 28712 
4f2954d995f0
Removed argument prf2 in rewrite rules for equal_elim to make them applicable
 berghofe parents: 
28262diff
changeset | 25 |  \      (axm.reflexive % TYPE('T3) % x4) %% prf1)) ==  \
 | 
| 13404 | 26 | \ (iffD1 % A % B %% \ | 
| 28712 
4f2954d995f0
Removed argument prf2 in rewrite rules for equal_elim to make them applicable
 berghofe parents: 
28262diff
changeset | 27 | \ (meta_eq_to_obj_eq % TYPE(bool) % A % B %% prf1))", | 
| 13404 | 28 | |
| 29 |    "(equal_elim % x1 % x2 %% (axm.symmetric % TYPE('T1) % x3 % x4 %%  \
 | |
| 30 |  \    (combination % TYPE('T2) % TYPE('T3) % Trueprop % x5 % A % B %%  \
 | |
| 28712 
4f2954d995f0
Removed argument prf2 in rewrite rules for equal_elim to make them applicable
 berghofe parents: 
28262diff
changeset | 31 |  \      (axm.reflexive % TYPE('T4) % x6) %% prf1))) ==  \
 | 
| 13404 | 32 | \ (iffD2 % A % B %% \ | 
| 28712 
4f2954d995f0
Removed argument prf2 in rewrite rules for equal_elim to make them applicable
 berghofe parents: 
28262diff
changeset | 33 | \ (meta_eq_to_obj_eq % TYPE(bool) % A % B %% prf1))", | 
| 13404 | 34 | |
| 35 |    "(meta_eq_to_obj_eq % TYPE('U) % x1 % x2 %%  \
 | |
| 36 |  \    (combination % TYPE('U) % TYPE('T) % f % g % x % y %% prf1 %% prf2)) ==  \
 | |
| 37 |  \  (cong % TYPE('U) % TYPE('T) % f % g % x % y %%  \
 | |
| 38 |  \    (meta_eq_to_obj_eq % TYPE('T => 'U) % f % g %% prf1) %%  \
 | |
| 39 |  \    (meta_eq_to_obj_eq % TYPE('T) % x % y %% prf2))",
 | |
| 40 | ||
| 41 |    "(meta_eq_to_obj_eq % TYPE('T) % x1 % x2 %%  \
 | |
| 42 |  \    (axm.transitive % TYPE('T) % x % y % z %% prf1 %% prf2)) ==  \
 | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 43 |  \  (HOL.trans % TYPE('T) % x % y % z %%  \
 | 
| 13404 | 44 |  \    (meta_eq_to_obj_eq % TYPE('T) % x % y %% prf1) %%  \
 | 
| 45 |  \    (meta_eq_to_obj_eq % TYPE('T) % y % z %% prf2))",
 | |
| 46 | ||
| 47 |    "(meta_eq_to_obj_eq % TYPE('T) % x % x %% (axm.reflexive % TYPE('T) % x)) ==  \
 | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 48 |  \  (HOL.refl % TYPE('T) % x)",
 | 
| 13404 | 49 | |
| 50 |    "(meta_eq_to_obj_eq % TYPE('T) % x % y %%  \
 | |
| 51 |  \    (axm.symmetric % TYPE('T) % x % y %% prf)) ==  \
 | |
| 52 |  \  (sym % TYPE('T) % x % y %% (meta_eq_to_obj_eq % TYPE('T) % x % y %% prf))",
 | |
| 53 | ||
| 54 |    "(meta_eq_to_obj_eq % TYPE('T => 'U) % x1 % x2 %%  \
 | |
| 55 |  \    (abstract_rule % TYPE('U) % TYPE('T) % f % g %% prf)) ==  \
 | |
| 56 |  \  (ext % TYPE('U) % TYPE('T) % f % g %%  \
 | |
| 57 |  \    (Lam (x::'T). meta_eq_to_obj_eq % TYPE('U) % f x % g x %% (prf % x)))",
 | |
| 58 | ||
| 59 |    "(meta_eq_to_obj_eq % TYPE('T) % x % y %%  \
 | |
| 60 |  \    (eq_reflection % TYPE('T) % x % y %% prf)) == prf",
 | |
| 61 | ||
| 62 |    "(meta_eq_to_obj_eq % TYPE('T1) % x1 % x2 %% (equal_elim % x3 % x4 %%  \
 | |
| 63 |  \    (combination % TYPE(prop) % TYPE('T) % x7 % x8 % C % D %%  \
 | |
| 64 |  \      (combination % TYPE('T3) % TYPE('T) % op == % op == % A % B %%  \
 | |
| 65 |  \        (axm.reflexive % TYPE('T4) % op ==) %% prf1) %% prf2) %% prf3)) ==  \
 | |
| 66 | \ (iffD1 % A = C % B = D %% \ | |
| 67 |  \    (cong % TYPE(bool) % TYPE('T::type) % op = A % op = B % C % D %%  \
 | |
| 68 |  \      (cong % TYPE('T=>bool) % TYPE('T) %  \
 | |
| 69 | \ (op = :: 'T=>'T=>bool) % (op = :: 'T=>'T=>bool) % A % B %% \ | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 70 |  \        (HOL.refl % TYPE('T=>'T=>bool) % (op = :: 'T=>'T=>bool)) %%  \
 | 
| 13404 | 71 |  \        (meta_eq_to_obj_eq % TYPE('T) % A % B %% prf1)) %%  \
 | 
| 72 |  \      (meta_eq_to_obj_eq % TYPE('T) % C % D %% prf2)) %%  \
 | |
| 30850 
5e20f9c20086
Fixed bug in transformation of congruence rule for ==
 berghofe parents: 
28814diff
changeset | 73 |  \    (meta_eq_to_obj_eq % TYPE('T) % A % C %% prf3))",
 | 
| 13404 | 74 | |
| 75 |    "(meta_eq_to_obj_eq % TYPE('T1) % x1 % x2 %% (equal_elim % x3 % x4 %%  \
 | |
| 76 |  \    (axm.symmetric % TYPE('T2) % x5 % x6 %%  \
 | |
| 77 |  \      (combination % TYPE(prop) % TYPE('T) % x7 % x8 % C % D %%  \
 | |
| 78 |  \        (combination % TYPE('T3) % TYPE('T) % op == % op == % A % B %%  \
 | |
| 79 |  \          (axm.reflexive % TYPE('T4) % op ==) %% prf1) %% prf2)) %% prf3)) ==  \
 | |
| 80 | \ (iffD2 % A = C % B = D %% \ | |
| 81 |  \    (cong % TYPE(bool) % TYPE('T::type) % op = A % op = B % C % D %%  \
 | |
| 82 |  \      (cong % TYPE('T=>bool) % TYPE('T) %  \
 | |
| 83 | \ (op = :: 'T=>'T=>bool) % (op = :: 'T=>'T=>bool) % A % B %% \ | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 84 |  \        (HOL.refl % TYPE('T=>'T=>bool) % (op = :: 'T=>'T=>bool)) %%  \
 | 
| 13404 | 85 |  \        (meta_eq_to_obj_eq % TYPE('T) % A % B %% prf1)) %%  \
 | 
| 86 |  \      (meta_eq_to_obj_eq % TYPE('T) % C % D %% prf2)) %%  \
 | |
| 30850 
5e20f9c20086
Fixed bug in transformation of congruence rule for ==
 berghofe parents: 
28814diff
changeset | 87 |  \    (meta_eq_to_obj_eq % TYPE('T) % B % D %% prf3))",
 | 
| 13404 | 88 | |
| 89 | (** rewriting on bool: insert proper congruence rules for logical connectives **) | |
| 90 | ||
| 91 | (* All *) | |
| 92 | ||
| 93 |    "(iffD1 % All P % All Q %% (cong % TYPE('T1) % TYPE('T2) % All % All % P % Q %%  \
 | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 94 |  \    (HOL.refl % TYPE('T3) % x1) %% (ext % TYPE(bool) % TYPE('a) % x2 % x3 %% prf)) %% prf') ==  \
 | 
| 13404 | 95 |  \  (allI % TYPE('a) % Q %%  \
 | 
| 96 | \ (Lam x. \ | |
| 97 | \ iffD1 % P x % Q x %% (prf % x) %% \ | |
| 98 |  \         (spec % TYPE('a) % P % x %% prf')))",
 | |
| 99 | ||
| 100 |    "(iffD2 % All P % All Q %% (cong % TYPE('T1) % TYPE('T2) % All % All % P % Q %%  \
 | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 101 |  \    (HOL.refl % TYPE('T3) % x1) %% (ext % TYPE(bool) % TYPE('a) % x2 % x3 %% prf)) %% prf') ==  \
 | 
| 13404 | 102 |  \  (allI % TYPE('a) % P %%  \
 | 
| 103 | \ (Lam x. \ | |
| 104 | \ iffD2 % P x % Q x %% (prf % x) %% \ | |
| 19798 | 105 |  \         (spec % TYPE('a) % Q % x %% prf')))",
 | 
| 13404 | 106 | |
| 107 | (* Ex *) | |
| 108 | ||
| 109 |    "(iffD1 % Ex P % Ex Q %% (cong % TYPE('T1) % TYPE('T2) % Ex % Ex % P % Q %%  \
 | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 110 |  \    (HOL.refl % TYPE('T3) % x1) %% (ext % TYPE(bool) % TYPE('a) % x2 % x3 %% prf)) %% prf') ==  \
 | 
| 13404 | 111 |  \  (exE % TYPE('a) % P % EX x. Q x %% prf' %%  \
 | 
| 112 | \ (Lam x H : P x. \ | |
| 113 |  \        exI % TYPE('a) % Q % x %%  \
 | |
| 114 | \ (iffD1 % P x % Q x %% (prf % x) %% H)))", | |
| 115 | ||
| 116 |    "(iffD2 % Ex P % Ex Q %% (cong % TYPE('T1) % TYPE('T2) % Ex % Ex % P % Q %%  \
 | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 117 |  \    (HOL.refl % TYPE('T3) % x1) %% (ext % TYPE(bool) % TYPE('a) % x2 % x3 %% prf)) %% prf') ==  \
 | 
| 13404 | 118 |  \  (exE % TYPE('a) % Q % EX x. P x %% prf' %%  \
 | 
| 119 | \ (Lam x H : Q x. \ | |
| 120 |  \        exI % TYPE('a) % P % x %%  \
 | |
| 121 | \ (iffD2 % P x % Q x %% (prf % x) %% H)))", | |
| 122 | ||
| 123 | (* & *) | |
| 124 | ||
| 125 |    "(iffD1 % A & C % B & D %% (cong % TYPE('T1) % TYPE('T2) % x1 % x2 % C % D %%  \
 | |
| 126 |  \    (cong % TYPE('T3) % TYPE('T4) % op & % op & % A % B %%  \
 | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 127 |  \      (HOL.refl % TYPE('T5) % op &) %% prf1) %% prf2) %% prf3) ==  \
 | 
| 13404 | 128 | \ (conjI % B % D %% \ | 
| 129 | \ (iffD1 % A % B %% prf1 %% (conjunct1 % A % C %% prf3)) %% \ | |
| 130 | \ (iffD1 % C % D %% prf2 %% (conjunct2 % A % C %% prf3)))", | |
| 131 | ||
| 132 |    "(iffD2 % A & C % B & D %% (cong % TYPE('T1) % TYPE('T2) % x1 % x2 % C % D %%  \
 | |
| 133 |  \    (cong % TYPE('T3) % TYPE('T4) % op & % op & % A % B %%  \
 | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 134 |  \      (HOL.refl % TYPE('T5) % op &) %% prf1) %% prf2) %% prf3) ==  \
 | 
| 13404 | 135 | \ (conjI % A % C %% \ | 
| 136 | \ (iffD2 % A % B %% prf1 %% (conjunct1 % B % D %% prf3)) %% \ | |
| 137 | \ (iffD2 % C % D %% prf2 %% (conjunct2 % B % D %% prf3)))", | |
| 138 | ||
| 13602 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 139 | "(cong % TYPE(bool) % TYPE(bool) % op & A % op & A % B % C %% \ | 
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 140 | \ (HOL.refl % TYPE(bool=>bool) % op & A)) == \ | 
| 13602 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 141 | \ (cong % TYPE(bool) % TYPE(bool) % op & A % op & A % B % C %% \ | 
| 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 142 | \ (cong % TYPE(bool=>bool) % TYPE(bool) % \ | 
| 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 143 | \ (op & :: bool=>bool=>bool) % (op & :: bool=>bool=>bool) % A % A %% \ | 
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 144 | \ (HOL.refl % TYPE(bool=>bool=>bool) % (op & :: bool=>bool=>bool)) %% \ | 
| 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 145 | \ (HOL.refl % TYPE(bool) % A)))", | 
| 13602 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 146 | |
| 13404 | 147 | (* | *) | 
| 148 | ||
| 149 |    "(iffD1 % A | C % B | D %% (cong % TYPE('T1) % TYPE('T2) % x1 % x2 % C % D %%  \
 | |
| 150 |  \    (cong % TYPE('T3) % TYPE('T4) % op | % op | % A % B %%  \
 | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 151 |  \      (HOL.refl % TYPE('T5) % op | ) %% prf1) %% prf2) %% prf3) ==  \
 | 
| 13404 | 152 | \ (disjE % A % C % B | D %% prf3 %% \ | 
| 153 | \ (Lam H : A. disjI1 % B % D %% (iffD1 % A % B %% prf1 %% H)) %% \ | |
| 154 | \ (Lam H : C. disjI2 % D % B %% (iffD1 % C % D %% prf2 %% H)))", | |
| 155 | ||
| 156 |    "(iffD2 % A | C % B | D %% (cong % TYPE('T1) % TYPE('T2) % x1 % x2 % C % D %%  \
 | |
| 157 |  \    (cong % TYPE('T3) % TYPE('T4) % op | % op | % A % B %%  \
 | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 158 |  \      (HOL.refl % TYPE('T5) % op | ) %% prf1) %% prf2) %% prf3) ==  \
 | 
| 13404 | 159 | \ (disjE % B % D % A | C %% prf3 %% \ | 
| 160 | \ (Lam H : B. disjI1 % A % C %% (iffD2 % A % B %% prf1 %% H)) %% \ | |
| 161 | \ (Lam H : D. disjI2 % C % A %% (iffD2 % C % D %% prf2 %% H)))", | |
| 162 | ||
| 13602 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 163 | "(cong % TYPE(bool) % TYPE(bool) % op | A % op | A % B % C %% \ | 
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 164 | \ (HOL.refl % TYPE(bool=>bool) % op | A)) == \ | 
| 13602 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 165 | \ (cong % TYPE(bool) % TYPE(bool) % op | A % op | A % B % C %% \ | 
| 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 166 | \ (cong % TYPE(bool=>bool) % TYPE(bool) % \ | 
| 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 167 | \ (op | :: bool=>bool=>bool) % (op | :: bool=>bool=>bool) % A % A %% \ | 
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 168 | \ (HOL.refl % TYPE(bool=>bool=>bool) % (op | :: bool=>bool=>bool)) %% \ | 
| 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 169 | \ (HOL.refl % TYPE(bool) % A)))", | 
| 13602 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 170 | |
| 13404 | 171 | (* --> *) | 
| 172 | ||
| 173 |    "(iffD1 % A --> C % B --> D %% (cong % TYPE('T1) % TYPE('T2) % x1 % x2 % C % D %%  \
 | |
| 174 |  \    (cong % TYPE('T3) % TYPE('T4) % op --> % op --> % A % B %%  \
 | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 175 |  \      (HOL.refl % TYPE('T5) % op --> ) %% prf1) %% prf2) %% prf3) ==  \
 | 
| 13404 | 176 | \ (impI % B % D %% (Lam H: B. iffD1 % C % D %% prf2 %% \ | 
| 177 | \ (mp % A % C %% prf3 %% (iffD2 % A % B %% prf1 %% H))))", | |
| 178 | ||
| 179 |    "(iffD2 % A --> C % B --> D %% (cong % TYPE('T1) % TYPE('T2) % x1 % x2 % C % D %%  \
 | |
| 180 |  \    (cong % TYPE('T3) % TYPE('T4) % op --> % op --> % A % B %%  \
 | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 181 |  \      (HOL.refl % TYPE('T5) % op --> ) %% prf1) %% prf2) %% prf3) ==  \
 | 
| 13404 | 182 | \ (impI % A % C %% (Lam H: A. iffD2 % C % D %% prf2 %% \ | 
| 183 | \ (mp % B % D %% prf3 %% (iffD1 % A % B %% prf1 %% H))))", | |
| 184 | ||
| 13602 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 185 | "(cong % TYPE(bool) % TYPE(bool) % op --> A % op --> A % B % C %% \ | 
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 186 | \ (HOL.refl % TYPE(bool=>bool) % op --> A)) == \ | 
| 13602 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 187 | \ (cong % TYPE(bool) % TYPE(bool) % op --> A % op --> A % B % C %% \ | 
| 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 188 | \ (cong % TYPE(bool=>bool) % TYPE(bool) % \ | 
| 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 189 | \ (op --> :: bool=>bool=>bool) % (op --> :: bool=>bool=>bool) % A % A %% \ | 
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 190 | \ (HOL.refl % TYPE(bool=>bool=>bool) % (op --> :: bool=>bool=>bool)) %% \ | 
| 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 191 | \ (HOL.refl % TYPE(bool) % A)))", | 
| 13602 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 192 | |
| 13404 | 193 | (* ~ *) | 
| 194 | ||
| 195 |    "(iffD1 % ~ P % ~ Q %% (cong % TYPE('T1) % TYPE('T2) % Not % Not % P % Q %%  \
 | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 196 |  \    (HOL.refl % TYPE('T3) % Not) %% prf1) %% prf2) ==  \
 | 
| 13404 | 197 | \ (notI % Q %% (Lam H: Q. \ | 
| 198 | \ notE % P % False %% prf2 %% (iffD2 % P % Q %% prf1 %% H)))", | |
| 199 | ||
| 200 |    "(iffD2 % ~ P % ~ Q %% (cong % TYPE('T1) % TYPE('T2) % Not % Not % P % Q %%  \
 | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 201 |  \    (HOL.refl % TYPE('T3) % Not) %% prf1) %% prf2) ==  \
 | 
| 13404 | 202 | \ (notI % P %% (Lam H: P. \ | 
| 203 | \ notE % Q % False %% prf2 %% (iffD1 % P % Q %% prf1 %% H)))", | |
| 204 | ||
| 205 | (* = *) | |
| 206 | ||
| 207 | "(iffD1 % B % D %% \ | |
| 208 |  \    (iffD1 % A = C % B = D %% (cong % TYPE('T1) % TYPE(bool) % x1 % x2 % C % D %%  \
 | |
| 209 |  \      (cong % TYPE('T2) % TYPE(bool) % op = % op = % A % B %%  \
 | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 210 |  \        (HOL.refl % TYPE('T3) % op =) %% prf1) %% prf2) %% prf3) %% prf4) ==  \
 | 
| 13404 | 211 | \ (iffD1 % C % D %% prf2 %% \ | 
| 212 | \ (iffD1 % A % C %% prf3 %% (iffD2 % A % B %% prf1 %% prf4)))", | |
| 213 | ||
| 214 | "(iffD2 % B % D %% \ | |
| 215 |  \    (iffD1 % A = C % B = D %% (cong % TYPE('T1) % TYPE(bool) % x1 % x2 % C % D %%  \
 | |
| 216 |  \      (cong % TYPE('T2) % TYPE(bool) % op = % op = % A % B %%  \
 | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 217 |  \        (HOL.refl % TYPE('T3) % op =) %% prf1) %% prf2) %% prf3) %% prf4) ==  \
 | 
| 13404 | 218 | \ (iffD1 % A % B %% prf1 %% \ | 
| 219 | \ (iffD2 % A % C %% prf3 %% (iffD2 % C % D %% prf2 %% prf4)))", | |
| 220 | ||
| 221 | "(iffD1 % A % C %% \ | |
| 222 |  \    (iffD2 % A = C % B = D %% (cong % TYPE('T1) % TYPE(bool) % x1 % x2 % C % D %%  \
 | |
| 223 |  \      (cong % TYPE('T2) % TYPE(bool) % op = % op = % A % B %%  \
 | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 224 |  \        (HOL.refl % TYPE('T3) % op =) %% prf1) %% prf2) %% prf3) %% prf4)==  \
 | 
| 13404 | 225 | \ (iffD2 % C % D %% prf2 %% \ | 
| 226 | \ (iffD1 % B % D %% prf3 %% (iffD1 % A % B %% prf1 %% prf4)))", | |
| 227 | ||
| 228 | "(iffD2 % A % C %% \ | |
| 229 |  \    (iffD2 % A = C % B = D %% (cong % TYPE('T1) % TYPE(bool) % x1 % x2 % C % D %%  \
 | |
| 230 |  \      (cong % TYPE('T2) % TYPE(bool) % op = % op = % A % B %%  \
 | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 231 |  \        (HOL.refl % TYPE('T3) % op =) %% prf1) %% prf2) %% prf3) %% prf4) ==  \
 | 
| 13404 | 232 | \ (iffD2 % A % B %% prf1 %% \ | 
| 233 | \ (iffD2 % B % D %% prf3 %% (iffD1 % C % D %% prf2 %% prf4)))", | |
| 234 | ||
| 235 | "(cong % TYPE(bool) % TYPE(bool) % op = A % op = A % B % C %% \ | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 236 | \ (HOL.refl % TYPE(bool=>bool) % op = A)) == \ | 
| 13404 | 237 | \ (cong % TYPE(bool) % TYPE(bool) % op = A % op = A % B % C %% \ | 
| 238 | \ (cong % TYPE(bool=>bool) % TYPE(bool) % \ | |
| 239 | \ (op = :: bool=>bool=>bool) % (op = :: bool=>bool=>bool) % A % A %% \ | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 240 | \ (HOL.refl % TYPE(bool=>bool=>bool) % (op = :: bool=>bool=>bool)) %% \ | 
| 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 241 | \ (HOL.refl % TYPE(bool) % A)))", | 
| 13404 | 242 | |
| 13916 
f078a758e5d8
elim_cong now eta-expands proofs on the fly if required.
 berghofe parents: 
13602diff
changeset | 243 | (** transitivity, reflexivity, and symmetry **) | 
| 
f078a758e5d8
elim_cong now eta-expands proofs on the fly if required.
 berghofe parents: 
13602diff
changeset | 244 | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 245 | "(iffD1 % A % C %% (HOL.trans % TYPE(bool) % A % B % C %% prf1 %% prf2) %% prf3) == \ | 
| 13404 | 246 | \ (iffD1 % B % C %% prf2 %% (iffD1 % A % B %% prf1 %% prf3))", | 
| 247 | ||
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 248 | "(iffD2 % A % C %% (HOL.trans % TYPE(bool) % A % B % C %% prf1 %% prf2) %% prf3) == \ | 
| 13404 | 249 | \ (iffD2 % A % B %% prf1 %% (iffD2 % B % C %% prf2 %% prf3))", | 
| 250 | ||
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 251 | "(iffD1 % A % A %% (HOL.refl % TYPE(bool) % A) %% prf) == prf", | 
| 13404 | 252 | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 253 | "(iffD2 % A % A %% (HOL.refl % TYPE(bool) % A) %% prf) == prf", | 
| 13404 | 254 | |
| 13602 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 255 | "(iffD1 % A % B %% (sym % TYPE(bool) % B % A %% prf)) == (iffD2 % B % A %% prf)", | 
| 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 256 | |
| 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 257 | "(iffD2 % A % B %% (sym % TYPE(bool) % B % A %% prf)) == (iffD1 % B % A %% prf)", | 
| 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 258 | |
| 13404 | 259 | (** normalization of HOL proofs **) | 
| 260 | ||
| 261 | "(mp % A % B %% (impI % A % B %% prf)) == prf", | |
| 262 | ||
| 263 | "(impI % A % B %% (mp % A % B %% prf)) == prf", | |
| 264 | ||
| 265 |    "(spec % TYPE('a) % P % x %% (allI % TYPE('a) % P %% prf)) == prf % x",
 | |
| 266 | ||
| 267 |    "(allI % TYPE('a) % P %% (Lam x::'a. spec % TYPE('a) % P % x %% prf)) == prf",
 | |
| 268 | ||
| 13602 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 269 |    "(exE % TYPE('a) % P % Q %% (exI % TYPE('a) % P % x %% prf1) %% prf2) == (prf2 % x %% prf1)",
 | 
| 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 270 | |
| 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 271 |    "(exE % TYPE('a) % P % Q %% prf %% (exI % TYPE('a) % P)) == prf",
 | 
| 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 272 | |
| 13404 | 273 | "(disjE % P % Q % R %% (disjI1 % P % Q %% prf1) %% prf2 %% prf3) == (prf2 %% prf1)", | 
| 274 | ||
| 275 | "(disjE % P % Q % R %% (disjI2 % Q % P %% prf1) %% prf2 %% prf3) == (prf3 %% prf1)", | |
| 276 | ||
| 277 | "(conjunct1 % P % Q %% (conjI % P % Q %% prf1 %% prf2)) == prf1", | |
| 278 | ||
| 279 | "(conjunct2 % P % Q %% (conjI % P % Q %% prf1 %% prf2)) == prf2", | |
| 280 | ||
| 281 | "(iffD1 % A % B %% (iffI % A % B %% prf1 %% prf2)) == prf1", | |
| 282 | ||
| 283 | "(iffD2 % A % B %% (iffI % A % B %% prf1 %% prf2)) == prf2"]; | |
| 284 | ||
| 285 | ||
| 286 | (** Replace congruence rules by substitution rules **) | |
| 287 | ||
| 28801 
fc45401bdf6f
ProofSyntax.proof_of_term: removed obsolete disambiguisation table;
 wenzelm parents: 
28712diff
changeset | 288 | fun strip_cong ps (PThm (_, (("HOL.cong", _, _), _)) % _ % _ % SOME x % SOME y %%
 | 
| 13404 | 289 | prf1 %% prf2) = strip_cong (((x, y), prf2) :: ps) prf1 | 
| 28801 
fc45401bdf6f
ProofSyntax.proof_of_term: removed obsolete disambiguisation table;
 wenzelm parents: 
28712diff
changeset | 290 |   | strip_cong ps (PThm (_, (("HOL.refl", _, _), _)) % SOME f) = SOME (f, ps)
 | 
| 15531 | 291 | | strip_cong _ _ = NONE; | 
| 13404 | 292 | |
| 28814 | 293 | val subst_prf = fst (strip_combt (Thm.proof_of subst)); | 
| 294 | val sym_prf = fst (strip_combt (Thm.proof_of sym)); | |
| 13404 | 295 | |
| 296 | fun make_subst Ts prf xs (_, []) = prf | |
| 297 | | make_subst Ts prf xs (f, ((x, y), prf') :: ps) = | |
| 298 | let val T = fastype_of1 (Ts, x) | |
| 299 | in if x aconv y then make_subst Ts prf (xs @ [x]) (f, ps) | |
| 15531 | 300 | else change_type (SOME [T]) subst_prf %> x %> y %> | 
| 13404 | 301 |           Abs ("z", T, list_comb (incr_boundvars 1 f,
 | 
| 302 | map (incr_boundvars 1) xs @ Bound 0 :: | |
| 303 | map (incr_boundvars 1 o snd o fst) ps)) %% prf' %% | |
| 304 | make_subst Ts prf (xs @ [x]) (f, ps) | |
| 305 | end; | |
| 306 | ||
| 307 | fun make_sym Ts ((x, y), prf) = | |
| 15531 | 308 | ((y, x), change_type (SOME [fastype_of1 (Ts, x)]) sym_prf %> x %> y %% prf); | 
| 13404 | 309 | |
| 22277 | 310 | fun mk_AbsP P t = AbsP ("H", Option.map HOLogic.mk_Trueprop P, t);
 | 
| 13916 
f078a758e5d8
elim_cong now eta-expands proofs on the fly if required.
 berghofe parents: 
13602diff
changeset | 311 | |
| 28801 
fc45401bdf6f
ProofSyntax.proof_of_term: removed obsolete disambiguisation table;
 wenzelm parents: 
28712diff
changeset | 312 | fun elim_cong Ts (PThm (_, (("HOL.iffD1", _, _), _)) % _ % _ %% prf1 %% prf2) =
 | 
| 15570 | 313 | Option.map (make_subst Ts prf2 []) (strip_cong [] prf1) | 
| 28801 
fc45401bdf6f
ProofSyntax.proof_of_term: removed obsolete disambiguisation table;
 wenzelm parents: 
28712diff
changeset | 314 |   | elim_cong Ts (PThm (_, (("HOL.iffD1", _, _), _)) % P % _ %% prf) =
 | 
| 15570 | 315 | Option.map (mk_AbsP P o make_subst Ts (PBound 0) []) | 
| 13916 
f078a758e5d8
elim_cong now eta-expands proofs on the fly if required.
 berghofe parents: 
13602diff
changeset | 316 | (strip_cong [] (incr_pboundvars 1 0 prf)) | 
| 28801 
fc45401bdf6f
ProofSyntax.proof_of_term: removed obsolete disambiguisation table;
 wenzelm parents: 
28712diff
changeset | 317 |   | elim_cong Ts (PThm (_, (("HOL.iffD2", _, _), _)) % _ % _ %% prf1 %% prf2) =
 | 
| 15570 | 318 | Option.map (make_subst Ts prf2 [] o | 
| 13404 | 319 | apsnd (map (make_sym Ts))) (strip_cong [] prf1) | 
| 28801 
fc45401bdf6f
ProofSyntax.proof_of_term: removed obsolete disambiguisation table;
 wenzelm parents: 
28712diff
changeset | 320 |   | elim_cong Ts (PThm (_, (("HOL.iffD2", _, _), _)) % _ % P %% prf) =
 | 
| 15570 | 321 | Option.map (mk_AbsP P o make_subst Ts (PBound 0) [] o | 
| 13916 
f078a758e5d8
elim_cong now eta-expands proofs on the fly if required.
 berghofe parents: 
13602diff
changeset | 322 | apsnd (map (make_sym Ts))) (strip_cong [] (incr_pboundvars 1 0 prf)) | 
| 15531 | 323 | | elim_cong _ _ = NONE; | 
| 13404 | 324 | |
| 325 | end; |