| author | haftmann | 
| Thu, 31 Jan 2019 13:08:59 +0000 | |
| changeset 69768 | 7e4966eaf781 | 
| parent 69597 | ff784d5a5bfb | 
| child 70629 | 2bbd945728e2 | 
| permissions | -rw-r--r-- | 
| 61640 | 1 | (* Author: Tobias Nipkow *) | 
| 2 | ||
| 67406 | 3 | section \<open>List Insertion and Deletion\<close> | 
| 61640 | 4 | |
| 5 | theory List_Ins_Del | |
| 6 | imports Sorted_Less | |
| 7 | begin | |
| 8 | ||
| 9 | subsection \<open>Elements in a list\<close> | |
| 10 | ||
| 11 | lemma sorted_Cons_iff: | |
| 67929 | 12 | "sorted(x # xs) = ((\<forall>y \<in> set xs. x < y) \<and> sorted xs)" | 
| 13 | by(simp add: sorted_wrt_Cons) | |
| 61640 | 14 | |
| 15 | lemma sorted_snoc_iff: | |
| 67929 | 16 | "sorted(xs @ [x]) = (sorted xs \<and> (\<forall>y \<in> set xs. y < x))" | 
| 17 | by(simp add: sorted_wrt_append) | |
| 18 | (* | |
| 67406 | 19 | text\<open>The above two rules introduce quantifiers. It turns out | 
| 61640 | 20 | that in practice this is not a problem because of the simplicity of | 
| 67929 | 21 | the "isin" functions that implement @{const set}. Nevertheless
 | 
| 67406 | 22 | it is possible to avoid the quantifiers with the help of some rewrite rules:\<close> | 
| 61640 | 23 | |
| 67929 | 24 | lemma sorted_ConsD: "sorted (y # xs) \<Longrightarrow> x \<le> y \<Longrightarrow> x \<notin> set xs" | 
| 61692 
cb595e12451d
removed lemmas that were only needed for old version of isin.
 nipkow parents: 
61642diff
changeset | 25 | by (auto simp: sorted_Cons_iff) | 
| 61640 | 26 | |
| 67929 | 27 | lemma sorted_snocD: "sorted (xs @ [y]) \<Longrightarrow> y \<le> x \<Longrightarrow> x \<notin> set xs" | 
| 61692 
cb595e12451d
removed lemmas that were only needed for old version of isin.
 nipkow parents: 
61642diff
changeset | 28 | by (auto simp: sorted_snoc_iff) | 
| 61640 | 29 | |
| 67929 | 30 | lemmas isin_simps2 = sorted_lems sorted_ConsD sorted_snocD | 
| 31 | *) | |
| 32 | ||
| 33 | lemmas isin_simps = sorted_lems sorted_Cons_iff sorted_snoc_iff | |
| 61640 | 34 | |
| 35 | ||
| 36 | subsection \<open>Inserting into an ordered list without duplicates:\<close> | |
| 37 | ||
| 38 | fun ins_list :: "'a::linorder \<Rightarrow> 'a list \<Rightarrow> 'a list" where | |
| 39 | "ins_list x [] = [x]" | | |
| 40 | "ins_list x (a#xs) = | |
| 41 | (if x < a then x#a#xs else if x=a then a#xs else a # ins_list x xs)" | |
| 42 | ||
| 67929 | 43 | lemma set_ins_list: "set (ins_list x xs) = insert x (set xs)" | 
| 61640 | 44 | by(induction xs) auto | 
| 45 | ||
| 46 | lemma distinct_if_sorted: "sorted xs \<Longrightarrow> distinct xs" | |
| 67168 | 47 | apply(induction xs rule: induct_list012) | 
| 61640 | 48 | apply auto | 
| 49 | by (metis in_set_conv_decomp_first less_imp_not_less sorted_mid_iff2) | |
| 50 | ||
| 51 | lemma sorted_ins_list: "sorted xs \<Longrightarrow> sorted(ins_list x xs)" | |
| 67168 | 52 | by(induction xs rule: induct_list012) auto | 
| 61640 | 53 | |
| 54 | lemma ins_list_sorted: "sorted (xs @ [a]) \<Longrightarrow> | |
| 55 | ins_list x (xs @ a # ys) = | |
| 61642 | 56 | (if x < a then ins_list x xs @ (a#ys) else xs @ ins_list x (a#ys))" | 
| 61640 | 57 | by(induction xs) (auto simp: sorted_lems) | 
| 58 | ||
| 59 | text\<open>In principle, @{thm ins_list_sorted} suffices, but the following two
 | |
| 60 | corollaries speed up proofs.\<close> | |
| 61 | ||
| 62 | corollary ins_list_sorted1: "sorted (xs @ [a]) \<Longrightarrow> a \<le> x \<Longrightarrow> | |
| 63 | ins_list x (xs @ a # ys) = xs @ ins_list x (a#ys)" | |
| 61642 | 64 | by(auto simp add: ins_list_sorted) | 
| 61640 | 65 | |
| 66 | corollary ins_list_sorted2: "sorted (xs @ [a]) \<Longrightarrow> x < a \<Longrightarrow> | |
| 67 | ins_list x (xs @ a # ys) = ins_list x xs @ (a#ys)" | |
| 68 | by(auto simp: ins_list_sorted) | |
| 69 | ||
| 70 | lemmas ins_list_simps = sorted_lems ins_list_sorted1 ins_list_sorted2 | |
| 71 | ||
| 69597 | 72 | text\<open>Splay trees need two additional \<^const>\<open>ins_list\<close> lemmas:\<close> | 
| 61696 | 73 | |
| 74 | lemma ins_list_Cons: "sorted (x # xs) \<Longrightarrow> ins_list x xs = x # xs" | |
| 75 | by (induction xs) auto | |
| 76 | ||
| 77 | lemma ins_list_snoc: "sorted (xs @ [x]) \<Longrightarrow> ins_list x xs = xs @ [x]" | |
| 78 | by(induction xs) (auto simp add: sorted_mid_iff2) | |
| 79 | ||
| 61640 | 80 | |
| 81 | subsection \<open>Delete one occurrence of an element from a list:\<close> | |
| 82 | ||
| 83 | fun del_list :: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list" where | |
| 84 | "del_list x [] = []" | | |
| 85 | "del_list x (a#xs) = (if x=a then xs else a # del_list x xs)" | |
| 86 | ||
| 67929 | 87 | lemma del_list_idem: "x \<notin> set xs \<Longrightarrow> del_list x xs = xs" | 
| 61640 | 88 | by (induct xs) simp_all | 
| 89 | ||
| 67929 | 90 | lemma set_del_list_eq: | 
| 91 |   "distinct xs \<Longrightarrow> set (del_list x xs) = set xs - {x}"
 | |
| 92 | by(induct xs) auto | |
| 61640 | 93 | |
| 94 | lemma sorted_del_list: "sorted xs \<Longrightarrow> sorted(del_list x xs)" | |
| 67168 | 95 | apply(induction xs rule: induct_list012) | 
| 61640 | 96 | apply auto | 
| 97 | by (meson order.strict_trans sorted_Cons_iff) | |
| 98 | ||
| 99 | lemma del_list_sorted: "sorted (xs @ a # ys) \<Longrightarrow> | |
| 100 | del_list x (xs @ a # ys) = (if x < a then del_list x xs @ a # ys else xs @ del_list x (a # ys))" | |
| 101 | by(induction xs) | |
| 67929 | 102 | (fastforce simp: sorted_lems sorted_Cons_iff intro!: del_list_idem)+ | 
| 61640 | 103 | |
| 104 | text\<open>In principle, @{thm del_list_sorted} suffices, but the following
 | |
| 105 | corollaries speed up proofs.\<close> | |
| 106 | ||
| 107 | corollary del_list_sorted1: "sorted (xs @ a # ys) \<Longrightarrow> a \<le> x \<Longrightarrow> | |
| 108 | del_list x (xs @ a # ys) = xs @ del_list x (a # ys)" | |
| 109 | by (auto simp: del_list_sorted) | |
| 110 | ||
| 111 | corollary del_list_sorted2: "sorted (xs @ a # ys) \<Longrightarrow> x < a \<Longrightarrow> | |
| 112 | del_list x (xs @ a # ys) = del_list x xs @ a # ys" | |
| 113 | by (auto simp: del_list_sorted) | |
| 114 | ||
| 115 | corollary del_list_sorted3: | |
| 116 | "sorted (xs @ a # ys @ b # zs) \<Longrightarrow> x < b \<Longrightarrow> | |
| 117 | del_list x (xs @ a # ys @ b # zs) = del_list x (xs @ a # ys) @ b # zs" | |
| 118 | by (auto simp: del_list_sorted sorted_lems) | |
| 119 | ||
| 120 | corollary del_list_sorted4: | |
| 121 | "sorted (xs @ a # ys @ b # zs @ c # us) \<Longrightarrow> x < c \<Longrightarrow> | |
| 122 | del_list x (xs @ a # ys @ b # zs @ c # us) = del_list x (xs @ a # ys @ b # zs) @ c # us" | |
| 123 | by (auto simp: del_list_sorted sorted_lems) | |
| 124 | ||
| 125 | corollary del_list_sorted5: | |
| 126 | "sorted (xs @ a # ys @ b # zs @ c # us @ d # vs) \<Longrightarrow> x < d \<Longrightarrow> | |
| 127 | del_list x (xs @ a # ys @ b # zs @ c # us @ d # vs) = | |
| 128 | del_list x (xs @ a # ys @ b # zs @ c # us) @ d # vs" | |
| 129 | by (auto simp: del_list_sorted sorted_lems) | |
| 130 | ||
| 131 | lemmas del_list_simps = sorted_lems | |
| 132 | del_list_sorted1 | |
| 133 | del_list_sorted2 | |
| 134 | del_list_sorted3 | |
| 135 | del_list_sorted4 | |
| 136 | del_list_sorted5 | |
| 137 | ||
| 69597 | 138 | text\<open>Splay trees need two additional \<^const>\<open>del_list\<close> lemmas:\<close> | 
| 61696 | 139 | |
| 140 | lemma del_list_notin_Cons: "sorted (x # xs) \<Longrightarrow> del_list x xs = xs" | |
| 66441 | 141 | by(induction xs)(fastforce simp: sorted_Cons_iff)+ | 
| 61696 | 142 | |
| 143 | lemma del_list_sorted_app: | |
| 144 | "sorted(xs @ [x]) \<Longrightarrow> del_list x (xs @ ys) = xs @ del_list x ys" | |
| 145 | by (induction xs) (auto simp: sorted_mid_iff2) | |
| 146 | ||
| 61640 | 147 | end |