| author | wenzelm | 
| Wed, 10 Mar 1999 10:55:12 +0100 | |
| changeset 6340 | 7d5cbd5819a0 | 
| parent 6162 | 484adda70b65 | 
| child 7497 | a18f3bce7198 | 
| permissions | -rw-r--r-- | 
| 1465 | 1 | (* Title: HOL/Finite.thy | 
| 923 | 2 | ID: $Id$ | 
| 1531 | 3 | Author: Lawrence C Paulson & Tobias Nipkow | 
| 4 | Copyright 1995 University of Cambridge & TU Muenchen | |
| 923 | 5 | |
| 1531 | 6 | Finite sets and their cardinality | 
| 923 | 7 | *) | 
| 8 | ||
| 3413 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 9 | section "finite"; | 
| 1531 | 10 | |
| 923 | 11 | (*Discharging ~ x:y entails extra work*) | 
| 5316 | 12 | val major::prems = Goal | 
| 3413 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 13 |     "[| finite F;  P({}); \
 | 
| 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 14 | \ !!F x. [| finite F; x ~: F; P(F) |] ==> P(insert x F) \ | 
| 923 | 15 | \ |] ==> P(F)"; | 
| 3413 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 16 | by (rtac (major RS Finites.induct) 1); | 
| 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 17 | by (excluded_middle_tac "a:A" 2); | 
| 923 | 18 | by (etac (insert_absorb RS ssubst) 3 THEN assume_tac 3); (*backtracking!*) | 
| 19 | by (REPEAT (ares_tac prems 1)); | |
| 3413 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 20 | qed "finite_induct"; | 
| 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 21 | |
| 5316 | 22 | val major::subs::prems = Goal | 
| 3413 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 23 | "[| finite F; F <= A; \ | 
| 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 24 | \       P({}); \
 | 
| 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 25 | \ !!F a. [| finite F; a:A; a ~: F; P(F) |] ==> P(insert a F) \ | 
| 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 26 | \ |] ==> P(F)"; | 
| 4386 | 27 | by (rtac (subs RS rev_mp) 1); | 
| 28 | by (rtac (major RS finite_induct) 1); | |
| 29 | by (ALLGOALS (blast_tac (claset() addIs prems))); | |
| 3413 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 30 | qed "finite_subset_induct"; | 
| 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 31 | |
| 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 32 | Addsimps Finites.intrs; | 
| 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 33 | AddSIs Finites.intrs; | 
| 923 | 34 | |
| 35 | (*The union of two finite sets is finite*) | |
| 5316 | 36 | Goal "[| finite F; finite G |] ==> finite(F Un G)"; | 
| 37 | by (etac finite_induct 1); | |
| 38 | by (ALLGOALS Asm_simp_tac); | |
| 3413 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 39 | qed "finite_UnI"; | 
| 923 | 40 | |
| 41 | (*Every subset of a finite set is finite*) | |
| 5143 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 paulson parents: 
5069diff
changeset | 42 | Goal "finite B ==> ALL A. A<=B --> finite A"; | 
| 4304 | 43 | by (etac finite_induct 1); | 
| 44 | by (Simp_tac 1); | |
| 4089 | 45 | by (safe_tac (claset() addSDs [subset_insert_iff RS iffD1])); | 
| 4304 | 46 | by (eres_inst_tac [("t","A")] (insert_Diff RS subst) 2);
 | 
| 1264 | 47 | by (ALLGOALS Asm_simp_tac); | 
| 4304 | 48 | val lemma = result(); | 
| 49 | ||
| 5143 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 paulson parents: 
5069diff
changeset | 50 | Goal "[| A<=B; finite B |] ==> finite A"; | 
| 4423 | 51 | by (dtac lemma 1); | 
| 4304 | 52 | by (Blast_tac 1); | 
| 3413 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 53 | qed "finite_subset"; | 
| 923 | 54 | |
| 5069 | 55 | Goal "finite(F Un G) = (finite F & finite G)"; | 
| 4304 | 56 | by (blast_tac (claset() | 
| 5413 | 57 | 	         addIs [read_instantiate [("B", "?X Un ?Y")] finite_subset, 
 | 
| 4304 | 58 | finite_UnI]) 1); | 
| 3413 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 59 | qed "finite_Un"; | 
| 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 60 | AddIffs[finite_Un]; | 
| 1531 | 61 | |
| 5413 | 62 | Goal "finite F ==> finite(F Int G)"; | 
| 63 | by (blast_tac (claset() addIs [finite_subset]) 1); | |
| 64 | qed "finite_Int1"; | |
| 65 | ||
| 66 | Goal "finite G ==> finite(F Int G)"; | |
| 67 | by (blast_tac (claset() addIs [finite_subset]) 1); | |
| 68 | qed "finite_Int2"; | |
| 69 | ||
| 70 | Addsimps[finite_Int1, finite_Int2]; | |
| 71 | AddIs[finite_Int1, finite_Int2]; | |
| 72 | ||
| 73 | ||
| 5069 | 74 | Goal "finite(insert a A) = finite A"; | 
| 1553 | 75 | by (stac insert_is_Un 1); | 
| 3413 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 76 | by (simp_tac (HOL_ss addsimps [finite_Un]) 1); | 
| 3427 
e7cef2081106
Removed a few redundant additions of simprules or classical rules
 paulson parents: 
3416diff
changeset | 77 | by (Blast_tac 1); | 
| 3413 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 78 | qed "finite_insert"; | 
| 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 79 | Addsimps[finite_insert]; | 
| 1531 | 80 | |
| 3413 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 81 | (*The image of a finite set is finite *) | 
| 5143 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 paulson parents: 
5069diff
changeset | 82 | Goal "finite F ==> finite(h``F)"; | 
| 3413 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 83 | by (etac finite_induct 1); | 
| 1264 | 84 | by (Simp_tac 1); | 
| 3413 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 85 | by (Asm_simp_tac 1); | 
| 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 86 | qed "finite_imageI"; | 
| 923 | 87 | |
| 5316 | 88 | val major::prems = Goal | 
| 3413 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 89 | "[| finite c; finite b; \ | 
| 1465 | 90 | \ P(b); \ | 
| 3413 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 91 | \       !!x y. [| finite y;  x:y;  P(y) |] ==> P(y-{x}) \
 | 
| 923 | 92 | \ |] ==> c<=b --> P(b-c)"; | 
| 3413 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 93 | by (rtac (major RS finite_induct) 1); | 
| 2031 | 94 | by (stac Diff_insert 2); | 
| 923 | 95 | by (ALLGOALS (asm_simp_tac | 
| 5537 | 96 | (simpset() addsimps prems@[Diff_subset RS finite_subset]))); | 
| 1531 | 97 | val lemma = result(); | 
| 923 | 98 | |
| 5316 | 99 | val prems = Goal | 
| 3413 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 100 | "[| finite A; \ | 
| 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 101 | \ P(A); \ | 
| 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 102 | \       !!a A. [| finite A;  a:A;  P(A) |] ==> P(A-{a}) \
 | 
| 923 | 103 | \    |] ==> P({})";
 | 
| 104 | by (rtac (Diff_cancel RS subst) 1); | |
| 1531 | 105 | by (rtac (lemma RS mp) 1); | 
| 923 | 106 | by (REPEAT (ares_tac (subset_refl::prems) 1)); | 
| 3413 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 107 | qed "finite_empty_induct"; | 
| 1531 | 108 | |
| 109 | ||
| 1618 | 110 | (* finite B ==> finite (B - Ba) *) | 
| 111 | bind_thm ("finite_Diff", Diff_subset RS finite_subset);
 | |
| 1531 | 112 | Addsimps [finite_Diff]; | 
| 113 | ||
| 5626 | 114 | Goal "finite(A - insert a B) = finite(A-B)"; | 
| 6162 | 115 | by (stac Diff_insert 1); | 
| 5626 | 116 | by (case_tac "a : A-B" 1); | 
| 3457 | 117 | by (rtac (finite_insert RS sym RS trans) 1); | 
| 3368 | 118 | by (stac insert_Diff 1); | 
| 5626 | 119 | by (ALLGOALS Asm_full_simp_tac); | 
| 120 | qed "finite_Diff_insert"; | |
| 121 | AddIffs [finite_Diff_insert]; | |
| 122 | ||
| 123 | (* lemma merely for classical reasoner *) | |
| 124 | Goal "finite(A-{}) = finite A";
 | |
| 125 | by (Simp_tac 1); | |
| 126 | val lemma = result(); | |
| 127 | AddSIs [lemma RS iffD2]; | |
| 128 | AddSDs [lemma RS iffD1]; | |
| 3368 | 129 | |
| 4059 | 130 | (*Lemma for proving finite_imageD*) | 
| 5143 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 paulson parents: 
5069diff
changeset | 131 | Goal "finite B ==> !A. f``A = B --> inj_on f A --> finite A"; | 
| 1553 | 132 | by (etac finite_induct 1); | 
| 3413 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 133 | by (ALLGOALS Asm_simp_tac); | 
| 3708 | 134 | by (Clarify_tac 1); | 
| 3413 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 135 | by (subgoal_tac "EX y:A. f y = x & F = f``(A-{y})" 1);
 | 
| 3708 | 136 | by (Clarify_tac 1); | 
| 4830 | 137 | by (full_simp_tac (simpset() addsimps [inj_on_def]) 1); | 
| 3413 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 138 | by (Blast_tac 1); | 
| 3368 | 139 | by (thin_tac "ALL A. ?PP(A)" 1); | 
| 3413 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 140 | by (forward_tac [[equalityD2, insertI1] MRS subsetD] 1); | 
| 3708 | 141 | by (Clarify_tac 1); | 
| 3368 | 142 | by (res_inst_tac [("x","xa")] bexI 1);
 | 
| 4059 | 143 | by (ALLGOALS | 
| 4830 | 144 | (asm_full_simp_tac (simpset() addsimps [inj_on_image_set_diff]))); | 
| 3368 | 145 | val lemma = result(); | 
| 146 | ||
| 5143 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 paulson parents: 
5069diff
changeset | 147 | Goal "[| finite(f``A); inj_on f A |] ==> finite A"; | 
| 3457 | 148 | by (dtac lemma 1); | 
| 3368 | 149 | by (Blast_tac 1); | 
| 150 | qed "finite_imageD"; | |
| 151 | ||
| 4014 | 152 | (** The finite UNION of finite sets **) | 
| 153 | ||
| 5316 | 154 | Goal "finite A ==> (!a:A. finite(B a)) --> finite(UN a:A. B a)"; | 
| 155 | by (etac finite_induct 1); | |
| 4153 | 156 | by (ALLGOALS Asm_simp_tac); | 
| 4014 | 157 | bind_thm("finite_UnionI", ballI RSN (2, result() RS mp));
 | 
| 158 | Addsimps [finite_UnionI]; | |
| 159 | ||
| 160 | (** Sigma of finite sets **) | |
| 161 | ||
| 5069 | 162 | Goalw [Sigma_def] | 
| 5148 
74919e8f221c
More tidying and removal of "\!\!... from Goal commands
 paulson parents: 
5143diff
changeset | 163 | "[| finite A; !a:A. finite(B a) |] ==> finite(SIGMA a:A. B a)"; | 
| 4153 | 164 | by (blast_tac (claset() addSIs [finite_UnionI]) 1); | 
| 4014 | 165 | bind_thm("finite_SigmaI", ballI RSN (2,result()));
 | 
| 166 | Addsimps [finite_SigmaI]; | |
| 3368 | 167 | |
| 168 | (** The powerset of a finite set **) | |
| 169 | ||
| 5143 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 paulson parents: 
5069diff
changeset | 170 | Goal "finite(Pow A) ==> finite A"; | 
| 3368 | 171 | by (subgoal_tac "finite ((%x.{x})``A)" 1);
 | 
| 3457 | 172 | by (rtac finite_subset 2); | 
| 173 | by (assume_tac 3); | |
| 3368 | 174 | by (ALLGOALS | 
| 4830 | 175 | (fast_tac (claset() addSDs [rewrite_rule [inj_on_def] finite_imageD]))); | 
| 3368 | 176 | val lemma = result(); | 
| 177 | ||
| 5069 | 178 | Goal "finite(Pow A) = finite A"; | 
| 3457 | 179 | by (rtac iffI 1); | 
| 180 | by (etac lemma 1); | |
| 3368 | 181 | (*Opposite inclusion: finite A ==> finite (Pow A) *) | 
| 3340 | 182 | by (etac finite_induct 1); | 
| 183 | by (ALLGOALS | |
| 184 | (asm_simp_tac | |
| 4089 | 185 | (simpset() addsimps [finite_UnI, finite_imageI, Pow_insert]))); | 
| 3368 | 186 | qed "finite_Pow_iff"; | 
| 187 | AddIffs [finite_Pow_iff]; | |
| 3340 | 188 | |
| 5069 | 189 | Goal "finite(r^-1) = finite r"; | 
| 3457 | 190 | by (subgoal_tac "r^-1 = (%(x,y).(y,x))``r" 1); | 
| 191 | by (Asm_simp_tac 1); | |
| 192 | by (rtac iffI 1); | |
| 4830 | 193 | by (etac (rewrite_rule [inj_on_def] finite_imageD) 1); | 
| 194 | by (simp_tac (simpset() addsplits [split_split]) 1); | |
| 3457 | 195 | by (etac finite_imageI 1); | 
| 4746 | 196 | by (simp_tac (simpset() addsimps [converse_def,image_def]) 1); | 
| 4477 
b3e5857d8d99
New Auto_tac (by Oheimb), and new syntax (without parens), and expandshort
 paulson parents: 
4423diff
changeset | 197 | by Auto_tac; | 
| 5516 | 198 | by (rtac bexI 1); | 
| 199 | by (assume_tac 2); | |
| 4763 | 200 | by (Simp_tac 1); | 
| 4746 | 201 | qed "finite_converse"; | 
| 202 | AddIffs [finite_converse]; | |
| 1531 | 203 | |
| 1548 | 204 | section "Finite cardinality -- 'card'"; | 
| 1531 | 205 | |
| 5626 | 206 | (* Ugly proofs for the traditional definition | 
| 207 | ||
| 5316 | 208 | Goal "{f i |i. (P i | i=n)} = insert (f n) {f i|i. P i}";
 | 
| 2922 | 209 | by (Blast_tac 1); | 
| 1531 | 210 | val Collect_conv_insert = result(); | 
| 211 | ||
| 5069 | 212 | Goalw [card_def] "card {} = 0";
 | 
| 1553 | 213 | by (rtac Least_equality 1); | 
| 214 | by (ALLGOALS Asm_full_simp_tac); | |
| 1531 | 215 | qed "card_empty"; | 
| 216 | Addsimps [card_empty]; | |
| 217 | ||
| 5316 | 218 | Goal "finite A ==> ? (n::nat) f. A = {f i |i. i<n}";
 | 
| 219 | by (etac finite_induct 1); | |
| 1553 | 220 |  by (res_inst_tac [("x","0")] exI 1);
 | 
| 221 | by (Simp_tac 1); | |
| 222 | by (etac exE 1); | |
| 223 | by (etac exE 1); | |
| 224 | by (hyp_subst_tac 1); | |
| 225 | by (res_inst_tac [("x","Suc n")] exI 1);
 | |
| 226 | by (res_inst_tac [("x","%i. if i<n then f i else x")] exI 1);
 | |
| 4089 | 227 | by (asm_simp_tac (simpset() addsimps [Collect_conv_insert, less_Suc_eq] | 
| 1548 | 228 | addcongs [rev_conj_cong]) 1); | 
| 1531 | 229 | qed "finite_has_card"; | 
| 230 | ||
| 5278 | 231 | Goal "[| x ~: A; insert x A = {f i|i. i<n} |]  \
 | 
| 232 | \     ==> ? m::nat. m<n & (? g. A = {g i|i. i<m})";
 | |
| 5183 | 233 | by (exhaust_tac "n" 1); | 
| 1553 | 234 | by (hyp_subst_tac 1); | 
| 235 | by (Asm_full_simp_tac 1); | |
| 236 | by (rename_tac "m" 1); | |
| 237 | by (hyp_subst_tac 1); | |
| 238 | by (case_tac "? a. a:A" 1); | |
| 239 |  by (res_inst_tac [("x","0")] exI 2);
 | |
| 240 | by (Simp_tac 2); | |
| 2922 | 241 | by (Blast_tac 2); | 
| 1553 | 242 | by (etac exE 1); | 
| 4089 | 243 | by (simp_tac (simpset() addsimps [less_Suc_eq]) 1); | 
| 1553 | 244 | by (rtac exI 1); | 
| 1782 | 245 | by (rtac (refl RS disjI2 RS conjI) 1); | 
| 1553 | 246 | by (etac equalityE 1); | 
| 247 | by (asm_full_simp_tac | |
| 4089 | 248 | (simpset() addsimps [subset_insert,Collect_conv_insert, less_Suc_eq]) 1); | 
| 4153 | 249 | by Safe_tac; | 
| 1553 | 250 | by (Asm_full_simp_tac 1); | 
| 251 |   by (res_inst_tac [("x","%i. if f i = f m then a else f i")] exI 1);
 | |
| 4153 | 252 | by (SELECT_GOAL Safe_tac 1); | 
| 1553 | 253 | by (subgoal_tac "x ~= f m" 1); | 
| 2922 | 254 | by (Blast_tac 2); | 
| 1553 | 255 | by (subgoal_tac "? k. f k = x & k<m" 1); | 
| 2922 | 256 | by (Blast_tac 2); | 
| 4153 | 257 | by (SELECT_GOAL Safe_tac 1); | 
| 1553 | 258 |    by (res_inst_tac [("x","k")] exI 1);
 | 
| 259 | by (Asm_simp_tac 1); | |
| 4686 | 260 | by (Simp_tac 1); | 
| 2922 | 261 | by (Blast_tac 1); | 
| 3457 | 262 | by (dtac sym 1); | 
| 1553 | 263 | by (rotate_tac ~1 1); | 
| 264 | by (Asm_full_simp_tac 1); | |
| 265 |  by (res_inst_tac [("x","%i. if f i = f m then a else f i")] exI 1);
 | |
| 4153 | 266 | by (SELECT_GOAL Safe_tac 1); | 
| 1553 | 267 | by (subgoal_tac "x ~= f m" 1); | 
| 2922 | 268 | by (Blast_tac 2); | 
| 1553 | 269 | by (subgoal_tac "? k. f k = x & k<m" 1); | 
| 2922 | 270 | by (Blast_tac 2); | 
| 4153 | 271 | by (SELECT_GOAL Safe_tac 1); | 
| 1553 | 272 |   by (res_inst_tac [("x","k")] exI 1);
 | 
| 273 | by (Asm_simp_tac 1); | |
| 4686 | 274 | by (Simp_tac 1); | 
| 2922 | 275 | by (Blast_tac 1); | 
| 1553 | 276 | by (res_inst_tac [("x","%j. if f j = f i then f m else f j")] exI 1);
 | 
| 4153 | 277 | by (SELECT_GOAL Safe_tac 1); | 
| 1553 | 278 | by (subgoal_tac "x ~= f i" 1); | 
| 2922 | 279 | by (Blast_tac 2); | 
| 1553 | 280 | by (case_tac "x = f m" 1); | 
| 281 |   by (res_inst_tac [("x","i")] exI 1);
 | |
| 282 | by (Asm_simp_tac 1); | |
| 283 | by (subgoal_tac "? k. f k = x & k<m" 1); | |
| 2922 | 284 | by (Blast_tac 2); | 
| 4153 | 285 | by (SELECT_GOAL Safe_tac 1); | 
| 1553 | 286 |  by (res_inst_tac [("x","k")] exI 1);
 | 
| 287 | by (Asm_simp_tac 1); | |
| 4686 | 288 | by (Simp_tac 1); | 
| 2922 | 289 | by (Blast_tac 1); | 
| 1531 | 290 | val lemma = result(); | 
| 291 | ||
| 5143 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 paulson parents: 
5069diff
changeset | 292 | Goal "[| finite A; x ~: A |] ==> \ | 
| 3842 | 293 | \ (LEAST n. ? f. insert x A = {f i|i. i<n}) = Suc(LEAST n. ? f. A={f i|i. i<n})";
 | 
| 1553 | 294 | by (rtac Least_equality 1); | 
| 3457 | 295 | by (dtac finite_has_card 1); | 
| 296 | by (etac exE 1); | |
| 3842 | 297 |  by (dres_inst_tac [("P","%n.? f. A={f i|i. i<n}")] LeastI 1);
 | 
| 3457 | 298 | by (etac exE 1); | 
| 1553 | 299 | by (res_inst_tac | 
| 1531 | 300 |    [("x","%i. if i<(LEAST n. ? f. A={f i |i. i < n}) then f i else x")] exI 1);
 | 
| 1553 | 301 | by (simp_tac | 
| 4089 | 302 | (simpset() addsimps [Collect_conv_insert, less_Suc_eq] | 
| 2031 | 303 | addcongs [rev_conj_cong]) 1); | 
| 3457 | 304 | by (etac subst 1); | 
| 305 | by (rtac refl 1); | |
| 1553 | 306 | by (rtac notI 1); | 
| 307 | by (etac exE 1); | |
| 308 | by (dtac lemma 1); | |
| 3457 | 309 | by (assume_tac 1); | 
| 1553 | 310 | by (etac exE 1); | 
| 311 | by (etac conjE 1); | |
| 312 | by (dres_inst_tac [("P","%x. ? g. A = {g i |i. i < x}")] Least_le 1);
 | |
| 313 | by (dtac le_less_trans 1 THEN atac 1); | |
| 4089 | 314 | by (asm_full_simp_tac (simpset() addsimps [less_Suc_eq]) 1); | 
| 1553 | 315 | by (etac disjE 1); | 
| 316 | by (etac less_asym 1 THEN atac 1); | |
| 317 | by (hyp_subst_tac 1); | |
| 318 | by (Asm_full_simp_tac 1); | |
| 1531 | 319 | val lemma = result(); | 
| 320 | ||
| 5416 
9f029e382b5d
New law card_Un_Int.  Removed card_insert from simpset
 paulson parents: 
5413diff
changeset | 321 | Goalw [card_def] "[| finite A; x ~: A |] ==> card(insert x A) = Suc(card A)"; | 
| 1553 | 322 | by (etac lemma 1); | 
| 323 | by (assume_tac 1); | |
| 1531 | 324 | qed "card_insert_disjoint"; | 
| 3352 | 325 | Addsimps [card_insert_disjoint]; | 
| 5626 | 326 | *) | 
| 327 | ||
| 6141 | 328 | val cardR_emptyE = cardR.mk_cases "({},n) : cardR";
 | 
| 5626 | 329 | AddSEs [cardR_emptyE]; | 
| 6141 | 330 | val cardR_insertE = cardR.mk_cases "(insert a A,n) : cardR"; | 
| 5626 | 331 | AddSIs cardR.intrs; | 
| 332 | ||
| 333 | Goal "[| (A,n) : cardR |] ==> a : A --> (? m. n = Suc m)"; | |
| 6162 | 334 | by (etac cardR.induct 1); | 
| 335 | by (Blast_tac 1); | |
| 336 | by (Blast_tac 1); | |
| 5626 | 337 | qed "cardR_SucD"; | 
| 338 | ||
| 339 | Goal "(A,m): cardR ==> (!n a. m = Suc n --> a:A --> (A-{a},n) : cardR)";
 | |
| 6162 | 340 | by (etac cardR.induct 1); | 
| 341 | by (Auto_tac); | |
| 342 | by (asm_simp_tac (simpset() addsimps [insert_Diff_if]) 1); | |
| 343 | by (Auto_tac); | |
| 344 | by (forward_tac [cardR_SucD] 1); | |
| 345 | by (Blast_tac 1); | |
| 5626 | 346 | val lemma = result(); | 
| 347 | ||
| 348 | Goal "[| (insert a A, Suc m) : cardR; a ~: A |] ==> (A,m) : cardR"; | |
| 6162 | 349 | by (dtac lemma 1); | 
| 350 | by (Asm_full_simp_tac 1); | |
| 5626 | 351 | val lemma = result(); | 
| 352 | ||
| 353 | Goal "(A,m): cardR ==> (!n. (A,n) : cardR --> n=m)"; | |
| 6162 | 354 | by (etac cardR.induct 1); | 
| 355 | by (safe_tac (claset() addSEs [cardR_insertE])); | |
| 356 | by (rename_tac "B b m" 1); | |
| 357 | by (case_tac "a = b" 1); | |
| 358 | by (subgoal_tac "A = B" 1); | |
| 359 | by (blast_tac (claset() addEs [equalityE]) 2); | |
| 360 | by (Blast_tac 1); | |
| 361 | by (subgoal_tac "? C. A = insert b C & B = insert a C" 1); | |
| 362 |  by (res_inst_tac [("x","A Int B")] exI 2);
 | |
| 363 | by (blast_tac (claset() addEs [equalityE]) 2); | |
| 364 | by (forw_inst_tac [("A","B")] cardR_SucD 1);
 | |
| 365 | by (blast_tac (claset() addDs [lemma]) 1); | |
| 5626 | 366 | qed_spec_mp "cardR_determ"; | 
| 367 | ||
| 368 | Goal "(A,n) : cardR ==> finite(A)"; | |
| 369 | by (etac cardR.induct 1); | |
| 370 | by Auto_tac; | |
| 371 | qed "cardR_imp_finite"; | |
| 372 | ||
| 373 | Goal "finite(A) ==> EX n. (A, n) : cardR"; | |
| 374 | by (etac finite_induct 1); | |
| 375 | by Auto_tac; | |
| 376 | qed "finite_imp_cardR"; | |
| 377 | ||
| 378 | Goalw [card_def] "(A,n) : cardR ==> card A = n"; | |
| 379 | by (blast_tac (claset() addIs [cardR_determ]) 1); | |
| 380 | qed "card_equality"; | |
| 381 | ||
| 382 | Goalw [card_def] "card {} = 0";
 | |
| 383 | by (Blast_tac 1); | |
| 384 | qed "card_empty"; | |
| 385 | Addsimps [card_empty]; | |
| 386 | ||
| 387 | Goal "x ~: A ==> \ | |
| 388 | \ ((insert x A, n) : cardR) = \ | |
| 389 | \ (EX m. (A, m) : cardR & n = Suc m)"; | |
| 390 | by Auto_tac; | |
| 391 | by (res_inst_tac [("A1", "A")] (finite_imp_cardR RS exE) 1);
 | |
| 392 | by (force_tac (claset() addDs [cardR_imp_finite], simpset()) 1); | |
| 393 | by (blast_tac (claset() addIs [cardR_determ]) 1); | |
| 394 | val lemma = result(); | |
| 395 | ||
| 396 | Goalw [card_def] | |
| 397 | "[| finite A; x ~: A |] ==> card (insert x A) = Suc(card A)"; | |
| 398 | by (asm_simp_tac (simpset() addsimps [lemma]) 1); | |
| 399 | by (rtac select_equality 1); | |
| 400 | by (auto_tac (claset() addIs [finite_imp_cardR], | |
| 401 | simpset() addcongs [conj_cong] | |
| 402 | addsimps [symmetric card_def, | |
| 403 | card_equality])); | |
| 404 | qed "card_insert_disjoint"; | |
| 405 | Addsimps [card_insert_disjoint]; | |
| 406 | ||
| 407 | (* Delete rules to do with cardR relation: obsolete *) | |
| 408 | Delrules [cardR_emptyE]; | |
| 409 | Delrules cardR.intrs; | |
| 410 | ||
| 411 | Goal "finite A ==> card(insert x A) = (if x:A then card A else Suc(card(A)))"; | |
| 412 | by (asm_simp_tac (simpset() addsimps [insert_absorb]) 1); | |
| 413 | qed "card_insert_if"; | |
| 414 | ||
| 415 | Goal "[| finite A; x: A |] ==> Suc(card(A-{x})) = card A";
 | |
| 416 | by (res_inst_tac [("t", "A")] (insert_Diff RS subst) 1);
 | |
| 417 | by (assume_tac 1); | |
| 418 | by (Asm_simp_tac 1); | |
| 419 | qed "card_Suc_Diff1"; | |
| 420 | ||
| 421 | Goal "finite A ==> card(insert x A) = Suc(card(A-{x}))";
 | |
| 422 | by (asm_simp_tac (simpset() addsimps [card_insert_if,card_Suc_Diff1]) 1); | |
| 423 | qed "card_insert"; | |
| 3352 | 424 | |
| 5143 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 paulson parents: 
5069diff
changeset | 425 | Goal "finite A ==> card A <= card (insert x A)"; | 
| 5626 | 426 | by (asm_simp_tac (simpset() addsimps [card_insert_if]) 1); | 
| 4768 
c342d63173e9
New theorems card_Diff_le and card_insert_le; tidied
 paulson parents: 
4763diff
changeset | 427 | qed "card_insert_le"; | 
| 
c342d63173e9
New theorems card_Diff_le and card_insert_le; tidied
 paulson parents: 
4763diff
changeset | 428 | |
| 5143 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 paulson parents: 
5069diff
changeset | 429 | Goal "finite A ==> !B. B <= A --> card(B) <= card(A)"; | 
| 3352 | 430 | by (etac finite_induct 1); | 
| 431 | by (Simp_tac 1); | |
| 3708 | 432 | by (Clarify_tac 1); | 
| 3352 | 433 | by (case_tac "x:B" 1); | 
| 3413 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 434 |  by (dres_inst_tac [("A","B")] mk_disjoint_insert 1);
 | 
| 5476 | 435 | by (asm_full_simp_tac (simpset() addsimps [subset_insert_iff]) 2); | 
| 4775 | 436 | by (fast_tac (claset() addss | 
| 5477 | 437 | (simpset() addsimps [subset_insert_iff, finite_subset] | 
| 438 | delsimps [insert_subset])) 1); | |
| 3352 | 439 | qed_spec_mp "card_mono"; | 
| 440 | ||
| 5416 
9f029e382b5d
New law card_Un_Int.  Removed card_insert from simpset
 paulson parents: 
5413diff
changeset | 441 | |
| 
9f029e382b5d
New law card_Un_Int.  Removed card_insert from simpset
 paulson parents: 
5413diff
changeset | 442 | Goal "[| finite A; finite B |] \ | 
| 
9f029e382b5d
New law card_Un_Int.  Removed card_insert from simpset
 paulson parents: 
5413diff
changeset | 443 | \ ==> card A + card B = card (A Un B) + card (A Int B)"; | 
| 3352 | 444 | by (etac finite_induct 1); | 
| 5416 
9f029e382b5d
New law card_Un_Int.  Removed card_insert from simpset
 paulson parents: 
5413diff
changeset | 445 | by (Simp_tac 1); | 
| 
9f029e382b5d
New law card_Un_Int.  Removed card_insert from simpset
 paulson parents: 
5413diff
changeset | 446 | by (asm_simp_tac (simpset() addsimps [insert_absorb, Int_insert_left]) 1); | 
| 
9f029e382b5d
New law card_Un_Int.  Removed card_insert from simpset
 paulson parents: 
5413diff
changeset | 447 | qed "card_Un_Int"; | 
| 
9f029e382b5d
New law card_Un_Int.  Removed card_insert from simpset
 paulson parents: 
5413diff
changeset | 448 | |
| 
9f029e382b5d
New law card_Un_Int.  Removed card_insert from simpset
 paulson parents: 
5413diff
changeset | 449 | Goal "[| finite A; finite B; A Int B = {} |] \
 | 
| 
9f029e382b5d
New law card_Un_Int.  Removed card_insert from simpset
 paulson parents: 
5413diff
changeset | 450 | \ ==> card (A Un B) = card A + card B"; | 
| 
9f029e382b5d
New law card_Un_Int.  Removed card_insert from simpset
 paulson parents: 
5413diff
changeset | 451 | by (asm_simp_tac (simpset() addsimps [card_Un_Int]) 1); | 
| 
9f029e382b5d
New law card_Un_Int.  Removed card_insert from simpset
 paulson parents: 
5413diff
changeset | 452 | qed "card_Un_disjoint"; | 
| 3352 | 453 | |
| 5143 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 paulson parents: 
5069diff
changeset | 454 | Goal "[| finite A; B<=A |] ==> card A - card B = card (A - B)"; | 
| 3352 | 455 | by (subgoal_tac "(A-B) Un B = A" 1); | 
| 456 | by (Blast_tac 2); | |
| 3457 | 457 | by (rtac (add_right_cancel RS iffD1) 1); | 
| 458 | by (rtac (card_Un_disjoint RS subst) 1); | |
| 459 | by (etac ssubst 4); | |
| 3352 | 460 | by (Blast_tac 3); | 
| 461 | by (ALLGOALS | |
| 462 | (asm_simp_tac | |
| 4089 | 463 | (simpset() addsimps [add_commute, not_less_iff_le, | 
| 5416 
9f029e382b5d
New law card_Un_Int.  Removed card_insert from simpset
 paulson parents: 
5413diff
changeset | 464 | add_diff_inverse, card_mono, finite_subset]))); | 
| 3352 | 465 | qed "card_Diff_subset"; | 
| 1531 | 466 | |
| 5143 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 paulson parents: 
5069diff
changeset | 467 | Goal "[| finite A; x: A |] ==> card(A-{x}) < card A";
 | 
| 2031 | 468 | by (rtac Suc_less_SucD 1); | 
| 5626 | 469 | by (asm_simp_tac (simpset() addsimps [card_Suc_Diff1]) 1); | 
| 470 | qed "card_Diff1_less"; | |
| 1618 | 471 | |
| 5143 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 paulson parents: 
5069diff
changeset | 472 | Goal "finite A ==> card(A-{x}) <= card A";
 | 
| 4768 
c342d63173e9
New theorems card_Diff_le and card_insert_le; tidied
 paulson parents: 
4763diff
changeset | 473 | by (case_tac "x: A" 1); | 
| 5626 | 474 | by (ALLGOALS (asm_simp_tac (simpset() addsimps [card_Diff1_less, less_imp_le]))); | 
| 475 | qed "card_Diff1_le"; | |
| 1531 | 476 | |
| 5148 
74919e8f221c
More tidying and removal of "\!\!... from Goal commands
 paulson parents: 
5143diff
changeset | 477 | Goalw [psubset_def] "finite B ==> !A. A < B --> card(A) < card(B)"; | 
| 3222 
726a9b069947
Distributed Psubset stuff to basic set theory files, incl Finite.
 nipkow parents: 
2922diff
changeset | 478 | by (etac finite_induct 1); | 
| 
726a9b069947
Distributed Psubset stuff to basic set theory files, incl Finite.
 nipkow parents: 
2922diff
changeset | 479 | by (Simp_tac 1); | 
| 3708 | 480 | by (Clarify_tac 1); | 
| 3222 
726a9b069947
Distributed Psubset stuff to basic set theory files, incl Finite.
 nipkow parents: 
2922diff
changeset | 481 | by (case_tac "x:A" 1); | 
| 
726a9b069947
Distributed Psubset stuff to basic set theory files, incl Finite.
 nipkow parents: 
2922diff
changeset | 482 | (*1*) | 
| 3413 
c1f63cc3a768
Finite.ML Finite.thy: Replaced `finite subset of' by mere `finite'.
 nipkow parents: 
3389diff
changeset | 483 | by (dres_inst_tac [("A","A")]mk_disjoint_insert 1);
 | 
| 4775 | 484 | by (Clarify_tac 1); | 
| 485 | by (rotate_tac ~3 1); | |
| 486 | by (asm_full_simp_tac (simpset() addsimps [finite_subset]) 1); | |
| 3708 | 487 | by (Blast_tac 1); | 
| 3222 
726a9b069947
Distributed Psubset stuff to basic set theory files, incl Finite.
 nipkow parents: 
2922diff
changeset | 488 | (*2*) | 
| 3708 | 489 | by (eres_inst_tac [("P","?a<?b")] notE 1);
 | 
| 4775 | 490 | by (asm_full_simp_tac (simpset() addsimps [subset_insert_iff]) 1); | 
| 3222 
726a9b069947
Distributed Psubset stuff to basic set theory files, incl Finite.
 nipkow parents: 
2922diff
changeset | 491 | by (case_tac "A=F" 1); | 
| 3708 | 492 | by (ALLGOALS Asm_simp_tac); | 
| 3222 
726a9b069947
Distributed Psubset stuff to basic set theory files, incl Finite.
 nipkow parents: 
2922diff
changeset | 493 | qed_spec_mp "psubset_card" ; | 
| 3368 | 494 | |
| 5626 | 495 | Goal "[| finite B; A <= B; card A = card B |] ==> A = B"; | 
| 496 | by (case_tac "A < B" 1); | |
| 497 | by ((dtac psubset_card 1) THEN (atac 1)); | |
| 498 | by (ALLGOALS (asm_full_simp_tac (simpset() addsimps [psubset_eq]))); | |
| 499 | qed "card_seteq"; | |
| 500 | ||
| 501 | Goal "[| finite B; A <= B; card A < card B |] ==> A < B"; | |
| 502 | by (etac psubsetI 1); | |
| 503 | by (Blast_tac 1); | |
| 504 | qed "card_psubset"; | |
| 505 | ||
| 506 | (*** Cardinality of image ***) | |
| 507 | ||
| 508 | Goal "finite A ==> card (f `` A) <= card A"; | |
| 509 | by (etac finite_induct 1); | |
| 510 | by (Simp_tac 1); | |
| 511 | by (asm_simp_tac (simpset() addsimps [finite_imageI,card_insert_if]) 1); | |
| 512 | qed "card_image_le"; | |
| 513 | ||
| 514 | Goal "finite(A) ==> inj_on f A --> card (f `` A) = card A"; | |
| 515 | by (etac finite_induct 1); | |
| 516 | by (ALLGOALS Asm_simp_tac); | |
| 517 | by Safe_tac; | |
| 518 | by (rewtac inj_on_def); | |
| 519 | by (Blast_tac 1); | |
| 520 | by (stac card_insert_disjoint 1); | |
| 521 | by (etac finite_imageI 1); | |
| 522 | by (Blast_tac 1); | |
| 523 | by (Blast_tac 1); | |
| 524 | qed_spec_mp "card_image"; | |
| 525 | ||
| 526 | Goal "[| finite A; f``A <= A; inj_on f A |] ==> f``A = A"; | |
| 527 | by (REPEAT (ares_tac [card_seteq,card_image] 1)); | |
| 528 | qed "endo_inj_surj"; | |
| 529 | ||
| 530 | (*** Cardinality of the Powerset ***) | |
| 531 | ||
| 532 | Goal "finite A ==> card (Pow A) = 2 ^ card A"; | |
| 533 | by (etac finite_induct 1); | |
| 534 | by (ALLGOALS (asm_simp_tac (simpset() addsimps [Pow_insert]))); | |
| 535 | by (stac card_Un_disjoint 1); | |
| 536 | by (EVERY (map (blast_tac (claset() addIs [finite_imageI])) [3,2,1])); | |
| 537 | by (subgoal_tac "inj_on (insert x) (Pow F)" 1); | |
| 538 | by (asm_simp_tac (simpset() addsimps [card_image, Pow_insert]) 1); | |
| 539 | by (rewtac inj_on_def); | |
| 540 | by (blast_tac (claset() addSEs [equalityE]) 1); | |
| 541 | qed "card_Pow"; | |
| 542 | Addsimps [card_Pow]; | |
| 543 | ||
| 3368 | 544 | |
| 3430 | 545 | (*Relates to equivalence classes. Based on a theorem of F. Kammueller's. | 
| 3368 | 546 | The "finite C" premise is redundant*) | 
| 5143 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 paulson parents: 
5069diff
changeset | 547 | Goal "finite C ==> finite (Union C) --> \ | 
| 3368 | 548 | \ (! c : C. k dvd card c) --> \ | 
| 549 | \          (! c1: C. ! c2: C. c1 ~= c2 --> c1 Int c2 = {}) \
 | |
| 550 | \ --> k dvd card(Union C)"; | |
| 551 | by (etac finite_induct 1); | |
| 552 | by (ALLGOALS Asm_simp_tac); | |
| 3708 | 553 | by (Clarify_tac 1); | 
| 3368 | 554 | by (stac card_Un_disjoint 1); | 
| 555 | by (ALLGOALS | |
| 4089 | 556 | (asm_full_simp_tac (simpset() | 
| 3368 | 557 | addsimps [dvd_add, disjoint_eq_subset_Compl]))); | 
| 558 | by (thin_tac "!c:F. ?PP(c)" 1); | |
| 559 | by (thin_tac "!c:F. ?PP(c) & ?QQ(c)" 1); | |
| 3708 | 560 | by (Clarify_tac 1); | 
| 3368 | 561 | by (ball_tac 1); | 
| 562 | by (Blast_tac 1); | |
| 563 | qed_spec_mp "dvd_partition"; | |
| 564 | ||
| 5616 | 565 | |
| 566 | (*** foldSet ***) | |
| 567 | ||
| 6141 | 568 | val empty_foldSetE = foldSet.mk_cases "({}, x) : foldSet f e";
 | 
| 5616 | 569 | |
| 570 | AddSEs [empty_foldSetE]; | |
| 571 | AddIs foldSet.intrs; | |
| 572 | ||
| 573 | Goal "[| (A-{x},y) : foldSet f e;  x: A |] ==> (A, f x y) : foldSet f e";
 | |
| 574 | by (etac (insert_Diff RS subst) 1 THEN resolve_tac foldSet.intrs 1); | |
| 575 | by Auto_tac; | |
| 5626 | 576 | qed "Diff1_foldSet"; | 
| 5616 | 577 | |
| 578 | Goal "(A, x) : foldSet f e ==> finite(A)"; | |
| 579 | by (eresolve_tac [foldSet.induct] 1); | |
| 580 | by Auto_tac; | |
| 581 | qed "foldSet_imp_finite"; | |
| 582 | ||
| 583 | Addsimps [foldSet_imp_finite]; | |
| 584 | ||
| 585 | ||
| 586 | Goal "finite(A) ==> EX x. (A, x) : foldSet f e"; | |
| 587 | by (etac finite_induct 1); | |
| 588 | by Auto_tac; | |
| 589 | qed "finite_imp_foldSet"; | |
| 590 | ||
| 591 | ||
| 592 | Open_locale "LC"; | |
| 593 | ||
| 5782 
7559f116cb10
locales now implicitly quantify over free variables
 paulson parents: 
5626diff
changeset | 594 | val f_lcomm = thm "lcomm"; | 
| 5616 | 595 | |
| 596 | ||
| 597 | Goal "ALL A x. card(A) < n --> (A, x) : foldSet f e --> \ | |
| 598 | \ (ALL y. (A, y) : foldSet f e --> y=x)"; | |
| 599 | by (induct_tac "n" 1); | |
| 600 | by (auto_tac (claset(), simpset() addsimps [less_Suc_eq])); | |
| 601 | by (etac foldSet.elim 1); | |
| 602 | by (Blast_tac 1); | |
| 603 | by (etac foldSet.elim 1); | |
| 604 | by (Blast_tac 1); | |
| 605 | by (Clarify_tac 1); | |
| 606 | (*force simplification of "card A < card (insert ...)"*) | |
| 607 | by (etac rev_mp 1); | |
| 608 | by (asm_simp_tac (simpset() addsimps [less_Suc_eq_le]) 1); | |
| 609 | by (rtac impI 1); | |
| 610 | (** LEVEL 10 **) | |
| 611 | by (rename_tac "Aa xa ya Ab xb yb" 1); | |
| 612 | by (case_tac "xa=xb" 1); | |
| 613 | by (subgoal_tac "Aa = Ab" 1); | |
| 614 | by (blast_tac (claset() addEs [equalityE]) 2); | |
| 615 | by (Blast_tac 1); | |
| 616 | (*case xa ~= xb*) | |
| 617 | by (subgoal_tac "Aa-{xb} = Ab-{xa} & xb : Aa & xa : Ab" 1);
 | |
| 618 | by (blast_tac (claset() addEs [equalityE]) 2); | |
| 619 | by (Clarify_tac 1); | |
| 620 | by (subgoal_tac "Aa = insert xb Ab - {xa}" 1);
 | |
| 621 | by (blast_tac (claset() addEs [equalityE]) 2); | |
| 622 | (** LEVEL 20 **) | |
| 623 | by (subgoal_tac "card Aa <= card Ab" 1); | |
| 624 | by (rtac (Suc_le_mono RS subst) 2); | |
| 5626 | 625 | by (asm_simp_tac (simpset() addsimps [card_Suc_Diff1]) 2); | 
| 5616 | 626 | by (res_inst_tac [("A1", "Aa-{xb}"), ("f1","f")] 
 | 
| 627 | (finite_imp_foldSet RS exE) 1); | |
| 628 | by (blast_tac (claset() addIs [foldSet_imp_finite, finite_Diff]) 1); | |
| 5626 | 629 | by (forward_tac [Diff1_foldSet] 1 THEN assume_tac 1); | 
| 5616 | 630 | by (subgoal_tac "ya = f xb x" 1); | 
| 631 | by (Blast_tac 2); | |
| 632 | by (subgoal_tac "(Ab - {xa}, x) : foldSet f e" 1);
 | |
| 633 | by (Asm_full_simp_tac 2); | |
| 634 | by (subgoal_tac "yb = f xa x" 1); | |
| 5626 | 635 | by (blast_tac (claset() addDs [Diff1_foldSet]) 2); | 
| 5616 | 636 | by (asm_simp_tac (simpset() addsimps [f_lcomm]) 1); | 
| 637 | val lemma = result(); | |
| 638 | ||
| 639 | ||
| 640 | Goal "[| (A, x) : foldSet f e; (A, y) : foldSet f e |] ==> y=x"; | |
| 641 | by (blast_tac (claset() addIs [normalize_thm [RSspec, RSmp] lemma]) 1); | |
| 642 | qed "foldSet_determ"; | |
| 643 | ||
| 644 | Goalw [fold_def] "(A,y) : foldSet f e ==> fold f e A = y"; | |
| 645 | by (blast_tac (claset() addIs [foldSet_determ]) 1); | |
| 646 | qed "fold_equality"; | |
| 647 | ||
| 648 | Goalw [fold_def] "fold f e {} = e";
 | |
| 649 | by (Blast_tac 1); | |
| 650 | qed "fold_empty"; | |
| 651 | Addsimps [fold_empty]; | |
| 652 | ||
| 5626 | 653 | |
| 5616 | 654 | Goal "x ~: A ==> \ | 
| 655 | \ ((insert x A, v) : foldSet f e) = \ | |
| 656 | \ (EX y. (A, y) : foldSet f e & v = f x y)"; | |
| 657 | by Auto_tac; | |
| 658 | by (res_inst_tac [("A1", "A"), ("f1","f")] (finite_imp_foldSet RS exE) 1);
 | |
| 659 | by (force_tac (claset() addDs [foldSet_imp_finite], simpset()) 1); | |
| 660 | by (blast_tac (claset() addIs [foldSet_determ]) 1); | |
| 661 | val lemma = result(); | |
| 662 | ||
| 663 | Goalw [fold_def] | |
| 664 | "[| finite A; x ~: A |] ==> fold f e (insert x A) = f x (fold f e A)"; | |
| 665 | by (asm_simp_tac (simpset() addsimps [lemma]) 1); | |
| 666 | by (rtac select_equality 1); | |
| 667 | by (auto_tac (claset() addIs [finite_imp_foldSet], | |
| 668 | simpset() addcongs [conj_cong] | |
| 669 | addsimps [symmetric fold_def, | |
| 670 | fold_equality])); | |
| 671 | qed "fold_insert"; | |
| 672 | ||
| 5626 | 673 | (* Delete rules to do with foldSet relation: obsolete *) | 
| 674 | Delsimps [foldSet_imp_finite]; | |
| 675 | Delrules [empty_foldSetE]; | |
| 676 | Delrules foldSet.intrs; | |
| 677 | ||
| 6024 | 678 | Close_locale "LC"; | 
| 5616 | 679 | |
| 680 | Open_locale "ACe"; | |
| 681 | ||
| 5782 
7559f116cb10
locales now implicitly quantify over free variables
 paulson parents: 
5626diff
changeset | 682 | val f_ident = thm "ident"; | 
| 
7559f116cb10
locales now implicitly quantify over free variables
 paulson parents: 
5626diff
changeset | 683 | val f_commute = thm "commute"; | 
| 
7559f116cb10
locales now implicitly quantify over free variables
 paulson parents: 
5626diff
changeset | 684 | val f_assoc = thm "assoc"; | 
| 5616 | 685 | |
| 686 | ||
| 687 | Goal "f x (f y z) = f y (f x z)"; | |
| 688 | by (rtac (f_commute RS trans) 1); | |
| 689 | by (rtac (f_assoc RS trans) 1); | |
| 690 | by (rtac (f_commute RS arg_cong) 1); | |
| 691 | qed "f_left_commute"; | |
| 692 | ||
| 693 | val f_ac = [f_assoc, f_commute, f_left_commute]; | |
| 694 | ||
| 695 | Goal "f e x = x"; | |
| 696 | by (stac f_commute 1); | |
| 697 | by (rtac f_ident 1); | |
| 698 | qed "f_left_ident"; | |
| 699 | ||
| 700 | val f_idents = [f_left_ident, f_ident]; | |
| 701 | ||
| 702 | Goal "[| finite A; finite B |] \ | |
| 703 | \ ==> f (fold f e A) (fold f e B) = \ | |
| 704 | \ f (fold f e (A Un B)) (fold f e (A Int B))"; | |
| 705 | by (etac finite_induct 1); | |
| 706 | by (simp_tac (simpset() addsimps f_idents) 1); | |
| 707 | by (asm_simp_tac (simpset() addsimps f_ac @ f_idents @ | |
| 708 | [export fold_insert,insert_absorb, Int_insert_left]) 1); | |
| 709 | qed "fold_Un_Int"; | |
| 710 | ||
| 711 | Goal "[| finite A; finite B; A Int B = {} |] \
 | |
| 712 | \ ==> fold f e (A Un B) = f (fold f e A) (fold f e B)"; | |
| 713 | by (asm_simp_tac (simpset() addsimps fold_Un_Int::f_idents) 1); | |
| 714 | qed "fold_Un_disjoint"; | |
| 715 | ||
| 716 | Goal | |
| 717 |  "[| finite A; finite B |] ==> A Int B = {} --> \
 | |
| 718 | \ fold (f o g) e (A Un B) = f (fold (f o g) e A) (fold (f o g) e B)"; | |
| 719 | by (etac finite_induct 1); | |
| 720 | by (simp_tac (simpset() addsimps f_idents) 1); | |
| 721 | by (asm_full_simp_tac (simpset() addsimps f_ac @ f_idents @ | |
| 722 | [export fold_insert,insert_absorb, Int_insert_left]) 1); | |
| 723 | qed "fold_Un_disjoint2"; | |
| 724 | ||
| 6024 | 725 | Close_locale "ACe"; | 
| 5616 | 726 | |
| 727 | Delrules ([empty_foldSetE] @ foldSet.intrs); | |
| 728 | Delsimps [foldSet_imp_finite]; | |
| 729 | ||
| 730 | (*** setsum ***) | |
| 731 | ||
| 732 | Goalw [setsum_def] "setsum f {} = 0";
 | |
| 6162 | 733 | by (Simp_tac 1); | 
| 5616 | 734 | qed "setsum_empty"; | 
| 735 | Addsimps [setsum_empty]; | |
| 736 | ||
| 737 | Goalw [setsum_def] | |
| 738 | "[| finite F; a ~: F |] ==> setsum f (insert a F) = f(a) + setsum f F"; | |
| 6162 | 739 | by (asm_simp_tac (simpset() addsimps [export fold_insert]) 1); | 
| 5616 | 740 | qed "setsum_insert"; | 
| 741 | Addsimps [setsum_insert]; | |
| 742 | ||
| 743 | Goalw [setsum_def] | |
| 744 |  "[| finite A; finite B; A Int B = {} |] ==> \
 | |
| 745 | \ setsum f (A Un B) = setsum f A + setsum f B"; | |
| 6162 | 746 | by (asm_simp_tac (simpset() addsimps [export fold_Un_disjoint2]) 1); | 
| 5616 | 747 | qed_spec_mp "setsum_disj_Un"; | 
| 748 | ||
| 749 | Goal "[| finite F |] ==> \ | |
| 750 | \     setsum f (F-{a}) = (if a:F then setsum f F - f a else setsum f F)";
 | |
| 6162 | 751 | by (etac finite_induct 1); | 
| 752 | by (auto_tac (claset(), simpset() addsimps [insert_Diff_if])); | |
| 753 | by (dres_inst_tac [("a","a")] mk_disjoint_insert 1);
 | |
| 754 | by (Auto_tac); | |
| 5616 | 755 | qed_spec_mp "setsum_diff1"; |