author | haftmann |
Thu, 20 May 2010 17:29:43 +0200 | |
changeset 37026 | 7e8979a155ae |
parent 35028 | 108662d50512 |
child 37088 | 36c13099d10f |
permissions | -rw-r--r-- |
31990 | 1 |
(* Title: HOL/Library/Kleene_Algebra.thy |
2 |
Author: Alexander Krauss, TU Muenchen |
|
3 |
*) |
|
4 |
||
5 |
header "Kleene Algebra" |
|
6 |
||
7 |
theory Kleene_Algebra |
|
8 |
imports Main |
|
9 |
begin |
|
10 |
||
11 |
text {* WARNING: This is work in progress. Expect changes in the future *} |
|
12 |
||
13 |
text {* A type class of Kleene algebras *} |
|
14 |
||
15 |
class star = |
|
16 |
fixes star :: "'a \<Rightarrow> 'a" |
|
17 |
||
18 |
class idem_add = ab_semigroup_add + |
|
19 |
assumes add_idem [simp]: "x + x = x" |
|
20 |
begin |
|
21 |
||
22 |
lemma add_idem2[simp]: "(x::'a) + (x + y) = x + y" |
|
23 |
unfolding add_assoc[symmetric] by simp |
|
24 |
||
25 |
end |
|
26 |
||
27 |
class order_by_add = idem_add + ord + |
|
28 |
assumes order_def: "a \<le> b \<longleftrightarrow> a + b = b" |
|
29 |
assumes strict_order_def: "a < b \<longleftrightarrow> a \<le> b \<and> \<not> b \<le> a" |
|
30 |
begin |
|
31 |
||
32 |
lemma ord_simp1[simp]: "x \<le> y \<Longrightarrow> x + y = y" |
|
33 |
unfolding order_def . |
|
34 |
||
35 |
lemma ord_simp2[simp]: "x \<le> y \<Longrightarrow> y + x = y" |
|
36 |
unfolding order_def add_commute . |
|
37 |
||
38 |
lemma ord_intro: "x + y = y \<Longrightarrow> x \<le> y" |
|
39 |
unfolding order_def . |
|
40 |
||
41 |
subclass order proof |
|
42 |
fix x y z :: 'a |
|
43 |
show "x \<le> x" unfolding order_def by simp |
|
44 |
show "x \<le> y \<Longrightarrow> y \<le> z \<Longrightarrow> x \<le> z" |
|
45 |
proof (rule ord_intro) |
|
46 |
assume "x \<le> y" "y \<le> z" |
|
47 |
have "x + z = x + y + z" by (simp add:`y \<le> z` add_assoc) |
|
48 |
also have "\<dots> = y + z" by (simp add:`x \<le> y`) |
|
49 |
also have "\<dots> = z" by (simp add:`y \<le> z`) |
|
50 |
finally show "x + z = z" . |
|
51 |
qed |
|
52 |
show "x \<le> y \<Longrightarrow> y \<le> x \<Longrightarrow> x = y" unfolding order_def |
|
53 |
by (simp add: add_commute) |
|
54 |
show "x < y \<longleftrightarrow> x \<le> y \<and> \<not> y \<le> x" by (fact strict_order_def) |
|
55 |
qed |
|
56 |
||
57 |
lemma plus_leI: |
|
58 |
"x \<le> z \<Longrightarrow> y \<le> z \<Longrightarrow> x + y \<le> z" |
|
59 |
unfolding order_def by (simp add: add_assoc) |
|
60 |
||
61 |
lemma less_add[simp]: "a \<le> a + b" "b \<le> a + b" |
|
62 |
unfolding order_def by (auto simp:add_ac) |
|
63 |
||
64 |
lemma add_est1: "a + b \<le> c \<Longrightarrow> a \<le> c" |
|
65 |
using less_add(1) by (rule order_trans) |
|
66 |
||
67 |
lemma add_est2: "a + b \<le> c \<Longrightarrow> b \<le> c" |
|
68 |
using less_add(2) by (rule order_trans) |
|
69 |
||
70 |
end |
|
71 |
||
72 |
class pre_kleene = semiring_1 + order_by_add |
|
73 |
begin |
|
74 |
||
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
32238
diff
changeset
|
75 |
subclass ordered_semiring proof |
31990 | 76 |
fix x y z :: 'a |
77 |
||
78 |
assume "x \<le> y" |
|
79 |
||
80 |
show "z + x \<le> z + y" |
|
81 |
proof (rule ord_intro) |
|
82 |
have "z + x + (z + y) = x + y + z" by (simp add:add_ac) |
|
83 |
also have "\<dots> = z + y" by (simp add:`x \<le> y` add_ac) |
|
84 |
finally show "z + x + (z + y) = z + y" . |
|
85 |
qed |
|
86 |
||
87 |
show "z * x \<le> z * y" |
|
88 |
proof (rule ord_intro) |
|
89 |
from `x \<le> y` have "z * (x + y) = z * y" by simp |
|
90 |
thus "z * x + z * y = z * y" by (simp add:right_distrib) |
|
91 |
qed |
|
92 |
||
93 |
show "x * z \<le> y * z" |
|
94 |
proof (rule ord_intro) |
|
95 |
from `x \<le> y` have "(x + y) * z = y * z" by simp |
|
96 |
thus "x * z + y * z = y * z" by (simp add:left_distrib) |
|
97 |
qed |
|
98 |
qed |
|
99 |
||
100 |
lemma zero_minimum [simp]: "0 \<le> x" |
|
101 |
unfolding order_def by simp |
|
102 |
||
103 |
end |
|
104 |
||
105 |
class kleene = pre_kleene + star + |
|
106 |
assumes star1: "1 + a * star a \<le> star a" |
|
107 |
and star2: "1 + star a * a \<le> star a" |
|
108 |
and star3: "a * x \<le> x \<Longrightarrow> star a * x \<le> x" |
|
109 |
and star4: "x * a \<le> x \<Longrightarrow> x * star a \<le> x" |
|
110 |
begin |
|
111 |
||
112 |
lemma star3': |
|
113 |
assumes a: "b + a * x \<le> x" |
|
114 |
shows "star a * b \<le> x" |
|
115 |
proof (rule order_trans) |
|
116 |
from a have "b \<le> x" by (rule add_est1) |
|
117 |
show "star a * b \<le> star a * x" |
|
118 |
by (rule mult_mono) (auto simp:`b \<le> x`) |
|
119 |
||
120 |
from a have "a * x \<le> x" by (rule add_est2) |
|
121 |
with star3 show "star a * x \<le> x" . |
|
122 |
qed |
|
123 |
||
124 |
lemma star4': |
|
125 |
assumes a: "b + x * a \<le> x" |
|
126 |
shows "b * star a \<le> x" |
|
127 |
proof (rule order_trans) |
|
128 |
from a have "b \<le> x" by (rule add_est1) |
|
129 |
show "b * star a \<le> x * star a" |
|
130 |
by (rule mult_mono) (auto simp:`b \<le> x`) |
|
131 |
||
132 |
from a have "x * a \<le> x" by (rule add_est2) |
|
133 |
with star4 show "x * star a \<le> x" . |
|
134 |
qed |
|
135 |
||
136 |
lemma star_unfold_left: |
|
137 |
shows "1 + a * star a = star a" |
|
138 |
proof (rule antisym, rule star1) |
|
139 |
have "1 + a * (1 + a * star a) \<le> 1 + a * star a" |
|
140 |
apply (rule add_mono, rule) |
|
141 |
apply (rule mult_mono, auto) |
|
142 |
apply (rule star1) |
|
143 |
done |
|
144 |
with star3' have "star a * 1 \<le> 1 + a * star a" . |
|
145 |
thus "star a \<le> 1 + a * star a" by simp |
|
146 |
qed |
|
147 |
||
148 |
lemma star_unfold_right: "1 + star a * a = star a" |
|
149 |
proof (rule antisym, rule star2) |
|
150 |
have "1 + (1 + star a * a) * a \<le> 1 + star a * a" |
|
151 |
apply (rule add_mono, rule) |
|
152 |
apply (rule mult_mono, auto) |
|
153 |
apply (rule star2) |
|
154 |
done |
|
155 |
with star4' have "1 * star a \<le> 1 + star a * a" . |
|
156 |
thus "star a \<le> 1 + star a * a" by simp |
|
157 |
qed |
|
158 |
||
159 |
lemma star_zero[simp]: "star 0 = 1" |
|
160 |
by (fact star_unfold_left[of 0, simplified, symmetric]) |
|
161 |
||
162 |
lemma star_one[simp]: "star 1 = 1" |
|
163 |
by (metis add_idem2 eq_iff mult_1_right ord_simp2 star3 star_unfold_left) |
|
164 |
||
165 |
lemma one_less_star: "1 \<le> star x" |
|
166 |
by (metis less_add(1) star_unfold_left) |
|
167 |
||
168 |
lemma ka1: "x * star x \<le> star x" |
|
169 |
by (metis less_add(2) star_unfold_left) |
|
170 |
||
171 |
lemma star_mult_idem[simp]: "star x * star x = star x" |
|
172 |
by (metis add_commute add_est1 eq_iff mult_1_right right_distrib star3 star_unfold_left) |
|
173 |
||
174 |
lemma less_star: "x \<le> star x" |
|
175 |
by (metis less_add(2) mult_1_right mult_left_mono one_less_star order_trans star_unfold_left zero_minimum) |
|
176 |
||
177 |
lemma star_simulation: |
|
178 |
assumes a: "a * x = x * b" |
|
179 |
shows "star a * x = x * star b" |
|
180 |
proof (rule antisym) |
|
181 |
show "star a * x \<le> x * star b" |
|
182 |
proof (rule star3', rule order_trans) |
|
183 |
from a have "a * x \<le> x * b" by simp |
|
184 |
hence "a * x * star b \<le> x * b * star b" |
|
185 |
by (rule mult_mono) auto |
|
186 |
thus "x + a * (x * star b) \<le> x + x * b * star b" |
|
187 |
using add_mono by (auto simp: mult_assoc) |
|
188 |
show "\<dots> \<le> x * star b" |
|
189 |
proof - |
|
190 |
have "x * (1 + b * star b) \<le> x * star b" |
|
191 |
by (rule mult_mono[OF _ star1]) auto |
|
192 |
thus ?thesis |
|
193 |
by (simp add:right_distrib mult_assoc) |
|
194 |
qed |
|
195 |
qed |
|
196 |
show "x * star b \<le> star a * x" |
|
197 |
proof (rule star4', rule order_trans) |
|
198 |
from a have b: "x * b \<le> a * x" by simp |
|
199 |
have "star a * x * b \<le> star a * a * x" |
|
200 |
unfolding mult_assoc |
|
201 |
by (rule mult_mono[OF _ b]) auto |
|
202 |
thus "x + star a * x * b \<le> x + star a * a * x" |
|
203 |
using add_mono by auto |
|
204 |
show "\<dots> \<le> star a * x" |
|
205 |
proof - |
|
206 |
have "(1 + star a * a) * x \<le> star a * x" |
|
207 |
by (rule mult_mono[OF star2]) auto |
|
208 |
thus ?thesis |
|
209 |
by (simp add:left_distrib mult_assoc) |
|
210 |
qed |
|
211 |
qed |
|
212 |
qed |
|
213 |
||
214 |
lemma star_slide2[simp]: "star x * x = x * star x" |
|
215 |
by (metis star_simulation) |
|
216 |
||
217 |
lemma star_idemp[simp]: "star (star x) = star x" |
|
218 |
by (metis add_idem2 eq_iff less_star mult_1_right star3' star_mult_idem star_unfold_left) |
|
219 |
||
220 |
lemma star_slide[simp]: "star (x * y) * x = x * star (y * x)" |
|
221 |
by (auto simp: mult_assoc star_simulation) |
|
222 |
||
223 |
lemma star_one': |
|
224 |
assumes "p * p' = 1" "p' * p = 1" |
|
225 |
shows "p' * star a * p = star (p' * a * p)" |
|
226 |
proof - |
|
227 |
from assms |
|
228 |
have "p' * star a * p = p' * star (p * p' * a) * p" |
|
229 |
by simp |
|
230 |
also have "\<dots> = p' * p * star (p' * a * p)" |
|
231 |
by (simp add: mult_assoc) |
|
232 |
also have "\<dots> = star (p' * a * p)" |
|
233 |
by (simp add: assms) |
|
234 |
finally show ?thesis . |
|
235 |
qed |
|
236 |
||
237 |
lemma x_less_star[simp]: "x \<le> x * star a" |
|
238 |
proof - |
|
239 |
have "x \<le> x * (1 + a * star a)" by (simp add: right_distrib) |
|
240 |
also have "\<dots> = x * star a" by (simp only: star_unfold_left) |
|
241 |
finally show ?thesis . |
|
242 |
qed |
|
243 |
||
244 |
lemma star_mono: "x \<le> y \<Longrightarrow> star x \<le> star y" |
|
245 |
by (metis add_commute eq_iff less_star ord_simp2 order_trans star3 star4' star_idemp star_mult_idem x_less_star) |
|
246 |
||
247 |
lemma star_sub: "x \<le> 1 \<Longrightarrow> star x = 1" |
|
248 |
by (metis add_commute ord_simp1 star_idemp star_mono star_mult_idem star_one star_unfold_left) |
|
249 |
||
250 |
lemma star_unfold2: "star x * y = y + x * star x * y" |
|
251 |
by (subst star_unfold_right[symmetric]) (simp add: mult_assoc left_distrib) |
|
252 |
||
253 |
lemma star_absorb_one[simp]: "star (x + 1) = star x" |
|
254 |
by (metis add_commute eq_iff left_distrib less_add(1) less_add(2) mult_1_left mult_assoc star3 star_mono star_mult_idem star_unfold2 x_less_star) |
|
255 |
||
256 |
lemma star_absorb_one'[simp]: "star (1 + x) = star x" |
|
257 |
by (subst add_commute) (fact star_absorb_one) |
|
258 |
||
259 |
lemma ka16: "(y * star x) * star (y * star x) \<le> star x * star (y * star x)" |
|
260 |
by (metis ka1 less_add(1) mult_assoc order_trans star_unfold2) |
|
261 |
||
262 |
lemma ka16': "(star x * y) * star (star x * y) \<le> star (star x * y) * star x" |
|
263 |
by (metis ka1 mult_assoc order_trans star_slide x_less_star) |
|
264 |
||
265 |
lemma ka17: "(x * star x) * star (y * star x) \<le> star x * star (y * star x)" |
|
266 |
by (metis ka1 mult_assoc mult_right_mono zero_minimum) |
|
267 |
||
268 |
lemma ka18: "(x * star x) * star (y * star x) + (y * star x) * star (y * star x) |
|
269 |
\<le> star x * star (y * star x)" |
|
270 |
by (metis ka16 ka17 left_distrib mult_assoc plus_leI) |
|
271 |
||
272 |
lemma kleene_church_rosser: |
|
273 |
"star y * star x \<le> star x * star y \<Longrightarrow> star (x + y) \<le> star x * star y" |
|
274 |
oops |
|
275 |
||
276 |
lemma star_decomp: "star (a + b) = star a * star (b * star a)" |
|
32238 | 277 |
proof (rule antisym) |
278 |
have "1 + (a + b) * star a * star (b * star a) \<le> |
|
279 |
1 + a * star a * star (b * star a) + b * star a * star (b * star a)" |
|
280 |
by (metis add_commute add_left_commute eq_iff left_distrib mult_assoc) |
|
281 |
also have "\<dots> \<le> star a * star (b * star a)" |
|
282 |
by (metis add_commute add_est1 add_left_commute ka18 plus_leI star_unfold_left x_less_star) |
|
283 |
finally show "star (a + b) \<le> star a * star (b * star a)" |
|
284 |
by (metis mult_1_right mult_assoc star3') |
|
285 |
next |
|
286 |
show "star a * star (b * star a) \<le> star (a + b)" |
|
287 |
by (metis add_assoc add_est1 add_est2 add_left_commute less_star mult_mono' |
|
288 |
star_absorb_one star_absorb_one' star_idemp star_mono star_mult_idem zero_minimum) |
|
289 |
qed |
|
31990 | 290 |
|
291 |
lemma ka22: "y * star x \<le> star x * star y \<Longrightarrow> star y * star x \<le> star x * star y" |
|
292 |
by (metis mult_assoc mult_right_mono plus_leI star3' star_mult_idem x_less_star zero_minimum) |
|
293 |
||
294 |
lemma ka23: "star y * star x \<le> star x * star y \<Longrightarrow> y * star x \<le> star x * star y" |
|
295 |
by (metis less_star mult_right_mono order_trans zero_minimum) |
|
296 |
||
297 |
lemma ka24: "star (x + y) \<le> star (star x * star y)" |
|
298 |
by (metis add_est1 add_est2 less_add(1) mult_assoc order_def plus_leI star_absorb_one star_mono star_slide2 star_unfold2 star_unfold_left x_less_star) |
|
299 |
||
300 |
lemma ka25: "star y * star x \<le> star x * star y \<Longrightarrow> star (star y * star x) \<le> star x * star y" |
|
301 |
oops |
|
302 |
||
303 |
lemma kleene_bubblesort: "y * x \<le> x * y \<Longrightarrow> star (x + y) \<le> star x * star y" |
|
304 |
oops |
|
305 |
||
306 |
end |
|
307 |
||
308 |
subsection {* Complete lattices are Kleene algebras *} |
|
309 |
||
310 |
lemma (in complete_lattice) le_SUPI': |
|
311 |
assumes "l \<le> M i" |
|
312 |
shows "l \<le> (SUP i. M i)" |
|
313 |
using assms by (rule order_trans) (rule le_SUPI [OF UNIV_I]) |
|
314 |
||
315 |
class kleene_by_complete_lattice = pre_kleene |
|
316 |
+ complete_lattice + power + star + |
|
317 |
assumes star_cont: "a * star b * c = SUPR UNIV (\<lambda>n. a * b ^ n * c)" |
|
318 |
begin |
|
319 |
||
320 |
subclass kleene |
|
321 |
proof |
|
322 |
fix a x :: 'a |
|
323 |
||
324 |
have [simp]: "1 \<le> star a" |
|
325 |
unfolding star_cont[of 1 a 1, simplified] |
|
326 |
by (subst power_0[symmetric]) (rule le_SUPI [OF UNIV_I]) |
|
327 |
||
328 |
show "1 + a * star a \<le> star a" |
|
329 |
apply (rule plus_leI, simp) |
|
330 |
apply (simp add:star_cont[of a a 1, simplified]) |
|
331 |
apply (simp add:star_cont[of 1 a 1, simplified]) |
|
332 |
apply (subst power_Suc[symmetric]) |
|
333 |
by (intro SUP_leI le_SUPI UNIV_I) |
|
334 |
||
335 |
show "1 + star a * a \<le> star a" |
|
336 |
apply (rule plus_leI, simp) |
|
337 |
apply (simp add:star_cont[of 1 a a, simplified]) |
|
338 |
apply (simp add:star_cont[of 1 a 1, simplified]) |
|
339 |
by (auto intro: SUP_leI le_SUPI simp add: power_Suc[symmetric] power_commutes simp del: power_Suc) |
|
340 |
||
341 |
show "a * x \<le> x \<Longrightarrow> star a * x \<le> x" |
|
342 |
proof - |
|
343 |
assume a: "a * x \<le> x" |
|
344 |
||
345 |
{ |
|
346 |
fix n |
|
347 |
have "a ^ (Suc n) * x \<le> a ^ n * x" |
|
348 |
proof (induct n) |
|
349 |
case 0 thus ?case by (simp add: a) |
|
350 |
next |
|
351 |
case (Suc n) |
|
352 |
hence "a * (a ^ Suc n * x) \<le> a * (a ^ n * x)" |
|
353 |
by (auto intro: mult_mono) |
|
354 |
thus ?case |
|
355 |
by (simp add: mult_assoc) |
|
356 |
qed |
|
357 |
} |
|
358 |
note a = this |
|
359 |
||
360 |
{ |
|
361 |
fix n have "a ^ n * x \<le> x" |
|
362 |
proof (induct n) |
|
363 |
case 0 show ?case by simp |
|
364 |
next |
|
365 |
case (Suc n) with a[of n] |
|
366 |
show ?case by simp |
|
367 |
qed |
|
368 |
} |
|
369 |
note b = this |
|
370 |
||
371 |
show "star a * x \<le> x" |
|
372 |
unfolding star_cont[of 1 a x, simplified] |
|
373 |
by (rule SUP_leI) (rule b) |
|
374 |
qed |
|
375 |
||
376 |
show "x * a \<le> x \<Longrightarrow> x * star a \<le> x" (* symmetric *) |
|
377 |
proof - |
|
378 |
assume a: "x * a \<le> x" |
|
379 |
||
380 |
{ |
|
381 |
fix n |
|
382 |
have "x * a ^ (Suc n) \<le> x * a ^ n" |
|
383 |
proof (induct n) |
|
384 |
case 0 thus ?case by (simp add: a) |
|
385 |
next |
|
386 |
case (Suc n) |
|
387 |
hence "(x * a ^ Suc n) * a \<le> (x * a ^ n) * a" |
|
388 |
by (auto intro: mult_mono) |
|
389 |
thus ?case |
|
390 |
by (simp add: power_commutes mult_assoc) |
|
391 |
qed |
|
392 |
} |
|
393 |
note a = this |
|
394 |
||
395 |
{ |
|
396 |
fix n have "x * a ^ n \<le> x" |
|
397 |
proof (induct n) |
|
398 |
case 0 show ?case by simp |
|
399 |
next |
|
400 |
case (Suc n) with a[of n] |
|
401 |
show ?case by simp |
|
402 |
qed |
|
403 |
} |
|
404 |
note b = this |
|
405 |
||
406 |
show "x * star a \<le> x" |
|
407 |
unfolding star_cont[of x a 1, simplified] |
|
408 |
by (rule SUP_leI) (rule b) |
|
409 |
qed |
|
410 |
qed |
|
411 |
||
412 |
end |
|
413 |
||
414 |
||
415 |
subsection {* Transitive Closure *} |
|
416 |
||
417 |
context kleene |
|
418 |
begin |
|
419 |
||
420 |
definition |
|
421 |
tcl_def: "tcl x = star x * x" |
|
422 |
||
423 |
lemma tcl_zero: "tcl 0 = 0" |
|
424 |
unfolding tcl_def by simp |
|
425 |
||
426 |
lemma tcl_unfold_right: "tcl a = a + tcl a * a" |
|
427 |
proof - |
|
428 |
from star_unfold_right[of a] |
|
429 |
have "a * (1 + star a * a) = a * star a" by simp |
|
430 |
from this[simplified right_distrib, simplified] |
|
431 |
show ?thesis |
|
432 |
by (simp add:tcl_def mult_assoc) |
|
433 |
qed |
|
434 |
||
435 |
lemma less_tcl: "a \<le> tcl a" |
|
436 |
proof - |
|
437 |
have "a \<le> a + tcl a * a" by simp |
|
438 |
also have "\<dots> = tcl a" by (rule tcl_unfold_right[symmetric]) |
|
439 |
finally show ?thesis . |
|
440 |
qed |
|
441 |
||
442 |
end |
|
443 |
||
444 |
||
445 |
subsection {* Naive Algorithm to generate the transitive closure *} |
|
446 |
||
447 |
function (default "\<lambda>x. 0", tailrec, domintros) |
|
448 |
mk_tcl :: "('a::{plus,times,ord,zero}) \<Rightarrow> 'a \<Rightarrow> 'a" |
|
449 |
where |
|
450 |
"mk_tcl A X = (if X * A \<le> X then X else mk_tcl A (X + X * A))" |
|
451 |
by pat_completeness simp |
|
452 |
||
453 |
declare mk_tcl.simps[simp del] (* loops *) |
|
454 |
||
455 |
lemma mk_tcl_code[code]: |
|
456 |
"mk_tcl A X = |
|
457 |
(let XA = X * A |
|
458 |
in if XA \<le> X then X else mk_tcl A (X + XA))" |
|
459 |
unfolding mk_tcl.simps[of A X] Let_def .. |
|
460 |
||
461 |
context kleene |
|
462 |
begin |
|
463 |
||
464 |
lemma mk_tcl_lemma1: |
|
465 |
"(X + X * A) * star A = X * star A" |
|
466 |
proof - |
|
467 |
have "A * star A \<le> 1 + A * star A" by simp |
|
468 |
also have "\<dots> = star A" by (simp add:star_unfold_left) |
|
469 |
finally have "star A + A * star A = star A" by simp |
|
470 |
hence "X * (star A + A * star A) = X * star A" by simp |
|
471 |
thus ?thesis by (simp add:left_distrib right_distrib mult_assoc) |
|
472 |
qed |
|
473 |
||
474 |
lemma mk_tcl_lemma2: |
|
475 |
shows "X * A \<le> X \<Longrightarrow> X * star A = X" |
|
476 |
by (rule antisym) (auto simp:star4) |
|
477 |
||
478 |
end |
|
479 |
||
480 |
lemma mk_tcl_correctness: |
|
481 |
fixes X :: "'a::kleene" |
|
482 |
assumes "mk_tcl_dom (A, X)" |
|
483 |
shows "mk_tcl A X = X * star A" |
|
484 |
using assms |
|
485 |
by induct (auto simp: mk_tcl_lemma1 mk_tcl_lemma2) |
|
486 |
||
487 |
||
488 |
lemma graph_implies_dom: "mk_tcl_graph x y \<Longrightarrow> mk_tcl_dom x" |
|
489 |
by (rule mk_tcl_graph.induct) (auto intro:accp.accI elim:mk_tcl_rel.cases) |
|
490 |
||
491 |
lemma mk_tcl_default: "\<not> mk_tcl_dom (a,x) \<Longrightarrow> mk_tcl a x = 0" |
|
492 |
unfolding mk_tcl_def |
|
493 |
by (rule fundef_default_value[OF mk_tcl_sumC_def graph_implies_dom]) |
|
494 |
||
495 |
||
496 |
text {* We can replace the dom-Condition of the correctness theorem |
|
497 |
with something executable *} |
|
498 |
||
499 |
lemma mk_tcl_correctness2: |
|
500 |
fixes A X :: "'a :: {kleene}" |
|
501 |
assumes "mk_tcl A A \<noteq> 0" |
|
502 |
shows "mk_tcl A A = tcl A" |
|
503 |
using assms mk_tcl_default mk_tcl_correctness |
|
504 |
unfolding tcl_def |
|
505 |
by auto |
|
506 |
||
507 |
end |