| author | wenzelm | 
| Wed, 13 Sep 2006 21:41:31 +0200 | |
| changeset 20531 | 7de9caf4fd78 | 
| parent 19798 | 94f12468bbba | 
| child 21245 | 23e6eb4d0975 | 
| permissions | -rw-r--r-- | 
| 14770 | 1  | 
(* Title: HOL/OrderedGroup.thy  | 
| 14738 | 2  | 
ID: $Id$  | 
| 
16775
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
3  | 
Author: Gertrud Bauer, Steven Obua, Lawrence C Paulson, and Markus Wenzel,  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
4  | 
with contributions by Jeremy Avigad  | 
| 14738 | 5  | 
*)  | 
6  | 
||
7  | 
header {* Ordered Groups *}
 | 
|
8  | 
||
| 15131 | 9  | 
theory OrderedGroup  | 
| 15140 | 10  | 
imports Inductive LOrder  | 
| 19798 | 11  | 
uses "~~/src/Provers/Arith/abel_cancel.ML"  | 
| 15131 | 12  | 
begin  | 
| 14738 | 13  | 
|
14  | 
text {*
 | 
|
15  | 
The theory of partially ordered groups is taken from the books:  | 
|
16  | 
  \begin{itemize}
 | 
|
17  | 
  \item \emph{Lattice Theory} by Garret Birkhoff, American Mathematical Society 1979 
 | 
|
18  | 
  \item \emph{Partially Ordered Algebraic Systems}, Pergamon Press 1963
 | 
|
19  | 
  \end{itemize}
 | 
|
20  | 
Most of the used notions can also be looked up in  | 
|
21  | 
  \begin{itemize}
 | 
|
| 14770 | 22  | 
  \item \url{http://www.mathworld.com} by Eric Weisstein et. al.
 | 
| 14738 | 23  | 
  \item \emph{Algebra I} by van der Waerden, Springer.
 | 
24  | 
  \end{itemize}
 | 
|
25  | 
*}  | 
|
26  | 
||
27  | 
subsection {* Semigroups, Groups *}
 | 
|
28  | 
||
29  | 
axclass semigroup_add \<subseteq> plus  | 
|
30  | 
add_assoc: "(a + b) + c = a + (b + c)"  | 
|
31  | 
||
32  | 
axclass ab_semigroup_add \<subseteq> semigroup_add  | 
|
33  | 
add_commute: "a + b = b + a"  | 
|
34  | 
||
35  | 
lemma add_left_commute: "a + (b + c) = b + (a + (c::'a::ab_semigroup_add))"  | 
|
36  | 
by (rule mk_left_commute [of "op +", OF add_assoc add_commute])  | 
|
37  | 
||
38  | 
theorems add_ac = add_assoc add_commute add_left_commute  | 
|
39  | 
||
40  | 
axclass semigroup_mult \<subseteq> times  | 
|
41  | 
mult_assoc: "(a * b) * c = a * (b * c)"  | 
|
42  | 
||
43  | 
axclass ab_semigroup_mult \<subseteq> semigroup_mult  | 
|
44  | 
mult_commute: "a * b = b * a"  | 
|
45  | 
||
46  | 
lemma mult_left_commute: "a * (b * c) = b * (a * (c::'a::ab_semigroup_mult))"  | 
|
47  | 
by (rule mk_left_commute [of "op *", OF mult_assoc mult_commute])  | 
|
48  | 
||
49  | 
theorems mult_ac = mult_assoc mult_commute mult_left_commute  | 
|
50  | 
||
51  | 
axclass comm_monoid_add \<subseteq> zero, ab_semigroup_add  | 
|
52  | 
add_0[simp]: "0 + a = a"  | 
|
53  | 
||
54  | 
axclass monoid_mult \<subseteq> one, semigroup_mult  | 
|
55  | 
mult_1_left[simp]: "1 * a = a"  | 
|
56  | 
mult_1_right[simp]: "a * 1 = a"  | 
|
57  | 
||
58  | 
axclass comm_monoid_mult \<subseteq> one, ab_semigroup_mult  | 
|
59  | 
mult_1: "1 * a = a"  | 
|
60  | 
||
61  | 
instance comm_monoid_mult \<subseteq> monoid_mult  | 
|
62  | 
by (intro_classes, insert mult_1, simp_all add: mult_commute, auto)  | 
|
63  | 
||
64  | 
axclass cancel_semigroup_add \<subseteq> semigroup_add  | 
|
65  | 
add_left_imp_eq: "a + b = a + c \<Longrightarrow> b = c"  | 
|
66  | 
add_right_imp_eq: "b + a = c + a \<Longrightarrow> b = c"  | 
|
67  | 
||
68  | 
axclass cancel_ab_semigroup_add \<subseteq> ab_semigroup_add  | 
|
69  | 
add_imp_eq: "a + b = a + c \<Longrightarrow> b = c"  | 
|
70  | 
||
71  | 
instance cancel_ab_semigroup_add \<subseteq> cancel_semigroup_add  | 
|
72  | 
proof  | 
|
73  | 
  {
 | 
|
74  | 
fix a b c :: 'a  | 
|
75  | 
assume "a + b = a + c"  | 
|
76  | 
thus "b = c" by (rule add_imp_eq)  | 
|
77  | 
}  | 
|
78  | 
note f = this  | 
|
79  | 
fix a b c :: 'a  | 
|
80  | 
assume "b + a = c + a"  | 
|
81  | 
hence "a + b = a + c" by (simp only: add_commute)  | 
|
82  | 
thus "b = c" by (rule f)  | 
|
83  | 
qed  | 
|
84  | 
||
85  | 
axclass ab_group_add \<subseteq> minus, comm_monoid_add  | 
|
86  | 
left_minus[simp]: " - a + a = 0"  | 
|
87  | 
diff_minus: "a - b = a + (-b)"  | 
|
88  | 
||
89  | 
instance ab_group_add \<subseteq> cancel_ab_semigroup_add  | 
|
90  | 
proof  | 
|
91  | 
fix a b c :: 'a  | 
|
92  | 
assume "a + b = a + c"  | 
|
93  | 
hence "-a + a + b = -a + a + c" by (simp only: add_assoc)  | 
|
94  | 
thus "b = c" by simp  | 
|
95  | 
qed  | 
|
96  | 
||
97  | 
lemma add_0_right [simp]: "a + 0 = (a::'a::comm_monoid_add)"  | 
|
98  | 
proof -  | 
|
99  | 
have "a + 0 = 0 + a" by (simp only: add_commute)  | 
|
100  | 
also have "... = a" by simp  | 
|
101  | 
finally show ?thesis .  | 
|
102  | 
qed  | 
|
103  | 
||
104  | 
lemma add_left_cancel [simp]:  | 
|
105  | 
"(a + b = a + c) = (b = (c::'a::cancel_semigroup_add))"  | 
|
106  | 
by (blast dest: add_left_imp_eq)  | 
|
107  | 
||
108  | 
lemma add_right_cancel [simp]:  | 
|
109  | 
"(b + a = c + a) = (b = (c::'a::cancel_semigroup_add))"  | 
|
110  | 
by (blast dest: add_right_imp_eq)  | 
|
111  | 
||
112  | 
lemma right_minus [simp]: "a + -(a::'a::ab_group_add) = 0"  | 
|
113  | 
proof -  | 
|
114  | 
have "a + -a = -a + a" by (simp add: add_ac)  | 
|
115  | 
also have "... = 0" by simp  | 
|
116  | 
finally show ?thesis .  | 
|
117  | 
qed  | 
|
118  | 
||
119  | 
lemma right_minus_eq: "(a - b = 0) = (a = (b::'a::ab_group_add))"  | 
|
120  | 
proof  | 
|
121  | 
have "a = a - b + b" by (simp add: diff_minus add_ac)  | 
|
122  | 
also assume "a - b = 0"  | 
|
123  | 
finally show "a = b" by simp  | 
|
124  | 
next  | 
|
125  | 
assume "a = b"  | 
|
126  | 
thus "a - b = 0" by (simp add: diff_minus)  | 
|
127  | 
qed  | 
|
128  | 
||
129  | 
lemma minus_minus [simp]: "- (- (a::'a::ab_group_add)) = a"  | 
|
130  | 
proof (rule add_left_cancel [of "-a", THEN iffD1])  | 
|
131  | 
show "(-a + -(-a) = -a + a)"  | 
|
132  | 
by simp  | 
|
133  | 
qed  | 
|
134  | 
||
135  | 
lemma equals_zero_I: "a+b = 0 ==> -a = (b::'a::ab_group_add)"  | 
|
136  | 
apply (rule right_minus_eq [THEN iffD1, symmetric])  | 
|
137  | 
apply (simp add: diff_minus add_commute)  | 
|
138  | 
done  | 
|
139  | 
||
140  | 
lemma minus_zero [simp]: "- 0 = (0::'a::ab_group_add)"  | 
|
141  | 
by (simp add: equals_zero_I)  | 
|
142  | 
||
143  | 
lemma diff_self [simp]: "a - (a::'a::ab_group_add) = 0"  | 
|
144  | 
by (simp add: diff_minus)  | 
|
145  | 
||
146  | 
lemma diff_0 [simp]: "(0::'a::ab_group_add) - a = -a"  | 
|
147  | 
by (simp add: diff_minus)  | 
|
148  | 
||
149  | 
lemma diff_0_right [simp]: "a - (0::'a::ab_group_add) = a"  | 
|
150  | 
by (simp add: diff_minus)  | 
|
151  | 
||
152  | 
lemma diff_minus_eq_add [simp]: "a - - b = a + (b::'a::ab_group_add)"  | 
|
153  | 
by (simp add: diff_minus)  | 
|
154  | 
||
155  | 
lemma neg_equal_iff_equal [simp]: "(-a = -b) = (a = (b::'a::ab_group_add))"  | 
|
156  | 
proof  | 
|
157  | 
assume "- a = - b"  | 
|
158  | 
hence "- (- a) = - (- b)"  | 
|
159  | 
by simp  | 
|
160  | 
thus "a=b" by simp  | 
|
161  | 
next  | 
|
162  | 
assume "a=b"  | 
|
163  | 
thus "-a = -b" by simp  | 
|
164  | 
qed  | 
|
165  | 
||
166  | 
lemma neg_equal_0_iff_equal [simp]: "(-a = 0) = (a = (0::'a::ab_group_add))"  | 
|
167  | 
by (subst neg_equal_iff_equal [symmetric], simp)  | 
|
168  | 
||
169  | 
lemma neg_0_equal_iff_equal [simp]: "(0 = -a) = (0 = (a::'a::ab_group_add))"  | 
|
170  | 
by (subst neg_equal_iff_equal [symmetric], simp)  | 
|
171  | 
||
172  | 
text{*The next two equations can make the simplifier loop!*}
 | 
|
173  | 
||
174  | 
lemma equation_minus_iff: "(a = - b) = (b = - (a::'a::ab_group_add))"  | 
|
175  | 
proof -  | 
|
176  | 
have "(- (-a) = - b) = (- a = b)" by (rule neg_equal_iff_equal)  | 
|
177  | 
thus ?thesis by (simp add: eq_commute)  | 
|
178  | 
qed  | 
|
179  | 
||
180  | 
lemma minus_equation_iff: "(- a = b) = (- (b::'a::ab_group_add) = a)"  | 
|
181  | 
proof -  | 
|
182  | 
have "(- a = - (-b)) = (a = -b)" by (rule neg_equal_iff_equal)  | 
|
183  | 
thus ?thesis by (simp add: eq_commute)  | 
|
184  | 
qed  | 
|
185  | 
||
186  | 
lemma minus_add_distrib [simp]: "- (a + b) = -a + -(b::'a::ab_group_add)"  | 
|
187  | 
apply (rule equals_zero_I)  | 
|
188  | 
apply (simp add: add_ac)  | 
|
189  | 
done  | 
|
190  | 
||
191  | 
lemma minus_diff_eq [simp]: "- (a - b) = b - (a::'a::ab_group_add)"  | 
|
192  | 
by (simp add: diff_minus add_commute)  | 
|
193  | 
||
194  | 
subsection {* (Partially) Ordered Groups *} 
 | 
|
195  | 
||
196  | 
axclass pordered_ab_semigroup_add \<subseteq> order, ab_semigroup_add  | 
|
197  | 
add_left_mono: "a \<le> b \<Longrightarrow> c + a \<le> c + b"  | 
|
198  | 
||
199  | 
axclass pordered_cancel_ab_semigroup_add \<subseteq> pordered_ab_semigroup_add, cancel_ab_semigroup_add  | 
|
200  | 
||
201  | 
instance pordered_cancel_ab_semigroup_add \<subseteq> pordered_ab_semigroup_add ..  | 
|
202  | 
||
203  | 
axclass pordered_ab_semigroup_add_imp_le \<subseteq> pordered_cancel_ab_semigroup_add  | 
|
204  | 
add_le_imp_le_left: "c + a \<le> c + b \<Longrightarrow> a \<le> b"  | 
|
205  | 
||
206  | 
axclass pordered_ab_group_add \<subseteq> ab_group_add, pordered_ab_semigroup_add  | 
|
207  | 
||
208  | 
instance pordered_ab_group_add \<subseteq> pordered_ab_semigroup_add_imp_le  | 
|
209  | 
proof  | 
|
210  | 
fix a b c :: 'a  | 
|
211  | 
assume "c + a \<le> c + b"  | 
|
212  | 
hence "(-c) + (c + a) \<le> (-c) + (c + b)" by (rule add_left_mono)  | 
|
213  | 
hence "((-c) + c) + a \<le> ((-c) + c) + b" by (simp only: add_assoc)  | 
|
214  | 
thus "a \<le> b" by simp  | 
|
215  | 
qed  | 
|
216  | 
||
217  | 
axclass ordered_cancel_ab_semigroup_add \<subseteq> pordered_cancel_ab_semigroup_add, linorder  | 
|
218  | 
||
219  | 
instance ordered_cancel_ab_semigroup_add \<subseteq> pordered_ab_semigroup_add_imp_le  | 
|
220  | 
proof  | 
|
221  | 
fix a b c :: 'a  | 
|
222  | 
assume le: "c + a <= c + b"  | 
|
223  | 
show "a <= b"  | 
|
224  | 
proof (rule ccontr)  | 
|
225  | 
assume w: "~ a \<le> b"  | 
|
226  | 
hence "b <= a" by (simp add: linorder_not_le)  | 
|
227  | 
hence le2: "c+b <= c+a" by (rule add_left_mono)  | 
|
228  | 
have "a = b"  | 
|
229  | 
apply (insert le)  | 
|
230  | 
apply (insert le2)  | 
|
231  | 
apply (drule order_antisym, simp_all)  | 
|
232  | 
done  | 
|
233  | 
with w show False  | 
|
234  | 
by (simp add: linorder_not_le [symmetric])  | 
|
235  | 
qed  | 
|
236  | 
qed  | 
|
237  | 
||
238  | 
lemma add_right_mono: "a \<le> (b::'a::pordered_ab_semigroup_add) ==> a + c \<le> b + c"  | 
|
239  | 
by (simp add: add_commute[of _ c] add_left_mono)  | 
|
240  | 
||
241  | 
text {* non-strict, in both arguments *}
 | 
|
242  | 
lemma add_mono:  | 
|
243  | 
"[|a \<le> b; c \<le> d|] ==> a + c \<le> b + (d::'a::pordered_ab_semigroup_add)"  | 
|
244  | 
apply (erule add_right_mono [THEN order_trans])  | 
|
245  | 
apply (simp add: add_commute add_left_mono)  | 
|
246  | 
done  | 
|
247  | 
||
248  | 
lemma add_strict_left_mono:  | 
|
249  | 
"a < b ==> c + a < c + (b::'a::pordered_cancel_ab_semigroup_add)"  | 
|
250  | 
by (simp add: order_less_le add_left_mono)  | 
|
251  | 
||
252  | 
lemma add_strict_right_mono:  | 
|
253  | 
"a < b ==> a + c < b + (c::'a::pordered_cancel_ab_semigroup_add)"  | 
|
254  | 
by (simp add: add_commute [of _ c] add_strict_left_mono)  | 
|
255  | 
||
256  | 
text{*Strict monotonicity in both arguments*}
 | 
|
257  | 
lemma add_strict_mono: "[|a<b; c<d|] ==> a + c < b + (d::'a::pordered_cancel_ab_semigroup_add)"  | 
|
258  | 
apply (erule add_strict_right_mono [THEN order_less_trans])  | 
|
259  | 
apply (erule add_strict_left_mono)  | 
|
260  | 
done  | 
|
261  | 
||
262  | 
lemma add_less_le_mono:  | 
|
263  | 
"[| a<b; c\<le>d |] ==> a + c < b + (d::'a::pordered_cancel_ab_semigroup_add)"  | 
|
264  | 
apply (erule add_strict_right_mono [THEN order_less_le_trans])  | 
|
265  | 
apply (erule add_left_mono)  | 
|
266  | 
done  | 
|
267  | 
||
268  | 
lemma add_le_less_mono:  | 
|
269  | 
"[| a\<le>b; c<d |] ==> a + c < b + (d::'a::pordered_cancel_ab_semigroup_add)"  | 
|
270  | 
apply (erule add_right_mono [THEN order_le_less_trans])  | 
|
271  | 
apply (erule add_strict_left_mono)  | 
|
272  | 
done  | 
|
273  | 
||
274  | 
lemma add_less_imp_less_left:  | 
|
275  | 
assumes less: "c + a < c + b" shows "a < (b::'a::pordered_ab_semigroup_add_imp_le)"  | 
|
276  | 
proof -  | 
|
277  | 
from less have le: "c + a <= c + b" by (simp add: order_le_less)  | 
|
278  | 
have "a <= b"  | 
|
279  | 
apply (insert le)  | 
|
280  | 
apply (drule add_le_imp_le_left)  | 
|
281  | 
by (insert le, drule add_le_imp_le_left, assumption)  | 
|
282  | 
moreover have "a \<noteq> b"  | 
|
283  | 
proof (rule ccontr)  | 
|
284  | 
assume "~(a \<noteq> b)"  | 
|
285  | 
then have "a = b" by simp  | 
|
286  | 
then have "c + a = c + b" by simp  | 
|
287  | 
with less show "False"by simp  | 
|
288  | 
qed  | 
|
289  | 
ultimately show "a < b" by (simp add: order_le_less)  | 
|
290  | 
qed  | 
|
291  | 
||
292  | 
lemma add_less_imp_less_right:  | 
|
293  | 
"a + c < b + c ==> a < (b::'a::pordered_ab_semigroup_add_imp_le)"  | 
|
294  | 
apply (rule add_less_imp_less_left [of c])  | 
|
295  | 
apply (simp add: add_commute)  | 
|
296  | 
done  | 
|
297  | 
||
298  | 
lemma add_less_cancel_left [simp]:  | 
|
299  | 
"(c+a < c+b) = (a < (b::'a::pordered_ab_semigroup_add_imp_le))"  | 
|
300  | 
by (blast intro: add_less_imp_less_left add_strict_left_mono)  | 
|
301  | 
||
302  | 
lemma add_less_cancel_right [simp]:  | 
|
303  | 
"(a+c < b+c) = (a < (b::'a::pordered_ab_semigroup_add_imp_le))"  | 
|
304  | 
by (blast intro: add_less_imp_less_right add_strict_right_mono)  | 
|
305  | 
||
306  | 
lemma add_le_cancel_left [simp]:  | 
|
307  | 
"(c+a \<le> c+b) = (a \<le> (b::'a::pordered_ab_semigroup_add_imp_le))"  | 
|
308  | 
by (auto, drule add_le_imp_le_left, simp_all add: add_left_mono)  | 
|
309  | 
||
310  | 
lemma add_le_cancel_right [simp]:  | 
|
311  | 
"(a+c \<le> b+c) = (a \<le> (b::'a::pordered_ab_semigroup_add_imp_le))"  | 
|
312  | 
by (simp add: add_commute[of a c] add_commute[of b c])  | 
|
313  | 
||
314  | 
lemma add_le_imp_le_right:  | 
|
315  | 
"a + c \<le> b + c ==> a \<le> (b::'a::pordered_ab_semigroup_add_imp_le)"  | 
|
316  | 
by simp  | 
|
317  | 
||
| 
15234
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
318  | 
lemma add_increasing:  | 
| 
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
319  | 
  fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
 | 
| 
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
320  | 
shows "[|0\<le>a; b\<le>c|] ==> b \<le> a + c"  | 
| 14738 | 321  | 
by (insert add_mono [of 0 a b c], simp)  | 
322  | 
||
| 15539 | 323  | 
lemma add_increasing2:  | 
324  | 
  fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
 | 
|
325  | 
shows "[|0\<le>c; b\<le>a|] ==> b \<le> a + c"  | 
|
326  | 
by (simp add:add_increasing add_commute[of a])  | 
|
327  | 
||
| 
15234
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
328  | 
lemma add_strict_increasing:  | 
| 
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
329  | 
  fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
 | 
| 
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
330  | 
shows "[|0<a; b\<le>c|] ==> b < a + c"  | 
| 
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
331  | 
by (insert add_less_le_mono [of 0 a b c], simp)  | 
| 
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
332  | 
|
| 
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
333  | 
lemma add_strict_increasing2:  | 
| 
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
334  | 
  fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
 | 
| 
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
335  | 
shows "[|0\<le>a; b<c|] ==> b < a + c"  | 
| 
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
336  | 
by (insert add_le_less_mono [of 0 a b c], simp)  | 
| 
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
337  | 
|
| 19527 | 338  | 
lemma max_add_distrib_left:  | 
339  | 
fixes z :: "'a::pordered_ab_semigroup_add_imp_le"  | 
|
340  | 
shows "(max x y) + z = max (x+z) (y+z)"  | 
|
341  | 
by (rule max_of_mono [THEN sym], rule add_le_cancel_right)  | 
|
342  | 
||
343  | 
lemma min_add_distrib_left:  | 
|
344  | 
fixes z :: "'a::pordered_ab_semigroup_add_imp_le"  | 
|
345  | 
shows "(min x y) + z = min (x+z) (y+z)"  | 
|
346  | 
by (rule min_of_mono [THEN sym], rule add_le_cancel_right)  | 
|
347  | 
||
348  | 
lemma max_diff_distrib_left:  | 
|
349  | 
fixes z :: "'a::pordered_ab_group_add"  | 
|
350  | 
shows "(max x y) - z = max (x-z) (y-z)"  | 
|
351  | 
by (simp add: diff_minus, rule max_add_distrib_left)  | 
|
352  | 
||
353  | 
lemma min_diff_distrib_left:  | 
|
354  | 
fixes z :: "'a::pordered_ab_group_add"  | 
|
355  | 
shows "(min x y) - z = min (x-z) (y-z)"  | 
|
356  | 
by (simp add: diff_minus, rule min_add_distrib_left)  | 
|
357  | 
||
| 
15234
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
358  | 
|
| 14738 | 359  | 
subsection {* Ordering Rules for Unary Minus *}
 | 
360  | 
||
361  | 
lemma le_imp_neg_le:  | 
|
362  | 
      assumes "a \<le> (b::'a::{pordered_ab_semigroup_add_imp_le, ab_group_add})" shows "-b \<le> -a"
 | 
|
363  | 
proof -  | 
|
364  | 
have "-a+a \<le> -a+b"  | 
|
365  | 
by (rule add_left_mono)  | 
|
366  | 
hence "0 \<le> -a+b"  | 
|
367  | 
by simp  | 
|
368  | 
hence "0 + (-b) \<le> (-a + b) + (-b)"  | 
|
369  | 
by (rule add_right_mono)  | 
|
370  | 
thus ?thesis  | 
|
371  | 
by (simp add: add_assoc)  | 
|
372  | 
qed  | 
|
373  | 
||
374  | 
lemma neg_le_iff_le [simp]: "(-b \<le> -a) = (a \<le> (b::'a::pordered_ab_group_add))"  | 
|
375  | 
proof  | 
|
376  | 
assume "- b \<le> - a"  | 
|
377  | 
hence "- (- a) \<le> - (- b)"  | 
|
378  | 
by (rule le_imp_neg_le)  | 
|
379  | 
thus "a\<le>b" by simp  | 
|
380  | 
next  | 
|
381  | 
assume "a\<le>b"  | 
|
382  | 
thus "-b \<le> -a" by (rule le_imp_neg_le)  | 
|
383  | 
qed  | 
|
384  | 
||
385  | 
lemma neg_le_0_iff_le [simp]: "(-a \<le> 0) = (0 \<le> (a::'a::pordered_ab_group_add))"  | 
|
386  | 
by (subst neg_le_iff_le [symmetric], simp)  | 
|
387  | 
||
388  | 
lemma neg_0_le_iff_le [simp]: "(0 \<le> -a) = (a \<le> (0::'a::pordered_ab_group_add))"  | 
|
389  | 
by (subst neg_le_iff_le [symmetric], simp)  | 
|
390  | 
||
391  | 
lemma neg_less_iff_less [simp]: "(-b < -a) = (a < (b::'a::pordered_ab_group_add))"  | 
|
392  | 
by (force simp add: order_less_le)  | 
|
393  | 
||
394  | 
lemma neg_less_0_iff_less [simp]: "(-a < 0) = (0 < (a::'a::pordered_ab_group_add))"  | 
|
395  | 
by (subst neg_less_iff_less [symmetric], simp)  | 
|
396  | 
||
397  | 
lemma neg_0_less_iff_less [simp]: "(0 < -a) = (a < (0::'a::pordered_ab_group_add))"  | 
|
398  | 
by (subst neg_less_iff_less [symmetric], simp)  | 
|
399  | 
||
400  | 
text{*The next several equations can make the simplifier loop!*}
 | 
|
401  | 
||
402  | 
lemma less_minus_iff: "(a < - b) = (b < - (a::'a::pordered_ab_group_add))"  | 
|
403  | 
proof -  | 
|
404  | 
have "(- (-a) < - b) = (b < - a)" by (rule neg_less_iff_less)  | 
|
405  | 
thus ?thesis by simp  | 
|
406  | 
qed  | 
|
407  | 
||
408  | 
lemma minus_less_iff: "(- a < b) = (- b < (a::'a::pordered_ab_group_add))"  | 
|
409  | 
proof -  | 
|
410  | 
have "(- a < - (-b)) = (- b < a)" by (rule neg_less_iff_less)  | 
|
411  | 
thus ?thesis by simp  | 
|
412  | 
qed  | 
|
413  | 
||
414  | 
lemma le_minus_iff: "(a \<le> - b) = (b \<le> - (a::'a::pordered_ab_group_add))"  | 
|
415  | 
proof -  | 
|
416  | 
have mm: "!! a (b::'a). (-(-a)) < -b \<Longrightarrow> -(-b) < -a" by (simp only: minus_less_iff)  | 
|
417  | 
have "(- (- a) <= -b) = (b <= - a)"  | 
|
418  | 
apply (auto simp only: order_le_less)  | 
|
419  | 
apply (drule mm)  | 
|
420  | 
apply (simp_all)  | 
|
421  | 
apply (drule mm[simplified], assumption)  | 
|
422  | 
done  | 
|
423  | 
then show ?thesis by simp  | 
|
424  | 
qed  | 
|
425  | 
||
426  | 
lemma minus_le_iff: "(- a \<le> b) = (- b \<le> (a::'a::pordered_ab_group_add))"  | 
|
427  | 
by (auto simp add: order_le_less minus_less_iff)  | 
|
428  | 
||
429  | 
lemma add_diff_eq: "a + (b - c) = (a + b) - (c::'a::ab_group_add)"  | 
|
430  | 
by (simp add: diff_minus add_ac)  | 
|
431  | 
||
432  | 
lemma diff_add_eq: "(a - b) + c = (a + c) - (b::'a::ab_group_add)"  | 
|
433  | 
by (simp add: diff_minus add_ac)  | 
|
434  | 
||
435  | 
lemma diff_eq_eq: "(a-b = c) = (a = c + (b::'a::ab_group_add))"  | 
|
436  | 
by (auto simp add: diff_minus add_assoc)  | 
|
437  | 
||
438  | 
lemma eq_diff_eq: "(a = c-b) = (a + (b::'a::ab_group_add) = c)"  | 
|
439  | 
by (auto simp add: diff_minus add_assoc)  | 
|
440  | 
||
441  | 
lemma diff_diff_eq: "(a - b) - c = a - (b + (c::'a::ab_group_add))"  | 
|
442  | 
by (simp add: diff_minus add_ac)  | 
|
443  | 
||
444  | 
lemma diff_diff_eq2: "a - (b - c) = (a + c) - (b::'a::ab_group_add)"  | 
|
445  | 
by (simp add: diff_minus add_ac)  | 
|
446  | 
||
447  | 
lemma diff_add_cancel: "a - b + b = (a::'a::ab_group_add)"  | 
|
448  | 
by (simp add: diff_minus add_ac)  | 
|
449  | 
||
450  | 
lemma add_diff_cancel: "a + b - b = (a::'a::ab_group_add)"  | 
|
451  | 
by (simp add: diff_minus add_ac)  | 
|
452  | 
||
| 
14754
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
453  | 
text{*Further subtraction laws*}
 | 
| 14738 | 454  | 
|
455  | 
lemma less_iff_diff_less_0: "(a < b) = (a - b < (0::'a::pordered_ab_group_add))"  | 
|
456  | 
proof -  | 
|
457  | 
have "(a < b) = (a + (- b) < b + (-b))"  | 
|
458  | 
by (simp only: add_less_cancel_right)  | 
|
459  | 
also have "... = (a - b < 0)" by (simp add: diff_minus)  | 
|
460  | 
finally show ?thesis .  | 
|
461  | 
qed  | 
|
462  | 
||
463  | 
lemma diff_less_eq: "(a-b < c) = (a < c + (b::'a::pordered_ab_group_add))"  | 
|
| 15481 | 464  | 
apply (subst less_iff_diff_less_0 [of a])  | 
| 14738 | 465  | 
apply (rule less_iff_diff_less_0 [of _ c, THEN ssubst])  | 
466  | 
apply (simp add: diff_minus add_ac)  | 
|
467  | 
done  | 
|
468  | 
||
469  | 
lemma less_diff_eq: "(a < c-b) = (a + (b::'a::pordered_ab_group_add) < c)"  | 
|
| 15481 | 470  | 
apply (subst less_iff_diff_less_0 [of "a+b"])  | 
471  | 
apply (subst less_iff_diff_less_0 [of a])  | 
|
| 14738 | 472  | 
apply (simp add: diff_minus add_ac)  | 
473  | 
done  | 
|
474  | 
||
475  | 
lemma diff_le_eq: "(a-b \<le> c) = (a \<le> c + (b::'a::pordered_ab_group_add))"  | 
|
476  | 
by (auto simp add: order_le_less diff_less_eq diff_add_cancel add_diff_cancel)  | 
|
477  | 
||
478  | 
lemma le_diff_eq: "(a \<le> c-b) = (a + (b::'a::pordered_ab_group_add) \<le> c)"  | 
|
479  | 
by (auto simp add: order_le_less less_diff_eq diff_add_cancel add_diff_cancel)  | 
|
480  | 
||
481  | 
text{*This list of rewrites simplifies (in)equalities by bringing subtractions
 | 
|
482  | 
to the top and then moving negative terms to the other side.  | 
|
483  | 
  Use with @{text add_ac}*}
 | 
|
484  | 
lemmas compare_rls =  | 
|
485  | 
diff_minus [symmetric]  | 
|
486  | 
add_diff_eq diff_add_eq diff_diff_eq diff_diff_eq2  | 
|
487  | 
diff_less_eq less_diff_eq diff_le_eq le_diff_eq  | 
|
488  | 
diff_eq_eq eq_diff_eq  | 
|
489  | 
||
| 
16775
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
490  | 
subsection {* Support for reasoning about signs *}
 | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
491  | 
|
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
492  | 
lemma add_pos_pos: "0 <  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
493  | 
    (x::'a::{comm_monoid_add,pordered_cancel_ab_semigroup_add}) 
 | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
494  | 
==> 0 < y ==> 0 < x + y"  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
495  | 
apply (subgoal_tac "0 + 0 < x + y")  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
496  | 
apply simp  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
497  | 
apply (erule add_less_le_mono)  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
498  | 
apply (erule order_less_imp_le)  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
499  | 
done  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
500  | 
|
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
501  | 
lemma add_pos_nonneg: "0 <  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
502  | 
    (x::'a::{comm_monoid_add,pordered_cancel_ab_semigroup_add}) 
 | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
503  | 
==> 0 <= y ==> 0 < x + y"  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
504  | 
apply (subgoal_tac "0 + 0 < x + y")  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
505  | 
apply simp  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
506  | 
apply (erule add_less_le_mono, assumption)  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
507  | 
done  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
508  | 
|
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
509  | 
lemma add_nonneg_pos: "0 <=  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
510  | 
    (x::'a::{comm_monoid_add,pordered_cancel_ab_semigroup_add}) 
 | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
511  | 
==> 0 < y ==> 0 < x + y"  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
512  | 
apply (subgoal_tac "0 + 0 < x + y")  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
513  | 
apply simp  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
514  | 
apply (erule add_le_less_mono, assumption)  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
515  | 
done  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
516  | 
|
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
517  | 
lemma add_nonneg_nonneg: "0 <=  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
518  | 
    (x::'a::{comm_monoid_add,pordered_cancel_ab_semigroup_add}) 
 | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
519  | 
==> 0 <= y ==> 0 <= x + y"  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
520  | 
apply (subgoal_tac "0 + 0 <= x + y")  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
521  | 
apply simp  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
522  | 
apply (erule add_mono, assumption)  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
523  | 
done  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
524  | 
|
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
525  | 
lemma add_neg_neg: "(x::'a::{comm_monoid_add,pordered_cancel_ab_semigroup_add})
 | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
526  | 
< 0 ==> y < 0 ==> x + y < 0"  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
527  | 
apply (subgoal_tac "x + y < 0 + 0")  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
528  | 
apply simp  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
529  | 
apply (erule add_less_le_mono)  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
530  | 
apply (erule order_less_imp_le)  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
531  | 
done  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
532  | 
|
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
533  | 
lemma add_neg_nonpos:  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
534  | 
    "(x::'a::{comm_monoid_add,pordered_cancel_ab_semigroup_add}) < 0 
 | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
535  | 
==> y <= 0 ==> x + y < 0"  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
536  | 
apply (subgoal_tac "x + y < 0 + 0")  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
537  | 
apply simp  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
538  | 
apply (erule add_less_le_mono, assumption)  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
539  | 
done  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
540  | 
|
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
541  | 
lemma add_nonpos_neg:  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
542  | 
    "(x::'a::{comm_monoid_add,pordered_cancel_ab_semigroup_add}) <= 0 
 | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
543  | 
==> y < 0 ==> x + y < 0"  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
544  | 
apply (subgoal_tac "x + y < 0 + 0")  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
545  | 
apply simp  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
546  | 
apply (erule add_le_less_mono, assumption)  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
547  | 
done  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
548  | 
|
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
549  | 
lemma add_nonpos_nonpos:  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
550  | 
    "(x::'a::{comm_monoid_add,pordered_cancel_ab_semigroup_add}) <= 0 
 | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
551  | 
==> y <= 0 ==> x + y <= 0"  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
552  | 
apply (subgoal_tac "x + y <= 0 + 0")  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
553  | 
apply simp  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
554  | 
apply (erule add_mono, assumption)  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
555  | 
done  | 
| 14738 | 556  | 
|
557  | 
subsection{*Lemmas for the @{text cancel_numerals} simproc*}
 | 
|
558  | 
||
559  | 
lemma eq_iff_diff_eq_0: "(a = b) = (a-b = (0::'a::ab_group_add))"  | 
|
560  | 
by (simp add: compare_rls)  | 
|
561  | 
||
562  | 
lemma le_iff_diff_le_0: "(a \<le> b) = (a-b \<le> (0::'a::pordered_ab_group_add))"  | 
|
563  | 
by (simp add: compare_rls)  | 
|
564  | 
||
565  | 
subsection {* Lattice Ordered (Abelian) Groups *}
 | 
|
566  | 
||
567  | 
axclass lordered_ab_group_meet < pordered_ab_group_add, meet_semilorder  | 
|
568  | 
||
569  | 
axclass lordered_ab_group_join < pordered_ab_group_add, join_semilorder  | 
|
570  | 
||
571  | 
lemma add_meet_distrib_left: "a + (meet b c) = meet (a + b) (a + (c::'a::{pordered_ab_group_add, meet_semilorder}))"
 | 
|
572  | 
apply (rule order_antisym)  | 
|
573  | 
apply (rule meet_imp_le, simp_all add: meet_join_le)  | 
|
574  | 
apply (rule add_le_imp_le_left [of "-a"])  | 
|
575  | 
apply (simp only: add_assoc[symmetric], simp)  | 
|
576  | 
apply (rule meet_imp_le)  | 
|
577  | 
apply (rule add_le_imp_le_left[of "a"], simp only: add_assoc[symmetric], simp add: meet_join_le)+  | 
|
578  | 
done  | 
|
579  | 
||
580  | 
lemma add_join_distrib_left: "a + (join b c) = join (a + b) (a+ (c::'a::{pordered_ab_group_add, join_semilorder}))" 
 | 
|
581  | 
apply (rule order_antisym)  | 
|
582  | 
apply (rule add_le_imp_le_left [of "-a"])  | 
|
583  | 
apply (simp only: add_assoc[symmetric], simp)  | 
|
584  | 
apply (rule join_imp_le)  | 
|
585  | 
apply (rule add_le_imp_le_left [of "a"], simp only: add_assoc[symmetric], simp add: meet_join_le)+  | 
|
586  | 
apply (rule join_imp_le)  | 
|
587  | 
apply (simp_all add: meet_join_le)  | 
|
588  | 
done  | 
|
589  | 
||
590  | 
lemma is_join_neg_meet: "is_join (% (a::'a::{pordered_ab_group_add, meet_semilorder}) b. - (meet (-a) (-b)))"
 | 
|
591  | 
apply (auto simp add: is_join_def)  | 
|
592  | 
apply (rule_tac c="meet (-a) (-b)" in add_le_imp_le_right, simp, simp add: add_meet_distrib_left meet_join_le)  | 
|
593  | 
apply (rule_tac c="meet (-a) (-b)" in add_le_imp_le_right, simp, simp add: add_meet_distrib_left meet_join_le)  | 
|
594  | 
apply (subst neg_le_iff_le[symmetric])  | 
|
595  | 
apply (simp add: meet_imp_le)  | 
|
596  | 
done  | 
|
597  | 
||
598  | 
lemma is_meet_neg_join: "is_meet (% (a::'a::{pordered_ab_group_add, join_semilorder}) b. - (join (-a) (-b)))"
 | 
|
599  | 
apply (auto simp add: is_meet_def)  | 
|
600  | 
apply (rule_tac c="join (-a) (-b)" in add_le_imp_le_right, simp, simp add: add_join_distrib_left meet_join_le)  | 
|
601  | 
apply (rule_tac c="join (-a) (-b)" in add_le_imp_le_right, simp, simp add: add_join_distrib_left meet_join_le)  | 
|
602  | 
apply (subst neg_le_iff_le[symmetric])  | 
|
603  | 
apply (simp add: join_imp_le)  | 
|
604  | 
done  | 
|
605  | 
||
606  | 
axclass lordered_ab_group \<subseteq> pordered_ab_group_add, lorder  | 
|
607  | 
||
608  | 
instance lordered_ab_group_meet \<subseteq> lordered_ab_group  | 
|
609  | 
proof  | 
|
610  | 
  show "? j. is_join (j::'a\<Rightarrow>'a\<Rightarrow>('a::lordered_ab_group_meet))" by (blast intro: is_join_neg_meet)
 | 
|
611  | 
qed  | 
|
612  | 
||
613  | 
instance lordered_ab_group_join \<subseteq> lordered_ab_group  | 
|
614  | 
proof  | 
|
615  | 
  show "? m. is_meet (m::'a\<Rightarrow>'a\<Rightarrow>('a::lordered_ab_group_join))" by (blast intro: is_meet_neg_join)
 | 
|
616  | 
qed  | 
|
617  | 
||
618  | 
lemma add_join_distrib_right: "(join a b) + (c::'a::lordered_ab_group) = join (a+c) (b+c)"  | 
|
619  | 
proof -  | 
|
620  | 
have "c + (join a b) = join (c+a) (c+b)" by (simp add: add_join_distrib_left)  | 
|
621  | 
thus ?thesis by (simp add: add_commute)  | 
|
622  | 
qed  | 
|
623  | 
||
624  | 
lemma add_meet_distrib_right: "(meet a b) + (c::'a::lordered_ab_group) = meet (a+c) (b+c)"  | 
|
625  | 
proof -  | 
|
626  | 
have "c + (meet a b) = meet (c+a) (c+b)" by (simp add: add_meet_distrib_left)  | 
|
627  | 
thus ?thesis by (simp add: add_commute)  | 
|
628  | 
qed  | 
|
629  | 
||
630  | 
lemmas add_meet_join_distribs = add_meet_distrib_right add_meet_distrib_left add_join_distrib_right add_join_distrib_left  | 
|
631  | 
||
632  | 
lemma join_eq_neg_meet: "join a (b::'a::lordered_ab_group) = - meet (-a) (-b)"  | 
|
633  | 
by (simp add: is_join_unique[OF is_join_join is_join_neg_meet])  | 
|
634  | 
||
635  | 
lemma meet_eq_neg_join: "meet a (b::'a::lordered_ab_group) = - join (-a) (-b)"  | 
|
636  | 
by (simp add: is_meet_unique[OF is_meet_meet is_meet_neg_join])  | 
|
637  | 
||
638  | 
lemma add_eq_meet_join: "a + b = (join a b) + (meet a (b::'a::lordered_ab_group))"  | 
|
639  | 
proof -  | 
|
640  | 
have "0 = - meet 0 (a-b) + meet (a-b) 0" by (simp add: meet_comm)  | 
|
641  | 
hence "0 = join 0 (b-a) + meet (a-b) 0" by (simp add: meet_eq_neg_join)  | 
|
642  | 
hence "0 = (-a + join a b) + (meet a b + (-b))"  | 
|
643  | 
apply (simp add: add_join_distrib_left add_meet_distrib_right)  | 
|
644  | 
by (simp add: diff_minus add_commute)  | 
|
645  | 
thus ?thesis  | 
|
646  | 
apply (simp add: compare_rls)  | 
|
647  | 
apply (subst add_left_cancel[symmetric, of "a+b" "join a b + meet a b" "-a"])  | 
|
648  | 
apply (simp only: add_assoc, simp add: add_assoc[symmetric])  | 
|
649  | 
done  | 
|
650  | 
qed  | 
|
651  | 
||
652  | 
subsection {* Positive Part, Negative Part, Absolute Value *}
 | 
|
653  | 
||
654  | 
constdefs  | 
|
655  | 
  pprt :: "'a \<Rightarrow> ('a::lordered_ab_group)"
 | 
|
656  | 
"pprt x == join x 0"  | 
|
657  | 
  nprt :: "'a \<Rightarrow> ('a::lordered_ab_group)"
 | 
|
658  | 
"nprt x == meet x 0"  | 
|
659  | 
||
660  | 
lemma prts: "a = pprt a + nprt a"  | 
|
661  | 
by (simp add: pprt_def nprt_def add_eq_meet_join[symmetric])  | 
|
662  | 
||
663  | 
lemma zero_le_pprt[simp]: "0 \<le> pprt a"  | 
|
664  | 
by (simp add: pprt_def meet_join_le)  | 
|
665  | 
||
666  | 
lemma nprt_le_zero[simp]: "nprt a \<le> 0"  | 
|
667  | 
by (simp add: nprt_def meet_join_le)  | 
|
668  | 
||
669  | 
lemma le_eq_neg: "(a \<le> -b) = (a + b \<le> (0::_::lordered_ab_group))" (is "?l = ?r")  | 
|
670  | 
proof -  | 
|
671  | 
have a: "?l \<longrightarrow> ?r"  | 
|
672  | 
apply (auto)  | 
|
673  | 
apply (rule add_le_imp_le_right[of _ "-b" _])  | 
|
674  | 
apply (simp add: add_assoc)  | 
|
675  | 
done  | 
|
676  | 
have b: "?r \<longrightarrow> ?l"  | 
|
677  | 
apply (auto)  | 
|
678  | 
apply (rule add_le_imp_le_right[of _ "b" _])  | 
|
679  | 
apply (simp)  | 
|
680  | 
done  | 
|
681  | 
from a b show ?thesis by blast  | 
|
682  | 
qed  | 
|
683  | 
||
| 15580 | 684  | 
lemma pprt_0[simp]: "pprt 0 = 0" by (simp add: pprt_def)  | 
685  | 
lemma nprt_0[simp]: "nprt 0 = 0" by (simp add: nprt_def)  | 
|
686  | 
||
687  | 
lemma pprt_eq_id[simp]: "0 <= x \<Longrightarrow> pprt x = x"  | 
|
688  | 
by (simp add: pprt_def le_def_join join_aci)  | 
|
689  | 
||
690  | 
lemma nprt_eq_id[simp]: "x <= 0 \<Longrightarrow> nprt x = x"  | 
|
691  | 
by (simp add: nprt_def le_def_meet meet_aci)  | 
|
692  | 
||
693  | 
lemma pprt_eq_0[simp]: "x <= 0 \<Longrightarrow> pprt x = 0"  | 
|
694  | 
by (simp add: pprt_def le_def_join join_aci)  | 
|
695  | 
||
696  | 
lemma nprt_eq_0[simp]: "0 <= x \<Longrightarrow> nprt x = 0"  | 
|
697  | 
by (simp add: nprt_def le_def_meet meet_aci)  | 
|
698  | 
||
| 14738 | 699  | 
lemma join_0_imp_0: "join a (-a) = 0 \<Longrightarrow> a = (0::'a::lordered_ab_group)"  | 
700  | 
proof -  | 
|
701  | 
  {
 | 
|
702  | 
fix a::'a  | 
|
703  | 
assume hyp: "join a (-a) = 0"  | 
|
704  | 
hence "join a (-a) + a = a" by (simp)  | 
|
705  | 
hence "join (a+a) 0 = a" by (simp add: add_join_distrib_right)  | 
|
706  | 
hence "join (a+a) 0 <= a" by (simp)  | 
|
707  | 
hence "0 <= a" by (blast intro: order_trans meet_join_le)  | 
|
708  | 
}  | 
|
709  | 
note p = this  | 
|
710  | 
assume hyp:"join a (-a) = 0"  | 
|
711  | 
hence hyp2:"join (-a) (-(-a)) = 0" by (simp add: join_comm)  | 
|
712  | 
from p[OF hyp] p[OF hyp2] show "a = 0" by simp  | 
|
713  | 
qed  | 
|
714  | 
||
715  | 
lemma meet_0_imp_0: "meet a (-a) = 0 \<Longrightarrow> a = (0::'a::lordered_ab_group)"  | 
|
716  | 
apply (simp add: meet_eq_neg_join)  | 
|
717  | 
apply (simp add: join_comm)  | 
|
| 15481 | 718  | 
apply (erule join_0_imp_0)  | 
719  | 
done  | 
|
| 14738 | 720  | 
|
721  | 
lemma join_0_eq_0[simp]: "(join a (-a) = 0) = (a = (0::'a::lordered_ab_group))"  | 
|
722  | 
by (auto, erule join_0_imp_0)  | 
|
723  | 
||
724  | 
lemma meet_0_eq_0[simp]: "(meet a (-a) = 0) = (a = (0::'a::lordered_ab_group))"  | 
|
725  | 
by (auto, erule meet_0_imp_0)  | 
|
726  | 
||
727  | 
lemma zero_le_double_add_iff_zero_le_single_add[simp]: "(0 \<le> a + a) = (0 \<le> (a::'a::lordered_ab_group))"  | 
|
728  | 
proof  | 
|
729  | 
assume "0 <= a + a"  | 
|
730  | 
hence a:"meet (a+a) 0 = 0" by (simp add: le_def_meet meet_comm)  | 
|
731  | 
have "(meet a 0)+(meet a 0) = meet (meet (a+a) 0) a" (is "?l=_") by (simp add: add_meet_join_distribs meet_aci)  | 
|
732  | 
hence "?l = 0 + meet a 0" by (simp add: a, simp add: meet_comm)  | 
|
733  | 
hence "meet a 0 = 0" by (simp only: add_right_cancel)  | 
|
734  | 
then show "0 <= a" by (simp add: le_def_meet meet_comm)  | 
|
735  | 
next  | 
|
736  | 
assume a: "0 <= a"  | 
|
737  | 
show "0 <= a + a" by (simp add: add_mono[OF a a, simplified])  | 
|
738  | 
qed  | 
|
739  | 
||
740  | 
lemma double_add_le_zero_iff_single_add_le_zero[simp]: "(a + a <= 0) = ((a::'a::lordered_ab_group) <= 0)"  | 
|
741  | 
proof -  | 
|
742  | 
have "(a + a <= 0) = (0 <= -(a+a))" by (subst le_minus_iff, simp)  | 
|
743  | 
moreover have "\<dots> = (a <= 0)" by (simp add: zero_le_double_add_iff_zero_le_single_add)  | 
|
744  | 
ultimately show ?thesis by blast  | 
|
745  | 
qed  | 
|
746  | 
||
747  | 
lemma double_add_less_zero_iff_single_less_zero[simp]: "(a+a<0) = ((a::'a::{pordered_ab_group_add,linorder}) < 0)" (is ?s)
 | 
|
748  | 
proof cases  | 
|
749  | 
assume a: "a < 0"  | 
|
750  | 
thus ?s by (simp add: add_strict_mono[OF a a, simplified])  | 
|
751  | 
next  | 
|
752  | 
assume "~(a < 0)"  | 
|
753  | 
hence a:"0 <= a" by (simp)  | 
|
754  | 
hence "0 <= a+a" by (simp add: add_mono[OF a a, simplified])  | 
|
755  | 
hence "~(a+a < 0)" by simp  | 
|
756  | 
with a show ?thesis by simp  | 
|
757  | 
qed  | 
|
758  | 
||
759  | 
axclass lordered_ab_group_abs \<subseteq> lordered_ab_group  | 
|
760  | 
abs_lattice: "abs x = join x (-x)"  | 
|
761  | 
||
762  | 
lemma abs_zero[simp]: "abs 0 = (0::'a::lordered_ab_group_abs)"  | 
|
763  | 
by (simp add: abs_lattice)  | 
|
764  | 
||
765  | 
lemma abs_eq_0[simp]: "(abs a = 0) = (a = (0::'a::lordered_ab_group_abs))"  | 
|
766  | 
by (simp add: abs_lattice)  | 
|
767  | 
||
768  | 
lemma abs_0_eq[simp]: "(0 = abs a) = (a = (0::'a::lordered_ab_group_abs))"  | 
|
769  | 
proof -  | 
|
770  | 
have "(0 = abs a) = (abs a = 0)" by (simp only: eq_ac)  | 
|
771  | 
thus ?thesis by simp  | 
|
772  | 
qed  | 
|
773  | 
||
774  | 
lemma neg_meet_eq_join[simp]: "- meet a (b::_::lordered_ab_group) = join (-a) (-b)"  | 
|
775  | 
by (simp add: meet_eq_neg_join)  | 
|
776  | 
||
777  | 
lemma neg_join_eq_meet[simp]: "- join a (b::_::lordered_ab_group) = meet (-a) (-b)"  | 
|
778  | 
by (simp del: neg_meet_eq_join add: join_eq_neg_meet)  | 
|
779  | 
||
780  | 
lemma join_eq_if: "join a (-a) = (if a < 0 then -a else (a::'a::{lordered_ab_group, linorder}))"
 | 
|
781  | 
proof -  | 
|
782  | 
note b = add_le_cancel_right[of a a "-a",symmetric,simplified]  | 
|
783  | 
have c: "a + a = 0 \<Longrightarrow> -a = a" by (rule add_right_imp_eq[of _ a], simp)  | 
|
| 15197 | 784  | 
show ?thesis by (auto simp add: join_max max_def b linorder_not_less)  | 
| 14738 | 785  | 
qed  | 
786  | 
||
787  | 
lemma abs_if_lattice: "\<bar>a\<bar> = (if a < 0 then -a else (a::'a::{lordered_ab_group_abs, linorder}))"
 | 
|
788  | 
proof -  | 
|
789  | 
show ?thesis by (simp add: abs_lattice join_eq_if)  | 
|
790  | 
qed  | 
|
791  | 
||
792  | 
lemma abs_ge_zero[simp]: "0 \<le> abs (a::'a::lordered_ab_group_abs)"  | 
|
793  | 
proof -  | 
|
794  | 
have a:"a <= abs a" and b:"-a <= abs a" by (auto simp add: abs_lattice meet_join_le)  | 
|
795  | 
show ?thesis by (rule add_mono[OF a b, simplified])  | 
|
796  | 
qed  | 
|
797  | 
||
798  | 
lemma abs_le_zero_iff [simp]: "(abs a \<le> (0::'a::lordered_ab_group_abs)) = (a = 0)"  | 
|
799  | 
proof  | 
|
800  | 
assume "abs a <= 0"  | 
|
801  | 
hence "abs a = 0" by (auto dest: order_antisym)  | 
|
802  | 
thus "a = 0" by simp  | 
|
803  | 
next  | 
|
804  | 
assume "a = 0"  | 
|
805  | 
thus "abs a <= 0" by simp  | 
|
806  | 
qed  | 
|
807  | 
||
808  | 
lemma zero_less_abs_iff [simp]: "(0 < abs a) = (a \<noteq> (0::'a::lordered_ab_group_abs))"  | 
|
809  | 
by (simp add: order_less_le)  | 
|
810  | 
||
811  | 
lemma abs_not_less_zero [simp]: "~ abs a < (0::'a::lordered_ab_group_abs)"  | 
|
812  | 
proof -  | 
|
813  | 
have a:"!! x (y::_::order). x <= y \<Longrightarrow> ~(y < x)" by auto  | 
|
814  | 
show ?thesis by (simp add: a)  | 
|
815  | 
qed  | 
|
816  | 
||
817  | 
lemma abs_ge_self: "a \<le> abs (a::'a::lordered_ab_group_abs)"  | 
|
818  | 
by (simp add: abs_lattice meet_join_le)  | 
|
819  | 
||
820  | 
lemma abs_ge_minus_self: "-a \<le> abs (a::'a::lordered_ab_group_abs)"  | 
|
821  | 
by (simp add: abs_lattice meet_join_le)  | 
|
822  | 
||
823  | 
lemma le_imp_join_eq: "a \<le> b \<Longrightarrow> join a b = b"  | 
|
824  | 
by (simp add: le_def_join)  | 
|
825  | 
||
826  | 
lemma ge_imp_join_eq: "b \<le> a \<Longrightarrow> join a b = a"  | 
|
827  | 
by (simp add: le_def_join join_aci)  | 
|
828  | 
||
829  | 
lemma le_imp_meet_eq: "a \<le> b \<Longrightarrow> meet a b = a"  | 
|
830  | 
by (simp add: le_def_meet)  | 
|
831  | 
||
832  | 
lemma ge_imp_meet_eq: "b \<le> a \<Longrightarrow> meet a b = b"  | 
|
833  | 
by (simp add: le_def_meet meet_aci)  | 
|
834  | 
||
835  | 
lemma abs_prts: "abs (a::_::lordered_ab_group_abs) = pprt a - nprt a"  | 
|
836  | 
apply (simp add: pprt_def nprt_def diff_minus)  | 
|
837  | 
apply (simp add: add_meet_join_distribs join_aci abs_lattice[symmetric])  | 
|
838  | 
apply (subst le_imp_join_eq, auto)  | 
|
839  | 
done  | 
|
840  | 
||
841  | 
lemma abs_minus_cancel [simp]: "abs (-a) = abs(a::'a::lordered_ab_group_abs)"  | 
|
842  | 
by (simp add: abs_lattice join_comm)  | 
|
843  | 
||
844  | 
lemma abs_idempotent [simp]: "abs (abs a) = abs (a::'a::lordered_ab_group_abs)"  | 
|
845  | 
apply (simp add: abs_lattice[of "abs a"])  | 
|
846  | 
apply (subst ge_imp_join_eq)  | 
|
847  | 
apply (rule order_trans[of _ 0])  | 
|
848  | 
by auto  | 
|
849  | 
||
| 
15093
 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 
paulson 
parents: 
15010 
diff
changeset
 | 
850  | 
lemma abs_minus_commute:  | 
| 
 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 
paulson 
parents: 
15010 
diff
changeset
 | 
851  | 
fixes a :: "'a::lordered_ab_group_abs"  | 
| 
 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 
paulson 
parents: 
15010 
diff
changeset
 | 
852  | 
shows "abs (a-b) = abs(b-a)"  | 
| 
 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 
paulson 
parents: 
15010 
diff
changeset
 | 
853  | 
proof -  | 
| 
 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 
paulson 
parents: 
15010 
diff
changeset
 | 
854  | 
have "abs (a-b) = abs (- (a-b))" by (simp only: abs_minus_cancel)  | 
| 
 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 
paulson 
parents: 
15010 
diff
changeset
 | 
855  | 
also have "... = abs(b-a)" by simp  | 
| 
 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 
paulson 
parents: 
15010 
diff
changeset
 | 
856  | 
finally show ?thesis .  | 
| 
 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 
paulson 
parents: 
15010 
diff
changeset
 | 
857  | 
qed  | 
| 
 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 
paulson 
parents: 
15010 
diff
changeset
 | 
858  | 
|
| 14738 | 859  | 
lemma zero_le_iff_zero_nprt: "(0 \<le> a) = (nprt a = 0)"  | 
860  | 
by (simp add: le_def_meet nprt_def meet_comm)  | 
|
861  | 
||
862  | 
lemma le_zero_iff_zero_pprt: "(a \<le> 0) = (pprt a = 0)"  | 
|
863  | 
by (simp add: le_def_join pprt_def join_comm)  | 
|
864  | 
||
865  | 
lemma le_zero_iff_pprt_id: "(0 \<le> a) = (pprt a = a)"  | 
|
866  | 
by (simp add: le_def_join pprt_def join_comm)  | 
|
867  | 
||
868  | 
lemma zero_le_iff_nprt_id: "(a \<le> 0) = (nprt a = a)"  | 
|
869  | 
by (simp add: le_def_meet nprt_def meet_comm)  | 
|
870  | 
||
| 15580 | 871  | 
lemma pprt_mono[simp]: "(a::_::lordered_ab_group) <= b \<Longrightarrow> pprt a <= pprt b"  | 
872  | 
by (simp add: le_def_join pprt_def join_aci)  | 
|
873  | 
||
874  | 
lemma nprt_mono[simp]: "(a::_::lordered_ab_group) <= b \<Longrightarrow> nprt a <= nprt b"  | 
|
875  | 
by (simp add: le_def_meet nprt_def meet_aci)  | 
|
876  | 
||
| 19404 | 877  | 
lemma pprt_neg: "pprt (-x) = - nprt x"  | 
878  | 
by (simp add: pprt_def nprt_def)  | 
|
879  | 
||
880  | 
lemma nprt_neg: "nprt (-x) = - pprt x"  | 
|
881  | 
by (simp add: pprt_def nprt_def)  | 
|
882  | 
||
| 14738 | 883  | 
lemma iff2imp: "(A=B) \<Longrightarrow> (A \<Longrightarrow> B)"  | 
884  | 
by (simp)  | 
|
885  | 
||
| 
16775
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
886  | 
lemma abs_of_nonneg [simp]: "0 \<le> a \<Longrightarrow> abs a = (a::'a::lordered_ab_group_abs)"  | 
| 14738 | 887  | 
by (simp add: iff2imp[OF zero_le_iff_zero_nprt] iff2imp[OF le_zero_iff_pprt_id] abs_prts)  | 
888  | 
||
| 
16775
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
889  | 
lemma abs_of_pos: "0 < (x::'a::lordered_ab_group_abs) ==> abs x = x";  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
890  | 
by (rule abs_of_nonneg, rule order_less_imp_le);  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
891  | 
|
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
892  | 
lemma abs_of_nonpos [simp]: "a \<le> 0 \<Longrightarrow> abs a = -(a::'a::lordered_ab_group_abs)"  | 
| 14738 | 893  | 
by (simp add: iff2imp[OF le_zero_iff_zero_pprt] iff2imp[OF zero_le_iff_nprt_id] abs_prts)  | 
894  | 
||
| 
16775
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
895  | 
lemma abs_of_neg: "(x::'a::lordered_ab_group_abs) < 0 ==>  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
896  | 
abs x = - x"  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
897  | 
by (rule abs_of_nonpos, rule order_less_imp_le)  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
898  | 
|
| 14738 | 899  | 
lemma abs_leI: "[|a \<le> b; -a \<le> b|] ==> abs a \<le> (b::'a::lordered_ab_group_abs)"  | 
900  | 
by (simp add: abs_lattice join_imp_le)  | 
|
901  | 
||
902  | 
lemma le_minus_self_iff: "(a \<le> -a) = (a \<le> (0::'a::lordered_ab_group))"  | 
|
903  | 
proof -  | 
|
904  | 
from add_le_cancel_left[of "-a" "a+a" "0"] have "(a <= -a) = (a+a <= 0)"  | 
|
905  | 
by (simp add: add_assoc[symmetric])  | 
|
906  | 
thus ?thesis by simp  | 
|
907  | 
qed  | 
|
908  | 
||
909  | 
lemma minus_le_self_iff: "(-a \<le> a) = (0 \<le> (a::'a::lordered_ab_group))"  | 
|
910  | 
proof -  | 
|
911  | 
from add_le_cancel_left[of "-a" "0" "a+a"] have "(-a <= a) = (0 <= a+a)"  | 
|
912  | 
by (simp add: add_assoc[symmetric])  | 
|
913  | 
thus ?thesis by simp  | 
|
914  | 
qed  | 
|
915  | 
||
916  | 
lemma abs_le_D1: "abs a \<le> b ==> a \<le> (b::'a::lordered_ab_group_abs)"  | 
|
917  | 
by (insert abs_ge_self, blast intro: order_trans)  | 
|
918  | 
||
919  | 
lemma abs_le_D2: "abs a \<le> b ==> -a \<le> (b::'a::lordered_ab_group_abs)"  | 
|
920  | 
by (insert abs_le_D1 [of "-a"], simp)  | 
|
921  | 
||
922  | 
lemma abs_le_iff: "(abs a \<le> b) = (a \<le> b & -a \<le> (b::'a::lordered_ab_group_abs))"  | 
|
923  | 
by (blast intro: abs_leI dest: abs_le_D1 abs_le_D2)  | 
|
924  | 
||
| 15539 | 925  | 
lemma abs_triangle_ineq: "abs(a+b) \<le> abs a + abs(b::'a::lordered_ab_group_abs)"  | 
| 14738 | 926  | 
proof -  | 
927  | 
have g:"abs a + abs b = join (a+b) (join (-a-b) (join (-a+b) (a + (-b))))" (is "_=join ?m ?n")  | 
|
| 
19233
 
77ca20b0ed77
renamed HOL + - * etc. to HOL.plus HOL.minus HOL.times etc.
 
haftmann 
parents: 
17085 
diff
changeset
 | 
928  | 
by (simp add: abs_lattice add_meet_join_distribs join_aci diff_minus)  | 
| 14738 | 929  | 
have a:"a+b <= join ?m ?n" by (simp add: meet_join_le)  | 
930  | 
have b:"-a-b <= ?n" by (simp add: meet_join_le)  | 
|
931  | 
have c:"?n <= join ?m ?n" by (simp add: meet_join_le)  | 
|
932  | 
from b c have d: "-a-b <= join ?m ?n" by simp  | 
|
933  | 
have e:"-a-b = -(a+b)" by (simp add: diff_minus)  | 
|
934  | 
from a d e have "abs(a+b) <= join ?m ?n"  | 
|
935  | 
by (drule_tac abs_leI, auto)  | 
|
936  | 
with g[symmetric] show ?thesis by simp  | 
|
937  | 
qed  | 
|
938  | 
||
| 
16775
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
939  | 
lemma abs_triangle_ineq2: "abs (a::'a::lordered_ab_group_abs) -  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
940  | 
abs b <= abs (a - b)"  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
941  | 
apply (simp add: compare_rls)  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
942  | 
apply (subgoal_tac "abs a = abs (a - b + b)")  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
943  | 
apply (erule ssubst)  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
944  | 
apply (rule abs_triangle_ineq)  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
945  | 
apply (rule arg_cong);back;  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
946  | 
apply (simp add: compare_rls)  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
947  | 
done  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
948  | 
|
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
949  | 
lemma abs_triangle_ineq3:  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
950  | 
"abs(abs (a::'a::lordered_ab_group_abs) - abs b) <= abs (a - b)"  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
951  | 
apply (subst abs_le_iff)  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
952  | 
apply auto  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
953  | 
apply (rule abs_triangle_ineq2)  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
954  | 
apply (subst abs_minus_commute)  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
955  | 
apply (rule abs_triangle_ineq2)  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
956  | 
done  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
957  | 
|
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
958  | 
lemma abs_triangle_ineq4: "abs ((a::'a::lordered_ab_group_abs) - b) <=  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
959  | 
abs a + abs b"  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
960  | 
proof -;  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
961  | 
have "abs(a - b) = abs(a + - b)"  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
962  | 
by (subst diff_minus, rule refl)  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
963  | 
also have "... <= abs a + abs (- b)"  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
964  | 
by (rule abs_triangle_ineq)  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
965  | 
finally show ?thesis  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
966  | 
by simp  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
967  | 
qed  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
968  | 
|
| 14738 | 969  | 
lemma abs_diff_triangle_ineq:  | 
970  | 
"\<bar>(a::'a::lordered_ab_group_abs) + b - (c+d)\<bar> \<le> \<bar>a-c\<bar> + \<bar>b-d\<bar>"  | 
|
971  | 
proof -  | 
|
972  | 
have "\<bar>a + b - (c+d)\<bar> = \<bar>(a-c) + (b-d)\<bar>" by (simp add: diff_minus add_ac)  | 
|
973  | 
also have "... \<le> \<bar>a-c\<bar> + \<bar>b-d\<bar>" by (rule abs_triangle_ineq)  | 
|
974  | 
finally show ?thesis .  | 
|
975  | 
qed  | 
|
976  | 
||
| 15539 | 977  | 
lemma abs_add_abs[simp]:  | 
978  | 
fixes a:: "'a::{lordered_ab_group_abs}"
 | 
|
979  | 
shows "abs(abs a + abs b) = abs a + abs b" (is "?L = ?R")  | 
|
980  | 
proof (rule order_antisym)  | 
|
981  | 
show "?L \<ge> ?R" by(rule abs_ge_self)  | 
|
982  | 
next  | 
|
983  | 
have "?L \<le> \<bar>\<bar>a\<bar>\<bar> + \<bar>\<bar>b\<bar>\<bar>" by(rule abs_triangle_ineq)  | 
|
984  | 
also have "\<dots> = ?R" by simp  | 
|
985  | 
finally show "?L \<le> ?R" .  | 
|
986  | 
qed  | 
|
987  | 
||
| 
14754
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
988  | 
text {* Needed for abelian cancellation simprocs: *}
 | 
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
989  | 
|
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
990  | 
lemma add_cancel_21: "((x::'a::ab_group_add) + (y + z) = y + u) = (x + z = u)"  | 
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
991  | 
apply (subst add_left_commute)  | 
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
992  | 
apply (subst add_left_cancel)  | 
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
993  | 
apply simp  | 
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
994  | 
done  | 
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
995  | 
|
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
996  | 
lemma add_cancel_end: "(x + (y + z) = y) = (x = - (z::'a::ab_group_add))"  | 
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
997  | 
apply (subst add_cancel_21[of _ _ _ 0, simplified])  | 
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
998  | 
apply (simp add: add_right_cancel[symmetric, of "x" "-z" "z", simplified])  | 
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
999  | 
done  | 
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1000  | 
|
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1001  | 
lemma less_eqI: "(x::'a::pordered_ab_group_add) - y = x' - y' \<Longrightarrow> (x < y) = (x' < y')"  | 
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1002  | 
by (simp add: less_iff_diff_less_0[of x y] less_iff_diff_less_0[of x' y'])  | 
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1003  | 
|
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1004  | 
lemma le_eqI: "(x::'a::pordered_ab_group_add) - y = x' - y' \<Longrightarrow> (y <= x) = (y' <= x')"  | 
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1005  | 
apply (simp add: le_iff_diff_le_0[of y x] le_iff_diff_le_0[of y' x'])  | 
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1006  | 
apply (simp add: neg_le_iff_le[symmetric, of "y-x" 0] neg_le_iff_le[symmetric, of "y'-x'" 0])  | 
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1007  | 
done  | 
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1008  | 
|
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1009  | 
lemma eq_eqI: "(x::'a::ab_group_add) - y = x' - y' \<Longrightarrow> (x = y) = (x' = y')"  | 
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1010  | 
by (simp add: eq_iff_diff_eq_0[of x y] eq_iff_diff_eq_0[of x' y'])  | 
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1011  | 
|
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1012  | 
lemma diff_def: "(x::'a::ab_group_add) - y == x + (-y)"  | 
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1013  | 
by (simp add: diff_minus)  | 
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1014  | 
|
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1015  | 
lemma add_minus_cancel: "(a::'a::ab_group_add) + (-a + b) = b"  | 
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1016  | 
by (simp add: add_assoc[symmetric])  | 
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1017  | 
|
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1018  | 
lemma minus_add_cancel: "-(a::'a::ab_group_add) + (a + b) = b"  | 
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1019  | 
by (simp add: add_assoc[symmetric])  | 
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1020  | 
|
| 15178 | 1021  | 
lemma le_add_right_mono:  | 
1022  | 
assumes  | 
|
1023  | 
"a <= b + (c::'a::pordered_ab_group_add)"  | 
|
1024  | 
"c <= d"  | 
|
1025  | 
shows "a <= b + d"  | 
|
1026  | 
apply (rule_tac order_trans[where y = "b+c"])  | 
|
1027  | 
apply (simp_all add: prems)  | 
|
1028  | 
done  | 
|
1029  | 
||
1030  | 
lemmas group_eq_simps =  | 
|
1031  | 
mult_ac  | 
|
1032  | 
add_ac  | 
|
1033  | 
add_diff_eq diff_add_eq diff_diff_eq diff_diff_eq2  | 
|
1034  | 
diff_eq_eq eq_diff_eq  | 
|
1035  | 
||
1036  | 
lemma estimate_by_abs:  | 
|
1037  | 
"a + b <= (c::'a::lordered_ab_group_abs) \<Longrightarrow> a <= c + abs b"  | 
|
1038  | 
proof -  | 
|
1039  | 
assume 1: "a+b <= c"  | 
|
1040  | 
have 2: "a <= c+(-b)"  | 
|
1041  | 
apply (insert 1)  | 
|
1042  | 
apply (drule_tac add_right_mono[where c="-b"])  | 
|
1043  | 
apply (simp add: group_eq_simps)  | 
|
1044  | 
done  | 
|
1045  | 
have 3: "(-b) <= abs b" by (rule abs_ge_minus_self)  | 
|
1046  | 
show ?thesis by (rule le_add_right_mono[OF 2 3])  | 
|
1047  | 
qed  | 
|
1048  | 
||
| 17085 | 1049  | 
text{*Simplification of @{term "x-y < 0"}, etc.*}
 | 
1050  | 
lemmas diff_less_0_iff_less = less_iff_diff_less_0 [symmetric]  | 
|
1051  | 
lemmas diff_eq_0_iff_eq = eq_iff_diff_eq_0 [symmetric]  | 
|
1052  | 
lemmas diff_le_0_iff_le = le_iff_diff_le_0 [symmetric]  | 
|
1053  | 
declare diff_less_0_iff_less [simp]  | 
|
1054  | 
declare diff_eq_0_iff_eq [simp]  | 
|
1055  | 
declare diff_le_0_iff_le [simp]  | 
|
1056  | 
||
1057  | 
||
| 19404 | 1058  | 
|
1059  | 
||
| 14738 | 1060  | 
ML {*
 | 
1061  | 
val add_zero_left = thm"add_0";  | 
|
1062  | 
val add_zero_right = thm"add_0_right";  | 
|
1063  | 
*}  | 
|
1064  | 
||
1065  | 
ML {*
 | 
|
1066  | 
val add_assoc = thm "add_assoc";  | 
|
1067  | 
val add_commute = thm "add_commute";  | 
|
1068  | 
val add_left_commute = thm "add_left_commute";  | 
|
1069  | 
val add_ac = thms "add_ac";  | 
|
1070  | 
val mult_assoc = thm "mult_assoc";  | 
|
1071  | 
val mult_commute = thm "mult_commute";  | 
|
1072  | 
val mult_left_commute = thm "mult_left_commute";  | 
|
1073  | 
val mult_ac = thms "mult_ac";  | 
|
1074  | 
val add_0 = thm "add_0";  | 
|
1075  | 
val mult_1_left = thm "mult_1_left";  | 
|
1076  | 
val mult_1_right = thm "mult_1_right";  | 
|
1077  | 
val mult_1 = thm "mult_1";  | 
|
1078  | 
val add_left_imp_eq = thm "add_left_imp_eq";  | 
|
1079  | 
val add_right_imp_eq = thm "add_right_imp_eq";  | 
|
1080  | 
val add_imp_eq = thm "add_imp_eq";  | 
|
1081  | 
val left_minus = thm "left_minus";  | 
|
1082  | 
val diff_minus = thm "diff_minus";  | 
|
1083  | 
val add_0_right = thm "add_0_right";  | 
|
1084  | 
val add_left_cancel = thm "add_left_cancel";  | 
|
1085  | 
val add_right_cancel = thm "add_right_cancel";  | 
|
1086  | 
val right_minus = thm "right_minus";  | 
|
1087  | 
val right_minus_eq = thm "right_minus_eq";  | 
|
1088  | 
val minus_minus = thm "minus_minus";  | 
|
1089  | 
val equals_zero_I = thm "equals_zero_I";  | 
|
1090  | 
val minus_zero = thm "minus_zero";  | 
|
1091  | 
val diff_self = thm "diff_self";  | 
|
1092  | 
val diff_0 = thm "diff_0";  | 
|
1093  | 
val diff_0_right = thm "diff_0_right";  | 
|
1094  | 
val diff_minus_eq_add = thm "diff_minus_eq_add";  | 
|
1095  | 
val neg_equal_iff_equal = thm "neg_equal_iff_equal";  | 
|
1096  | 
val neg_equal_0_iff_equal = thm "neg_equal_0_iff_equal";  | 
|
1097  | 
val neg_0_equal_iff_equal = thm "neg_0_equal_iff_equal";  | 
|
1098  | 
val equation_minus_iff = thm "equation_minus_iff";  | 
|
1099  | 
val minus_equation_iff = thm "minus_equation_iff";  | 
|
1100  | 
val minus_add_distrib = thm "minus_add_distrib";  | 
|
1101  | 
val minus_diff_eq = thm "minus_diff_eq";  | 
|
1102  | 
val add_left_mono = thm "add_left_mono";  | 
|
1103  | 
val add_le_imp_le_left = thm "add_le_imp_le_left";  | 
|
1104  | 
val add_right_mono = thm "add_right_mono";  | 
|
1105  | 
val add_mono = thm "add_mono";  | 
|
1106  | 
val add_strict_left_mono = thm "add_strict_left_mono";  | 
|
1107  | 
val add_strict_right_mono = thm "add_strict_right_mono";  | 
|
1108  | 
val add_strict_mono = thm "add_strict_mono";  | 
|
1109  | 
val add_less_le_mono = thm "add_less_le_mono";  | 
|
1110  | 
val add_le_less_mono = thm "add_le_less_mono";  | 
|
1111  | 
val add_less_imp_less_left = thm "add_less_imp_less_left";  | 
|
1112  | 
val add_less_imp_less_right = thm "add_less_imp_less_right";  | 
|
1113  | 
val add_less_cancel_left = thm "add_less_cancel_left";  | 
|
1114  | 
val add_less_cancel_right = thm "add_less_cancel_right";  | 
|
1115  | 
val add_le_cancel_left = thm "add_le_cancel_left";  | 
|
1116  | 
val add_le_cancel_right = thm "add_le_cancel_right";  | 
|
1117  | 
val add_le_imp_le_right = thm "add_le_imp_le_right";  | 
|
1118  | 
val add_increasing = thm "add_increasing";  | 
|
1119  | 
val le_imp_neg_le = thm "le_imp_neg_le";  | 
|
1120  | 
val neg_le_iff_le = thm "neg_le_iff_le";  | 
|
1121  | 
val neg_le_0_iff_le = thm "neg_le_0_iff_le";  | 
|
1122  | 
val neg_0_le_iff_le = thm "neg_0_le_iff_le";  | 
|
1123  | 
val neg_less_iff_less = thm "neg_less_iff_less";  | 
|
1124  | 
val neg_less_0_iff_less = thm "neg_less_0_iff_less";  | 
|
1125  | 
val neg_0_less_iff_less = thm "neg_0_less_iff_less";  | 
|
1126  | 
val less_minus_iff = thm "less_minus_iff";  | 
|
1127  | 
val minus_less_iff = thm "minus_less_iff";  | 
|
1128  | 
val le_minus_iff = thm "le_minus_iff";  | 
|
1129  | 
val minus_le_iff = thm "minus_le_iff";  | 
|
1130  | 
val add_diff_eq = thm "add_diff_eq";  | 
|
1131  | 
val diff_add_eq = thm "diff_add_eq";  | 
|
1132  | 
val diff_eq_eq = thm "diff_eq_eq";  | 
|
1133  | 
val eq_diff_eq = thm "eq_diff_eq";  | 
|
1134  | 
val diff_diff_eq = thm "diff_diff_eq";  | 
|
1135  | 
val diff_diff_eq2 = thm "diff_diff_eq2";  | 
|
1136  | 
val diff_add_cancel = thm "diff_add_cancel";  | 
|
1137  | 
val add_diff_cancel = thm "add_diff_cancel";  | 
|
1138  | 
val less_iff_diff_less_0 = thm "less_iff_diff_less_0";  | 
|
1139  | 
val diff_less_eq = thm "diff_less_eq";  | 
|
1140  | 
val less_diff_eq = thm "less_diff_eq";  | 
|
1141  | 
val diff_le_eq = thm "diff_le_eq";  | 
|
1142  | 
val le_diff_eq = thm "le_diff_eq";  | 
|
1143  | 
val compare_rls = thms "compare_rls";  | 
|
1144  | 
val eq_iff_diff_eq_0 = thm "eq_iff_diff_eq_0";  | 
|
1145  | 
val le_iff_diff_le_0 = thm "le_iff_diff_le_0";  | 
|
1146  | 
val add_meet_distrib_left = thm "add_meet_distrib_left";  | 
|
1147  | 
val add_join_distrib_left = thm "add_join_distrib_left";  | 
|
1148  | 
val is_join_neg_meet = thm "is_join_neg_meet";  | 
|
1149  | 
val is_meet_neg_join = thm "is_meet_neg_join";  | 
|
1150  | 
val add_join_distrib_right = thm "add_join_distrib_right";  | 
|
1151  | 
val add_meet_distrib_right = thm "add_meet_distrib_right";  | 
|
1152  | 
val add_meet_join_distribs = thms "add_meet_join_distribs";  | 
|
1153  | 
val join_eq_neg_meet = thm "join_eq_neg_meet";  | 
|
1154  | 
val meet_eq_neg_join = thm "meet_eq_neg_join";  | 
|
1155  | 
val add_eq_meet_join = thm "add_eq_meet_join";  | 
|
1156  | 
val prts = thm "prts";  | 
|
1157  | 
val zero_le_pprt = thm "zero_le_pprt";  | 
|
1158  | 
val nprt_le_zero = thm "nprt_le_zero";  | 
|
1159  | 
val le_eq_neg = thm "le_eq_neg";  | 
|
1160  | 
val join_0_imp_0 = thm "join_0_imp_0";  | 
|
1161  | 
val meet_0_imp_0 = thm "meet_0_imp_0";  | 
|
1162  | 
val join_0_eq_0 = thm "join_0_eq_0";  | 
|
1163  | 
val meet_0_eq_0 = thm "meet_0_eq_0";  | 
|
1164  | 
val zero_le_double_add_iff_zero_le_single_add = thm "zero_le_double_add_iff_zero_le_single_add";  | 
|
1165  | 
val double_add_le_zero_iff_single_add_le_zero = thm "double_add_le_zero_iff_single_add_le_zero";  | 
|
1166  | 
val double_add_less_zero_iff_single_less_zero = thm "double_add_less_zero_iff_single_less_zero";  | 
|
1167  | 
val abs_lattice = thm "abs_lattice";  | 
|
1168  | 
val abs_zero = thm "abs_zero";  | 
|
1169  | 
val abs_eq_0 = thm "abs_eq_0";  | 
|
1170  | 
val abs_0_eq = thm "abs_0_eq";  | 
|
1171  | 
val neg_meet_eq_join = thm "neg_meet_eq_join";  | 
|
1172  | 
val neg_join_eq_meet = thm "neg_join_eq_meet";  | 
|
1173  | 
val join_eq_if = thm "join_eq_if";  | 
|
1174  | 
val abs_if_lattice = thm "abs_if_lattice";  | 
|
1175  | 
val abs_ge_zero = thm "abs_ge_zero";  | 
|
1176  | 
val abs_le_zero_iff = thm "abs_le_zero_iff";  | 
|
1177  | 
val zero_less_abs_iff = thm "zero_less_abs_iff";  | 
|
1178  | 
val abs_not_less_zero = thm "abs_not_less_zero";  | 
|
1179  | 
val abs_ge_self = thm "abs_ge_self";  | 
|
1180  | 
val abs_ge_minus_self = thm "abs_ge_minus_self";  | 
|
1181  | 
val le_imp_join_eq = thm "le_imp_join_eq";  | 
|
1182  | 
val ge_imp_join_eq = thm "ge_imp_join_eq";  | 
|
1183  | 
val le_imp_meet_eq = thm "le_imp_meet_eq";  | 
|
1184  | 
val ge_imp_meet_eq = thm "ge_imp_meet_eq";  | 
|
1185  | 
val abs_prts = thm "abs_prts";  | 
|
1186  | 
val abs_minus_cancel = thm "abs_minus_cancel";  | 
|
1187  | 
val abs_idempotent = thm "abs_idempotent";  | 
|
1188  | 
val zero_le_iff_zero_nprt = thm "zero_le_iff_zero_nprt";  | 
|
1189  | 
val le_zero_iff_zero_pprt = thm "le_zero_iff_zero_pprt";  | 
|
1190  | 
val le_zero_iff_pprt_id = thm "le_zero_iff_pprt_id";  | 
|
1191  | 
val zero_le_iff_nprt_id = thm "zero_le_iff_nprt_id";  | 
|
1192  | 
val iff2imp = thm "iff2imp";  | 
|
| 
16775
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
1193  | 
(* val imp_abs_id = thm "imp_abs_id";  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
1194  | 
val imp_abs_neg_id = thm "imp_abs_neg_id"; *)  | 
| 14738 | 1195  | 
val abs_leI = thm "abs_leI";  | 
1196  | 
val le_minus_self_iff = thm "le_minus_self_iff";  | 
|
1197  | 
val minus_le_self_iff = thm "minus_le_self_iff";  | 
|
1198  | 
val abs_le_D1 = thm "abs_le_D1";  | 
|
1199  | 
val abs_le_D2 = thm "abs_le_D2";  | 
|
1200  | 
val abs_le_iff = thm "abs_le_iff";  | 
|
1201  | 
val abs_triangle_ineq = thm "abs_triangle_ineq";  | 
|
1202  | 
val abs_diff_triangle_ineq = thm "abs_diff_triangle_ineq";  | 
|
1203  | 
*}  | 
|
1204  | 
||
1205  | 
end  |