src/HOL/Metis_Examples/Message.thy
author wenzelm
Sun, 31 Jul 2016 17:25:38 +0200
changeset 63569 7e0b0db5e9ac
parent 63167 0909deb8059b
child 67443 3abf6a722518
permissions -rw-r--r--
misc tuning and modernization;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
41141
ad923cdd4a5d added example to exercise higher-order reasoning with Sledgehammer and Metis
blanchet
parents: 39260
diff changeset
     1
(*  Title:      HOL/Metis_Examples/Message.thy
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
     2
    Author:     Lawrence C. Paulson, Cambridge University Computer Laboratory
41144
509e51b7509a example tuning
blanchet
parents: 41141
diff changeset
     3
    Author:     Jasmin Blanchette, TU Muenchen
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
     4
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
     5
Metis example featuring message authentication.
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
     6
*)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
     7
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
     8
section \<open>Metis Example Featuring Message Authentication\<close>
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
     9
36553
95bdfa572cee redo some of the metis proofs
blanchet
parents: 35416
diff changeset
    10
theory Message
95bdfa572cee redo some of the metis proofs
blanchet
parents: 35416
diff changeset
    11
imports Main
95bdfa572cee redo some of the metis proofs
blanchet
parents: 35416
diff changeset
    12
begin
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    13
50705
0e943b33d907 use new skolemizer for reconstructing skolemization steps in Isar proofs (because the old skolemizer messes up the order of the Skolem arguments)
blanchet
parents: 46075
diff changeset
    14
declare [[metis_new_skolem]]
42103
6066a35f6678 Metis examples use the new Skolemizer to test it
blanchet
parents: 41144
diff changeset
    15
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    16
lemma strange_Un_eq [simp]: "A \<union> (B \<union> A) = B \<union> A"
36911
0e2818493775 improved Sledgehammer proofs
blanchet
parents: 36580
diff changeset
    17
by (metis Un_commute Un_left_absorb)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    18
42463
f270e3e18be5 modernized specifications;
wenzelm
parents: 42103
diff changeset
    19
type_synonym key = nat
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    20
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    21
consts
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
    22
  all_symmetric :: bool        \<comment>\<open>true if all keys are symmetric\<close>
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
    23
  invKey        :: "key=>key"  \<comment>\<open>inverse of a symmetric key\<close>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    24
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    25
specification (invKey)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    26
  invKey [simp]: "invKey (invKey K) = K"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    27
  invKey_symmetric: "all_symmetric --> invKey = id"
36553
95bdfa572cee redo some of the metis proofs
blanchet
parents: 35416
diff changeset
    28
by (metis id_apply)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    29
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    30
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
    31
text\<open>The inverse of a symmetric key is itself; that of a public key
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
    32
      is the private key and vice versa\<close>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    33
35416
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 35109
diff changeset
    34
definition symKeys :: "key set" where
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    35
  "symKeys == {K. invKey K = K}"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    36
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
    37
datatype  \<comment>\<open>We allow any number of friendly agents\<close>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    38
  agent = Server | Friend nat | Spy
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    39
58310
91ea607a34d8 updated news
blanchet
parents: 58249
diff changeset
    40
datatype
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
    41
     msg = Agent  agent     \<comment>\<open>Agent names\<close>
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
    42
         | Number nat       \<comment>\<open>Ordinary integers, timestamps, ...\<close>
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
    43
         | Nonce  nat       \<comment>\<open>Unguessable nonces\<close>
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
    44
         | Key    key       \<comment>\<open>Crypto keys\<close>
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
    45
         | Hash   msg       \<comment>\<open>Hashing\<close>
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
    46
         | MPair  msg msg   \<comment>\<open>Compound messages\<close>
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
    47
         | Crypt  key msg   \<comment>\<open>Encryption, public- or shared-key\<close>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    48
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    49
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
    50
text\<open>Concrete syntax: messages appear as \<open>\<lbrace>A,B,NA\<rbrace>\<close>, etc...\<close>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    51
syntax
35109
0015a0a99ae9 modernized syntax/translations;
wenzelm
parents: 35095
diff changeset
    52
  "_MTuple"      :: "['a, args] => 'a * 'b"       ("(2\<lbrace>_,/ _\<rbrace>)")
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    53
translations
61984
cdea44c775fa more symbols;
wenzelm
parents: 61076
diff changeset
    54
  "\<lbrace>x, y, z\<rbrace>"   == "\<lbrace>x, \<lbrace>y, z\<rbrace>\<rbrace>"
cdea44c775fa more symbols;
wenzelm
parents: 61076
diff changeset
    55
  "\<lbrace>x, y\<rbrace>"      == "CONST MPair x y"
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    56
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    57
35416
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 35109
diff changeset
    58
definition HPair :: "[msg,msg] => msg" ("(4Hash[_] /_)" [0, 1000]) where
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
    59
    \<comment>\<open>Message Y paired with a MAC computed with the help of X\<close>
61984
cdea44c775fa more symbols;
wenzelm
parents: 61076
diff changeset
    60
    "Hash[X] Y == \<lbrace> Hash\<lbrace>X,Y\<rbrace>, Y\<rbrace>"
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    61
35416
d8d7d1b785af replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents: 35109
diff changeset
    62
definition keysFor :: "msg set => key set" where
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
    63
    \<comment>\<open>Keys useful to decrypt elements of a message set\<close>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    64
  "keysFor H == invKey ` {K. \<exists>X. Crypt K X \<in> H}"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    65
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    66
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
    67
subsubsection\<open>Inductive Definition of All Parts" of a Message\<close>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    68
23755
1c4672d130b1 Adapted to new inductive definition package.
berghofe
parents: 23449
diff changeset
    69
inductive_set
1c4672d130b1 Adapted to new inductive definition package.
berghofe
parents: 23449
diff changeset
    70
  parts :: "msg set => msg set"
1c4672d130b1 Adapted to new inductive definition package.
berghofe
parents: 23449
diff changeset
    71
  for H :: "msg set"
1c4672d130b1 Adapted to new inductive definition package.
berghofe
parents: 23449
diff changeset
    72
  where
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    73
    Inj [intro]:               "X \<in> H ==> X \<in> parts H"
61984
cdea44c775fa more symbols;
wenzelm
parents: 61076
diff changeset
    74
  | Fst:         "\<lbrace>X,Y\<rbrace>   \<in> parts H ==> X \<in> parts H"
cdea44c775fa more symbols;
wenzelm
parents: 61076
diff changeset
    75
  | Snd:         "\<lbrace>X,Y\<rbrace>   \<in> parts H ==> Y \<in> parts H"
23755
1c4672d130b1 Adapted to new inductive definition package.
berghofe
parents: 23449
diff changeset
    76
  | Body:        "Crypt K X \<in> parts H ==> X \<in> parts H"
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    77
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    78
lemma parts_mono: "G \<subseteq> H ==> parts(G) \<subseteq> parts(H)"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    79
apply auto
36553
95bdfa572cee redo some of the metis proofs
blanchet
parents: 35416
diff changeset
    80
apply (erule parts.induct)
95bdfa572cee redo some of the metis proofs
blanchet
parents: 35416
diff changeset
    81
   apply (metis parts.Inj set_rev_mp)
95bdfa572cee redo some of the metis proofs
blanchet
parents: 35416
diff changeset
    82
  apply (metis parts.Fst)
95bdfa572cee redo some of the metis proofs
blanchet
parents: 35416
diff changeset
    83
 apply (metis parts.Snd)
95bdfa572cee redo some of the metis proofs
blanchet
parents: 35416
diff changeset
    84
by (metis parts.Body)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    85
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
    86
text\<open>Equations hold because constructors are injective.\<close>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    87
lemma Friend_image_eq [simp]: "(Friend x \<in> Friend`A) = (x:A)"
39260
f94c53d9b8fb "resurrected" a Metis proof
blanchet
parents: 36911
diff changeset
    88
by (metis agent.inject image_iff)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    89
36553
95bdfa572cee redo some of the metis proofs
blanchet
parents: 35416
diff changeset
    90
lemma Key_image_eq [simp]: "(Key x \<in> Key`A) = (x \<in> A)"
95bdfa572cee redo some of the metis proofs
blanchet
parents: 35416
diff changeset
    91
by (metis image_iff msg.inject(4))
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    92
36553
95bdfa572cee redo some of the metis proofs
blanchet
parents: 35416
diff changeset
    93
lemma Nonce_Key_image_eq [simp]: "Nonce x \<notin> Key`A"
95bdfa572cee redo some of the metis proofs
blanchet
parents: 35416
diff changeset
    94
by (metis image_iff msg.distinct(23))
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    95
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    96
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
    97
subsubsection\<open>Inverse of keys\<close>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
    98
36553
95bdfa572cee redo some of the metis proofs
blanchet
parents: 35416
diff changeset
    99
lemma invKey_eq [simp]: "(invKey K = invKey K') = (K = K')"
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   100
by (metis invKey)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   101
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   102
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   103
subsection\<open>keysFor operator\<close>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   104
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   105
lemma keysFor_empty [simp]: "keysFor {} = {}"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   106
by (unfold keysFor_def, blast)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   107
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   108
lemma keysFor_Un [simp]: "keysFor (H \<union> H') = keysFor H \<union> keysFor H'"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   109
by (unfold keysFor_def, blast)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   110
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   111
lemma keysFor_UN [simp]: "keysFor (\<Union>i\<in>A. H i) = (\<Union>i\<in>A. keysFor (H i))"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   112
by (unfold keysFor_def, blast)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   113
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   114
text\<open>Monotonicity\<close>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   115
lemma keysFor_mono: "G \<subseteq> H ==> keysFor(G) \<subseteq> keysFor(H)"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   116
by (unfold keysFor_def, blast)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   117
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   118
lemma keysFor_insert_Agent [simp]: "keysFor (insert (Agent A) H) = keysFor H"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   119
by (unfold keysFor_def, auto)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   120
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   121
lemma keysFor_insert_Nonce [simp]: "keysFor (insert (Nonce N) H) = keysFor H"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   122
by (unfold keysFor_def, auto)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   123
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   124
lemma keysFor_insert_Number [simp]: "keysFor (insert (Number N) H) = keysFor H"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   125
by (unfold keysFor_def, auto)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   126
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   127
lemma keysFor_insert_Key [simp]: "keysFor (insert (Key K) H) = keysFor H"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   128
by (unfold keysFor_def, auto)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   129
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   130
lemma keysFor_insert_Hash [simp]: "keysFor (insert (Hash X) H) = keysFor H"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   131
by (unfold keysFor_def, auto)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   132
61984
cdea44c775fa more symbols;
wenzelm
parents: 61076
diff changeset
   133
lemma keysFor_insert_MPair [simp]: "keysFor (insert \<lbrace>X,Y\<rbrace> H) = keysFor H"
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   134
by (unfold keysFor_def, auto)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   135
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   136
lemma keysFor_insert_Crypt [simp]:
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   137
    "keysFor (insert (Crypt K X) H) = insert (invKey K) (keysFor H)"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   138
by (unfold keysFor_def, auto)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   139
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   140
lemma keysFor_image_Key [simp]: "keysFor (Key`E) = {}"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   141
by (unfold keysFor_def, auto)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   142
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   143
lemma Crypt_imp_invKey_keysFor: "Crypt K X \<in> H ==> invKey K \<in> keysFor H"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   144
by (unfold keysFor_def, blast)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   145
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   146
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   147
subsection\<open>Inductive relation "parts"\<close>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   148
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   149
lemma MPair_parts:
61984
cdea44c775fa more symbols;
wenzelm
parents: 61076
diff changeset
   150
     "[| \<lbrace>X,Y\<rbrace> \<in> parts H;
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   151
         [| X \<in> parts H; Y \<in> parts H |] ==> P |] ==> P"
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   152
by (blast dest: parts.Fst parts.Snd)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   153
36553
95bdfa572cee redo some of the metis proofs
blanchet
parents: 35416
diff changeset
   154
declare MPair_parts [elim!] parts.Body [dest!]
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   155
text\<open>NB These two rules are UNSAFE in the formal sense, as they discard the
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   156
     compound message.  They work well on THIS FILE.
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   157
  \<open>MPair_parts\<close> is left as SAFE because it speeds up proofs.
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   158
  The Crypt rule is normally kept UNSAFE to avoid breaking up certificates.\<close>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   159
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   160
lemma parts_increasing: "H \<subseteq> parts(H)"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   161
by blast
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   162
45605
a89b4bc311a5 eliminated obsolete "standard";
wenzelm
parents: 45505
diff changeset
   163
lemmas parts_insertI = subset_insertI [THEN parts_mono, THEN subsetD]
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   164
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   165
lemma parts_empty [simp]: "parts{} = {}"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   166
apply safe
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   167
apply (erule parts.induct)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   168
apply blast+
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   169
done
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   170
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   171
lemma parts_emptyE [elim!]: "X\<in> parts{} ==> P"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   172
by simp
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   173
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   174
text\<open>WARNING: loops if H = {Y}, therefore must not be repeated!\<close>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   175
lemma parts_singleton: "X\<in> parts H ==> \<exists>Y\<in>H. X\<in> parts {Y}"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   176
apply (erule parts.induct)
26807
4cd176ea28dc Replaced blast by fast in proof of parts_singleton, since blast looped
berghofe
parents: 25710
diff changeset
   177
apply fast+
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   178
done
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   179
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   180
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   181
subsubsection\<open>Unions\<close>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   182
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   183
lemma parts_Un_subset1: "parts(G) \<union> parts(H) \<subseteq> parts(G \<union> H)"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   184
by (intro Un_least parts_mono Un_upper1 Un_upper2)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   185
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   186
lemma parts_Un_subset2: "parts(G \<union> H) \<subseteq> parts(G) \<union> parts(H)"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   187
apply (rule subsetI)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   188
apply (erule parts.induct, blast+)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   189
done
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   190
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   191
lemma parts_Un [simp]: "parts(G \<union> H) = parts(G) \<union> parts(H)"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   192
by (intro equalityI parts_Un_subset1 parts_Un_subset2)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   193
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   194
lemma parts_insert: "parts (insert X H) = parts {X} \<union> parts H"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   195
apply (subst insert_is_Un [of _ H])
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   196
apply (simp only: parts_Un)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   197
done
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   198
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   199
lemma parts_insert2:
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   200
     "parts (insert X (insert Y H)) = parts {X} \<union> parts {Y} \<union> parts H"
25710
4cdf7de81e1b Replaced refs by config params; finer critical section in mets method
paulson
parents: 25457
diff changeset
   201
by (metis Un_commute Un_empty_left Un_empty_right Un_insert_left Un_insert_right parts_Un)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   202
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   203
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   204
lemma parts_UN_subset1: "(\<Union>x\<in>A. parts(H x)) \<subseteq> parts(\<Union>x\<in>A. H x)"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   205
by (intro UN_least parts_mono UN_upper)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   206
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   207
lemma parts_UN_subset2: "parts(\<Union>x\<in>A. H x) \<subseteq> (\<Union>x\<in>A. parts(H x))"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   208
apply (rule subsetI)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   209
apply (erule parts.induct, blast+)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   210
done
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   211
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   212
lemma parts_UN [simp]: "parts(\<Union>x\<in>A. H x) = (\<Union>x\<in>A. parts(H x))"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   213
by (intro equalityI parts_UN_subset1 parts_UN_subset2)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   214
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   215
text\<open>Added to simplify arguments to parts, analz and synth.
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   216
  NOTE: the UN versions are no longer used!\<close>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   217
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   218
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   219
text\<open>This allows \<open>blast\<close> to simplify occurrences of
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   220
  @{term "parts(G\<union>H)"} in the assumption.\<close>
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   221
lemmas in_parts_UnE = parts_Un [THEN equalityD1, THEN subsetD, THEN UnE]
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   222
declare in_parts_UnE [elim!]
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   223
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   224
lemma parts_insert_subset: "insert X (parts H) \<subseteq> parts(insert X H)"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   225
by (blast intro: parts_mono [THEN [2] rev_subsetD])
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   226
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   227
subsubsection\<open>Idempotence and transitivity\<close>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   228
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   229
lemma parts_partsD [dest!]: "X\<in> parts (parts H) ==> X\<in> parts H"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   230
by (erule parts.induct, blast+)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   231
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   232
lemma parts_idem [simp]: "parts (parts H) = parts H"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   233
by blast
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   234
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   235
lemma parts_subset_iff [simp]: "(parts G \<subseteq> parts H) = (G \<subseteq> parts H)"
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   236
apply (rule iffI)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   237
apply (metis Un_absorb1 Un_subset_iff parts_Un parts_increasing)
25710
4cdf7de81e1b Replaced refs by config params; finer critical section in mets method
paulson
parents: 25457
diff changeset
   238
apply (metis parts_idem parts_mono)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   239
done
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   240
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   241
lemma parts_trans: "[| X\<in> parts G;  G \<subseteq> parts H |] ==> X\<in> parts H"
45503
44790ec65f70 remove old-style semicolons
huffman
parents: 43197
diff changeset
   242
by (blast dest: parts_mono)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   243
46075
0054a9513b37 reintroduced "metis" call taken out after reintroducing "set" as a constructor, and added two "metis" calls that used to be too slow
blanchet
parents: 45970
diff changeset
   244
lemma parts_cut: "[|Y\<in> parts (insert X G);  X\<in> parts H|] ==> Y\<in> parts(G \<union> H)"
0054a9513b37 reintroduced "metis" call taken out after reintroducing "set" as a constructor, and added two "metis" calls that used to be too slow
blanchet
parents: 45970
diff changeset
   245
by (metis (no_types) Un_insert_left Un_insert_right insert_absorb le_supE
0054a9513b37 reintroduced "metis" call taken out after reintroducing "set" as a constructor, and added two "metis" calls that used to be too slow
blanchet
parents: 45970
diff changeset
   246
          parts_Un parts_idem parts_increasing parts_trans)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   247
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   248
subsubsection\<open>Rewrite rules for pulling out atomic messages\<close>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   249
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   250
lemmas parts_insert_eq_I = equalityI [OF subsetI parts_insert_subset]
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   251
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   252
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   253
lemma parts_insert_Agent [simp]:
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   254
     "parts (insert (Agent agt) H) = insert (Agent agt) (parts H)"
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   255
apply (rule parts_insert_eq_I)
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   256
apply (erule parts.induct, auto)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   257
done
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   258
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   259
lemma parts_insert_Nonce [simp]:
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   260
     "parts (insert (Nonce N) H) = insert (Nonce N) (parts H)"
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   261
apply (rule parts_insert_eq_I)
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   262
apply (erule parts.induct, auto)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   263
done
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   264
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   265
lemma parts_insert_Number [simp]:
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   266
     "parts (insert (Number N) H) = insert (Number N) (parts H)"
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   267
apply (rule parts_insert_eq_I)
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   268
apply (erule parts.induct, auto)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   269
done
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   270
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   271
lemma parts_insert_Key [simp]:
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   272
     "parts (insert (Key K) H) = insert (Key K) (parts H)"
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   273
apply (rule parts_insert_eq_I)
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   274
apply (erule parts.induct, auto)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   275
done
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   276
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   277
lemma parts_insert_Hash [simp]:
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   278
     "parts (insert (Hash X) H) = insert (Hash X) (parts H)"
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   279
apply (rule parts_insert_eq_I)
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   280
apply (erule parts.induct, auto)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   281
done
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   282
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   283
lemma parts_insert_Crypt [simp]:
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   284
     "parts (insert (Crypt K X) H) =
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   285
          insert (Crypt K X) (parts (insert X H))"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   286
apply (rule equalityI)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   287
apply (rule subsetI)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   288
apply (erule parts.induct, auto)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   289
apply (blast intro: parts.Body)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   290
done
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   291
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   292
lemma parts_insert_MPair [simp]:
61984
cdea44c775fa more symbols;
wenzelm
parents: 61076
diff changeset
   293
     "parts (insert \<lbrace>X,Y\<rbrace> H) =
cdea44c775fa more symbols;
wenzelm
parents: 61076
diff changeset
   294
          insert \<lbrace>X,Y\<rbrace> (parts (insert X (insert Y H)))"
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   295
apply (rule equalityI)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   296
apply (rule subsetI)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   297
apply (erule parts.induct, auto)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   298
apply (blast intro: parts.Fst parts.Snd)+
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   299
done
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   300
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   301
lemma parts_image_Key [simp]: "parts (Key`N) = Key`N"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   302
apply auto
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   303
apply (erule parts.induct, auto)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   304
done
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   305
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   306
lemma msg_Nonce_supply: "\<exists>N. \<forall>n. N\<le>n --> Nonce n \<notin> parts {msg}"
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   307
apply (induct_tac "msg")
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   308
apply (simp_all add: parts_insert2)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   309
apply (metis Suc_n_not_le_n)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   310
apply (metis le_trans linorder_linear)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   311
done
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   312
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   313
subsection\<open>Inductive relation "analz"\<close>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   314
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   315
text\<open>Inductive definition of "analz" -- what can be broken down from a set of
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   316
    messages, including keys.  A form of downward closure.  Pairs can
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   317
    be taken apart; messages decrypted with known keys.\<close>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   318
23755
1c4672d130b1 Adapted to new inductive definition package.
berghofe
parents: 23449
diff changeset
   319
inductive_set
1c4672d130b1 Adapted to new inductive definition package.
berghofe
parents: 23449
diff changeset
   320
  analz :: "msg set => msg set"
1c4672d130b1 Adapted to new inductive definition package.
berghofe
parents: 23449
diff changeset
   321
  for H :: "msg set"
1c4672d130b1 Adapted to new inductive definition package.
berghofe
parents: 23449
diff changeset
   322
  where
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   323
    Inj [intro,simp] :    "X \<in> H ==> X \<in> analz H"
61984
cdea44c775fa more symbols;
wenzelm
parents: 61076
diff changeset
   324
  | Fst:     "\<lbrace>X,Y\<rbrace> \<in> analz H ==> X \<in> analz H"
cdea44c775fa more symbols;
wenzelm
parents: 61076
diff changeset
   325
  | Snd:     "\<lbrace>X,Y\<rbrace> \<in> analz H ==> Y \<in> analz H"
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   326
  | Decrypt [dest]:
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   327
             "[|Crypt K X \<in> analz H; Key(invKey K): analz H|] ==> X \<in> analz H"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   328
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   329
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   330
text\<open>Monotonicity; Lemma 1 of Lowe's paper\<close>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   331
lemma analz_mono: "G\<subseteq>H ==> analz(G) \<subseteq> analz(H)"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   332
apply auto
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   333
apply (erule analz.induct)
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   334
apply (auto dest: analz.Fst analz.Snd)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   335
done
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   336
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   337
text\<open>Making it safe speeds up proofs\<close>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   338
lemma MPair_analz [elim!]:
61984
cdea44c775fa more symbols;
wenzelm
parents: 61076
diff changeset
   339
     "[| \<lbrace>X,Y\<rbrace> \<in> analz H;
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   340
             [| X \<in> analz H; Y \<in> analz H |] ==> P
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   341
          |] ==> P"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   342
by (blast dest: analz.Fst analz.Snd)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   343
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   344
lemma analz_increasing: "H \<subseteq> analz(H)"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   345
by blast
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   346
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   347
lemma analz_subset_parts: "analz H \<subseteq> parts H"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   348
apply (rule subsetI)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   349
apply (erule analz.induct, blast+)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   350
done
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   351
45605
a89b4bc311a5 eliminated obsolete "standard";
wenzelm
parents: 45505
diff changeset
   352
lemmas analz_into_parts = analz_subset_parts [THEN subsetD]
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   353
45605
a89b4bc311a5 eliminated obsolete "standard";
wenzelm
parents: 45505
diff changeset
   354
lemmas not_parts_not_analz = analz_subset_parts [THEN contra_subsetD]
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   355
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   356
lemma parts_analz [simp]: "parts (analz H) = parts H"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   357
apply (rule equalityI)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   358
apply (metis analz_subset_parts parts_subset_iff)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   359
apply (metis analz_increasing parts_mono)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   360
done
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   361
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   362
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   363
lemma analz_parts [simp]: "analz (parts H) = parts H"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   364
apply auto
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   365
apply (erule analz.induct, auto)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   366
done
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   367
45605
a89b4bc311a5 eliminated obsolete "standard";
wenzelm
parents: 45505
diff changeset
   368
lemmas analz_insertI = subset_insertI [THEN analz_mono, THEN [2] rev_subsetD]
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   369
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   370
subsubsection\<open>General equational properties\<close>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   371
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   372
lemma analz_empty [simp]: "analz{} = {}"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   373
apply safe
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   374
apply (erule analz.induct, blast+)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   375
done
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   376
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   377
text\<open>Converse fails: we can analz more from the union than from the
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   378
  separate parts, as a key in one might decrypt a message in the other\<close>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   379
lemma analz_Un: "analz(G) \<union> analz(H) \<subseteq> analz(G \<union> H)"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   380
by (intro Un_least analz_mono Un_upper1 Un_upper2)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   381
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   382
lemma analz_insert: "insert X (analz H) \<subseteq> analz(insert X H)"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   383
by (blast intro: analz_mono [THEN [2] rev_subsetD])
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   384
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   385
subsubsection\<open>Rewrite rules for pulling out atomic messages\<close>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   386
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   387
lemmas analz_insert_eq_I = equalityI [OF subsetI analz_insert]
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   388
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   389
lemma analz_insert_Agent [simp]:
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   390
     "analz (insert (Agent agt) H) = insert (Agent agt) (analz H)"
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   391
apply (rule analz_insert_eq_I)
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   392
apply (erule analz.induct, auto)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   393
done
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   394
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   395
lemma analz_insert_Nonce [simp]:
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   396
     "analz (insert (Nonce N) H) = insert (Nonce N) (analz H)"
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   397
apply (rule analz_insert_eq_I)
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   398
apply (erule analz.induct, auto)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   399
done
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   400
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   401
lemma analz_insert_Number [simp]:
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   402
     "analz (insert (Number N) H) = insert (Number N) (analz H)"
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   403
apply (rule analz_insert_eq_I)
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   404
apply (erule analz.induct, auto)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   405
done
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   406
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   407
lemma analz_insert_Hash [simp]:
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   408
     "analz (insert (Hash X) H) = insert (Hash X) (analz H)"
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   409
apply (rule analz_insert_eq_I)
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   410
apply (erule analz.induct, auto)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   411
done
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   412
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   413
text\<open>Can only pull out Keys if they are not needed to decrypt the rest\<close>
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   414
lemma analz_insert_Key [simp]:
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   415
    "K \<notin> keysFor (analz H) ==>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   416
          analz (insert (Key K) H) = insert (Key K) (analz H)"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   417
apply (unfold keysFor_def)
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   418
apply (rule analz_insert_eq_I)
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   419
apply (erule analz.induct, auto)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   420
done
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   421
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   422
lemma analz_insert_MPair [simp]:
61984
cdea44c775fa more symbols;
wenzelm
parents: 61076
diff changeset
   423
     "analz (insert \<lbrace>X,Y\<rbrace> H) =
cdea44c775fa more symbols;
wenzelm
parents: 61076
diff changeset
   424
          insert \<lbrace>X,Y\<rbrace> (analz (insert X (insert Y H)))"
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   425
apply (rule equalityI)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   426
apply (rule subsetI)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   427
apply (erule analz.induct, auto)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   428
apply (erule analz.induct)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   429
apply (blast intro: analz.Fst analz.Snd)+
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   430
done
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   431
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   432
text\<open>Can pull out enCrypted message if the Key is not known\<close>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   433
lemma analz_insert_Crypt:
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   434
     "Key (invKey K) \<notin> analz H
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   435
      ==> analz (insert (Crypt K X) H) = insert (Crypt K X) (analz H)"
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   436
apply (rule analz_insert_eq_I)
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   437
apply (erule analz.induct, auto)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   438
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   439
done
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   440
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   441
lemma lemma1: "Key (invKey K) \<in> analz H ==>
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   442
               analz (insert (Crypt K X) H) \<subseteq>
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   443
               insert (Crypt K X) (analz (insert X H))"
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   444
apply (rule subsetI)
23755
1c4672d130b1 Adapted to new inductive definition package.
berghofe
parents: 23449
diff changeset
   445
apply (erule_tac x = x in analz.induct, auto)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   446
done
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   447
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   448
lemma lemma2: "Key (invKey K) \<in> analz H ==>
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   449
               insert (Crypt K X) (analz (insert X H)) \<subseteq>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   450
               analz (insert (Crypt K X) H)"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   451
apply auto
23755
1c4672d130b1 Adapted to new inductive definition package.
berghofe
parents: 23449
diff changeset
   452
apply (erule_tac x = x in analz.induct, auto)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   453
apply (blast intro: analz_insertI analz.Decrypt)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   454
done
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   455
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   456
lemma analz_insert_Decrypt:
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   457
     "Key (invKey K) \<in> analz H ==>
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   458
               analz (insert (Crypt K X) H) =
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   459
               insert (Crypt K X) (analz (insert X H))"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   460
by (intro equalityI lemma1 lemma2)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   461
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   462
text\<open>Case analysis: either the message is secure, or it is not! Effective,
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   463
but can cause subgoals to blow up! Use with \<open>if_split\<close>; apparently
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   464
\<open>split_tac\<close> does not cope with patterns such as @{term"analz (insert
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   465
(Crypt K X) H)"}\<close>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   466
lemma analz_Crypt_if [simp]:
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   467
     "analz (insert (Crypt K X) H) =
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   468
          (if (Key (invKey K) \<in> analz H)
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   469
           then insert (Crypt K X) (analz (insert X H))
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   470
           else insert (Crypt K X) (analz H))"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   471
by (simp add: analz_insert_Crypt analz_insert_Decrypt)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   472
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   473
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   474
text\<open>This rule supposes "for the sake of argument" that we have the key.\<close>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   475
lemma analz_insert_Crypt_subset:
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   476
     "analz (insert (Crypt K X) H) \<subseteq>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   477
           insert (Crypt K X) (analz (insert X H))"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   478
apply (rule subsetI)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   479
apply (erule analz.induct, auto)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   480
done
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   481
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   482
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   483
lemma analz_image_Key [simp]: "analz (Key`N) = Key`N"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   484
apply auto
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   485
apply (erule analz.induct, auto)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   486
done
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   487
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   488
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   489
subsubsection\<open>Idempotence and transitivity\<close>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   490
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   491
lemma analz_analzD [dest!]: "X\<in> analz (analz H) ==> X\<in> analz H"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   492
by (erule analz.induct, blast+)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   493
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   494
lemma analz_idem [simp]: "analz (analz H) = analz H"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   495
by blast
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   496
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   497
lemma analz_subset_iff [simp]: "(analz G \<subseteq> analz H) = (G \<subseteq> analz H)"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   498
apply (rule iffI)
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   499
apply (iprover intro: subset_trans analz_increasing)
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   500
apply (frule analz_mono, simp)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   501
done
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   502
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   503
lemma analz_trans: "[| X\<in> analz G;  G \<subseteq> analz H |] ==> X\<in> analz H"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   504
by (drule analz_mono, blast)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   505
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   506
36553
95bdfa572cee redo some of the metis proofs
blanchet
parents: 35416
diff changeset
   507
declare analz_trans[intro]
95bdfa572cee redo some of the metis proofs
blanchet
parents: 35416
diff changeset
   508
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   509
lemma analz_cut: "[| Y\<in> analz (insert X H);  X\<in> analz H |] ==> Y\<in> analz H"
46075
0054a9513b37 reintroduced "metis" call taken out after reintroducing "set" as a constructor, and added two "metis" calls that used to be too slow
blanchet
parents: 45970
diff changeset
   510
by (metis analz_idem analz_increasing analz_mono insert_absorb insert_mono insert_subset)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   511
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   512
text\<open>This rewrite rule helps in the simplification of messages that involve
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   513
  the forwarding of unknown components (X).  Without it, removing occurrences
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   514
  of X can be very complicated.\<close>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   515
lemma analz_insert_eq: "X\<in> analz H ==> analz (insert X H) = analz H"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   516
by (blast intro: analz_cut analz_insertI)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   517
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   518
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   519
text\<open>A congruence rule for "analz"\<close>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   520
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   521
lemma analz_subset_cong:
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   522
     "[| analz G \<subseteq> analz G'; analz H \<subseteq> analz H' |]
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   523
      ==> analz (G \<union> H) \<subseteq> analz (G' \<union> H')"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   524
apply simp
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   525
apply (metis Un_absorb2 Un_commute Un_subset_iff Un_upper1 Un_upper2 analz_mono)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   526
done
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   527
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   528
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   529
lemma analz_cong:
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   530
     "[| analz G = analz G'; analz H = analz H'
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   531
               |] ==> analz (G \<union> H) = analz (G' \<union> H')"
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   532
by (intro equalityI analz_subset_cong, simp_all)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   533
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   534
lemma analz_insert_cong:
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   535
     "analz H = analz H' ==> analz(insert X H) = analz(insert X H')"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   536
by (force simp only: insert_def intro!: analz_cong)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   537
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   538
text\<open>If there are no pairs or encryptions then analz does nothing\<close>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   539
lemma analz_trivial:
61984
cdea44c775fa more symbols;
wenzelm
parents: 61076
diff changeset
   540
     "[| \<forall>X Y. \<lbrace>X,Y\<rbrace> \<notin> H;  \<forall>X K. Crypt K X \<notin> H |] ==> analz H = H"
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   541
apply safe
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   542
apply (erule analz.induct, blast+)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   543
done
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   544
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   545
text\<open>These two are obsolete (with a single Spy) but cost little to prove...\<close>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   546
lemma analz_UN_analz_lemma:
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   547
     "X\<in> analz (\<Union>i\<in>A. analz (H i)) ==> X\<in> analz (\<Union>i\<in>A. H i)"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   548
apply (erule analz.induct)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   549
apply (blast intro: analz_mono [THEN [2] rev_subsetD])+
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   550
done
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   551
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   552
lemma analz_UN_analz [simp]: "analz (\<Union>i\<in>A. analz (H i)) = analz (\<Union>i\<in>A. H i)"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   553
by (blast intro: analz_UN_analz_lemma analz_mono [THEN [2] rev_subsetD])
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   554
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   555
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   556
subsection\<open>Inductive relation "synth"\<close>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   557
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   558
text\<open>Inductive definition of "synth" -- what can be built up from a set of
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   559
    messages.  A form of upward closure.  Pairs can be built, messages
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   560
    encrypted with known keys.  Agent names are public domain.
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   561
    Numbers can be guessed, but Nonces cannot be.\<close>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   562
23755
1c4672d130b1 Adapted to new inductive definition package.
berghofe
parents: 23449
diff changeset
   563
inductive_set
1c4672d130b1 Adapted to new inductive definition package.
berghofe
parents: 23449
diff changeset
   564
  synth :: "msg set => msg set"
1c4672d130b1 Adapted to new inductive definition package.
berghofe
parents: 23449
diff changeset
   565
  for H :: "msg set"
1c4672d130b1 Adapted to new inductive definition package.
berghofe
parents: 23449
diff changeset
   566
  where
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   567
    Inj    [intro]:   "X \<in> H ==> X \<in> synth H"
23755
1c4672d130b1 Adapted to new inductive definition package.
berghofe
parents: 23449
diff changeset
   568
  | Agent  [intro]:   "Agent agt \<in> synth H"
1c4672d130b1 Adapted to new inductive definition package.
berghofe
parents: 23449
diff changeset
   569
  | Number [intro]:   "Number n  \<in> synth H"
1c4672d130b1 Adapted to new inductive definition package.
berghofe
parents: 23449
diff changeset
   570
  | Hash   [intro]:   "X \<in> synth H ==> Hash X \<in> synth H"
61984
cdea44c775fa more symbols;
wenzelm
parents: 61076
diff changeset
   571
  | MPair  [intro]:   "[|X \<in> synth H;  Y \<in> synth H|] ==> \<lbrace>X,Y\<rbrace> \<in> synth H"
23755
1c4672d130b1 Adapted to new inductive definition package.
berghofe
parents: 23449
diff changeset
   572
  | Crypt  [intro]:   "[|X \<in> synth H;  Key(K) \<in> H|] ==> Crypt K X \<in> synth H"
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   573
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   574
text\<open>Monotonicity\<close>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   575
lemma synth_mono: "G\<subseteq>H ==> synth(G) \<subseteq> synth(H)"
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   576
  by (auto, erule synth.induct, auto)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   577
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   578
text\<open>NO \<open>Agent_synth\<close>, as any Agent name can be synthesized.
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   579
  The same holds for @{term Number}\<close>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   580
inductive_cases Nonce_synth [elim!]: "Nonce n \<in> synth H"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   581
inductive_cases Key_synth   [elim!]: "Key K \<in> synth H"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   582
inductive_cases Hash_synth  [elim!]: "Hash X \<in> synth H"
61984
cdea44c775fa more symbols;
wenzelm
parents: 61076
diff changeset
   583
inductive_cases MPair_synth [elim!]: "\<lbrace>X,Y\<rbrace> \<in> synth H"
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   584
inductive_cases Crypt_synth [elim!]: "Crypt K X \<in> synth H"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   585
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   586
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   587
lemma synth_increasing: "H \<subseteq> synth(H)"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   588
by blast
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   589
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   590
subsubsection\<open>Unions\<close>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   591
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   592
text\<open>Converse fails: we can synth more from the union than from the
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   593
  separate parts, building a compound message using elements of each.\<close>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   594
lemma synth_Un: "synth(G) \<union> synth(H) \<subseteq> synth(G \<union> H)"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   595
by (intro Un_least synth_mono Un_upper1 Un_upper2)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   596
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   597
lemma synth_insert: "insert X (synth H) \<subseteq> synth(insert X H)"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   598
by (metis insert_iff insert_subset subset_insertI synth.Inj synth_mono)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   599
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   600
subsubsection\<open>Idempotence and transitivity\<close>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   601
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   602
lemma synth_synthD [dest!]: "X\<in> synth (synth H) ==> X\<in> synth H"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   603
by (erule synth.induct, blast+)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   604
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   605
lemma synth_idem: "synth (synth H) = synth H"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   606
by blast
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   607
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   608
lemma synth_subset_iff [simp]: "(synth G \<subseteq> synth H) = (G \<subseteq> synth H)"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   609
apply (rule iffI)
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   610
apply (iprover intro: subset_trans synth_increasing)
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   611
apply (frule synth_mono, simp add: synth_idem)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   612
done
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   613
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   614
lemma synth_trans: "[| X\<in> synth G;  G \<subseteq> synth H |] ==> X\<in> synth H"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   615
by (drule synth_mono, blast)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   616
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   617
lemma synth_cut: "[| Y\<in> synth (insert X H);  X\<in> synth H |] ==> Y\<in> synth H"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   618
by (metis insert_absorb insert_mono insert_subset synth_idem synth_increasing synth_mono)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   619
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   620
lemma Agent_synth [simp]: "Agent A \<in> synth H"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   621
by blast
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   622
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   623
lemma Number_synth [simp]: "Number n \<in> synth H"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   624
by blast
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   625
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   626
lemma Nonce_synth_eq [simp]: "(Nonce N \<in> synth H) = (Nonce N \<in> H)"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   627
by blast
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   628
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   629
lemma Key_synth_eq [simp]: "(Key K \<in> synth H) = (Key K \<in> H)"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   630
by blast
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   631
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   632
lemma Crypt_synth_eq [simp]:
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   633
     "Key K \<notin> H ==> (Crypt K X \<in> synth H) = (Crypt K X \<in> H)"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   634
by blast
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   635
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   636
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   637
lemma keysFor_synth [simp]:
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   638
    "keysFor (synth H) = keysFor H \<union> invKey`{K. Key K \<in> H}"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   639
by (unfold keysFor_def, blast)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   640
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   641
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   642
subsubsection\<open>Combinations of parts, analz and synth\<close>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   643
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   644
lemma parts_synth [simp]: "parts (synth H) = parts H \<union> synth H"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   645
apply (rule equalityI)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   646
apply (rule subsetI)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   647
apply (erule parts.induct)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   648
apply (metis UnCI)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   649
apply (metis MPair_synth UnCI UnE insert_absorb insert_subset parts.Fst parts_increasing)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   650
apply (metis MPair_synth UnCI UnE insert_absorb insert_subset parts.Snd parts_increasing)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   651
apply (metis Body Crypt_synth UnCI UnE insert_absorb insert_subset parts_increasing)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   652
apply (metis Un_subset_iff parts_increasing parts_mono synth_increasing)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   653
done
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   654
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   655
lemma analz_analz_Un [simp]: "analz (analz G \<union> H) = analz (G \<union> H)"
45503
44790ec65f70 remove old-style semicolons
huffman
parents: 43197
diff changeset
   656
apply (rule equalityI)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   657
apply (metis analz_idem analz_subset_cong order_eq_refl)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   658
apply (metis analz_increasing analz_subset_cong order_eq_refl)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   659
done
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   660
36553
95bdfa572cee redo some of the metis proofs
blanchet
parents: 35416
diff changeset
   661
declare analz_mono [intro] analz.Fst [intro] analz.Snd [intro] Un_least [intro]
95bdfa572cee redo some of the metis proofs
blanchet
parents: 35416
diff changeset
   662
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   663
lemma analz_synth_Un [simp]: "analz (synth G \<union> H) = analz (G \<union> H) \<union> synth G"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   664
apply (rule equalityI)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   665
apply (rule subsetI)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   666
apply (erule analz.induct)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   667
apply (metis UnCI UnE Un_commute analz.Inj)
45970
b6d0cff57d96 adjusted to set/pred distinction by means of type constructor `set`
haftmann
parents: 45605
diff changeset
   668
apply (metis MPair_synth UnCI UnE Un_commute analz.Fst analz.Inj)
b6d0cff57d96 adjusted to set/pred distinction by means of type constructor `set`
haftmann
parents: 45605
diff changeset
   669
apply (metis MPair_synth UnCI UnE Un_commute analz.Inj analz.Snd)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   670
apply (blast intro: analz.Decrypt)
24759
b448f94b1c88 fixed metis proof (Why did it stop working?);
wenzelm
parents: 23755
diff changeset
   671
apply blast
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   672
done
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   673
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   674
lemma analz_synth [simp]: "analz (synth H) = analz H \<union> synth H"
36553
95bdfa572cee redo some of the metis proofs
blanchet
parents: 35416
diff changeset
   675
proof -
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 50705
diff changeset
   676
  have "\<forall>x\<^sub>2 x\<^sub>1. synth x\<^sub>1 \<union> analz (x\<^sub>1 \<union> x\<^sub>2) = analz (synth x\<^sub>1 \<union> x\<^sub>2)" by (metis Un_commute analz_synth_Un)
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 50705
diff changeset
   677
  hence "\<forall>x\<^sub>1. synth x\<^sub>1 \<union> analz x\<^sub>1 = analz (synth x\<^sub>1 \<union> {})" by (metis Un_empty_right)
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 50705
diff changeset
   678
  hence "\<forall>x\<^sub>1. synth x\<^sub>1 \<union> analz x\<^sub>1 = analz (synth x\<^sub>1)" by (metis Un_empty_right)
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 50705
diff changeset
   679
  hence "\<forall>x\<^sub>1. analz x\<^sub>1 \<union> synth x\<^sub>1 = analz (synth x\<^sub>1)" by (metis Un_commute)
36553
95bdfa572cee redo some of the metis proofs
blanchet
parents: 35416
diff changeset
   680
  thus "analz (synth H) = analz H \<union> synth H" by metis
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   681
qed
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   682
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   683
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62390
diff changeset
   684
subsubsection\<open>For reasoning about the Fake rule in traces\<close>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   685
45970
b6d0cff57d96 adjusted to set/pred distinction by means of type constructor `set`
haftmann
parents: 45605
diff changeset
   686
lemma parts_insert_subset_Un: "X \<in> G ==> parts(insert X H) \<subseteq> parts G \<union> parts H"
36553
95bdfa572cee redo some of the metis proofs
blanchet
parents: 35416
diff changeset
   687
proof -
95bdfa572cee redo some of the metis proofs
blanchet
parents: 35416
diff changeset
   688
  assume "X \<in> G"
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 50705
diff changeset
   689
  hence "\<forall>x\<^sub>1. G \<subseteq> x\<^sub>1 \<longrightarrow> X \<in> x\<^sub>1 " by auto
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 50705
diff changeset
   690
  hence "\<forall>x\<^sub>1. X \<in> G \<union> x\<^sub>1" by (metis Un_upper1)
36911
0e2818493775 improved Sledgehammer proofs
blanchet
parents: 36580
diff changeset
   691
  hence "insert X H \<subseteq> G \<union> H" by (metis Un_upper2 insert_subset)
0e2818493775 improved Sledgehammer proofs
blanchet
parents: 36580
diff changeset
   692
  hence "parts (insert X H) \<subseteq> parts (G \<union> H)" by (metis parts_mono)
0e2818493775 improved Sledgehammer proofs
blanchet
parents: 36580
diff changeset
   693
  thus "parts (insert X H) \<subseteq> parts G \<union> parts H" by (metis parts_Un)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   694
qed
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   695
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   696
lemma Fake_parts_insert:
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   697
     "X \<in> synth (analz H) ==>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   698
      parts (insert X H) \<subseteq> synth (analz H) \<union> parts H"
36553
95bdfa572cee redo some of the metis proofs
blanchet
parents: 35416
diff changeset
   699
proof -
95bdfa572cee redo some of the metis proofs
blanchet
parents: 35416
diff changeset
   700
  assume A1: "X \<in> synth (analz H)"
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 50705
diff changeset
   701
  have F1: "\<forall>x\<^sub>1. analz x\<^sub>1 \<union> synth (analz x\<^sub>1) = analz (synth (analz x\<^sub>1))"
36553
95bdfa572cee redo some of the metis proofs
blanchet
parents: 35416
diff changeset
   702
    by (metis analz_idem analz_synth)
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 50705
diff changeset
   703
  have F2: "\<forall>x\<^sub>1. parts x\<^sub>1 \<union> synth (analz x\<^sub>1) = parts (synth (analz x\<^sub>1))"
36553
95bdfa572cee redo some of the metis proofs
blanchet
parents: 35416
diff changeset
   704
    by (metis parts_analz parts_synth)
45970
b6d0cff57d96 adjusted to set/pred distinction by means of type constructor `set`
haftmann
parents: 45605
diff changeset
   705
  have F3: "X \<in> synth (analz H)" using A1 by metis
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 58889
diff changeset
   706
  have "\<forall>x\<^sub>2 x\<^sub>1::msg set. x\<^sub>1 \<le> sup x\<^sub>1 x\<^sub>2" by (metis inf_sup_ord(3))
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 50705
diff changeset
   707
  hence F4: "\<forall>x\<^sub>1. analz x\<^sub>1 \<subseteq> analz (synth x\<^sub>1)" by (metis analz_synth)
45970
b6d0cff57d96 adjusted to set/pred distinction by means of type constructor `set`
haftmann
parents: 45605
diff changeset
   708
  have F5: "X \<in> synth (analz H)" using F3 by metis
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 50705
diff changeset
   709
  have "\<forall>x\<^sub>1. analz x\<^sub>1 \<subseteq> synth (analz x\<^sub>1)
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 50705
diff changeset
   710
         \<longrightarrow> analz (synth (analz x\<^sub>1)) = synth (analz x\<^sub>1)"
36553
95bdfa572cee redo some of the metis proofs
blanchet
parents: 35416
diff changeset
   711
    using F1 by (metis subset_Un_eq)
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 50705
diff changeset
   712
  hence F6: "\<forall>x\<^sub>1. analz (synth (analz x\<^sub>1)) = synth (analz x\<^sub>1)"
36553
95bdfa572cee redo some of the metis proofs
blanchet
parents: 35416
diff changeset
   713
    by (metis synth_increasing)
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 50705
diff changeset
   714
  have "\<forall>x\<^sub>1. x\<^sub>1 \<subseteq> analz (synth x\<^sub>1)" using F4 by (metis analz_subset_iff)
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 50705
diff changeset
   715
  hence "\<forall>x\<^sub>1. x\<^sub>1 \<subseteq> analz (synth (analz x\<^sub>1))" by (metis analz_subset_iff)
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 50705
diff changeset
   716
  hence "\<forall>x\<^sub>1. x\<^sub>1 \<subseteq> synth (analz x\<^sub>1)" using F6 by metis
36553
95bdfa572cee redo some of the metis proofs
blanchet
parents: 35416
diff changeset
   717
  hence "H \<subseteq> synth (analz H)" by metis
95bdfa572cee redo some of the metis proofs
blanchet
parents: 35416
diff changeset
   718
  hence "H \<subseteq> synth (analz H) \<and> X \<in> synth (analz H)" using F5 by metis
95bdfa572cee redo some of the metis proofs
blanchet
parents: 35416
diff changeset
   719
  hence "insert X H \<subseteq> synth (analz H)" by (metis insert_subset)
95bdfa572cee redo some of the metis proofs
blanchet
parents: 35416
diff changeset
   720
  hence "parts (insert X H) \<subseteq> parts (synth (analz H))" by (metis parts_mono)
95bdfa572cee redo some of the metis proofs
blanchet
parents: 35416
diff changeset
   721
  hence "parts (insert X H) \<subseteq> parts H \<union> synth (analz H)" using F2 by metis
95bdfa572cee redo some of the metis proofs
blanchet
parents: 35416
diff changeset
   722
  thus "parts (insert X H) \<subseteq> synth (analz H) \<union> parts H" by (metis Un_commute)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   723
qed
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   724
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   725
lemma Fake_parts_insert_in_Un:
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   726
     "[|Z \<in> parts (insert X H);  X: synth (analz H)|]
45505
dc452a1a46e5 remove one more old-style semicolon
huffman
parents: 45503
diff changeset
   727
      ==> Z \<in>  synth (analz H) \<union> parts H"
36553
95bdfa572cee redo some of the metis proofs
blanchet
parents: 35416
diff changeset
   728
by (blast dest: Fake_parts_insert [THEN subsetD, dest])
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   729
45970
b6d0cff57d96 adjusted to set/pred distinction by means of type constructor `set`
haftmann
parents: 45605
diff changeset
   730
declare synth_mono [intro]
36553
95bdfa572cee redo some of the metis proofs
blanchet
parents: 35416
diff changeset
   731
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   732
lemma Fake_analz_insert:
36553
95bdfa572cee redo some of the metis proofs
blanchet
parents: 35416
diff changeset
   733
     "X \<in> synth (analz G) ==>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   734
      analz (insert X H) \<subseteq> synth (analz G) \<union> analz (G \<union> H)"
36553
95bdfa572cee redo some of the metis proofs
blanchet
parents: 35416
diff changeset
   735
by (metis Un_commute Un_insert_left Un_insert_right Un_upper1 analz_analz_Un
95bdfa572cee redo some of the metis proofs
blanchet
parents: 35416
diff changeset
   736
          analz_mono analz_synth_Un insert_absorb)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   737
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   738
lemma Fake_analz_insert_simpler:
43197
c71657bbdbc0 tuned Metis examples
blanchet
parents: 42463
diff changeset
   739
     "X \<in> synth (analz G) ==>
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   740
      analz (insert X H) \<subseteq> synth (analz G) \<union> analz (G \<union> H)"
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   741
apply (rule subsetI)
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   742
apply (subgoal_tac "x \<in> analz (synth (analz G) \<union> H) ")
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   743
apply (metis Un_commute analz_analz_Un analz_synth_Un)
39260
f94c53d9b8fb "resurrected" a Metis proof
blanchet
parents: 36911
diff changeset
   744
by (metis Un_upper1 Un_upper2 analz_mono insert_absorb insert_subset)
23449
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   745
dd874e6a3282 integration of Metis prover
paulson
parents:
diff changeset
   746
end