| author | paulson <lp15@cam.ac.uk> | 
| Thu, 29 May 2014 14:39:19 +0100 | |
| changeset 57113 | 7e95523302e6 | 
| parent 53241 | effd8fcabca2 | 
| child 57418 | 6ab1c7cb0b8d | 
| permissions | -rw-r--r-- | 
| 13020 | 1 | header {* \section{Examples} *}
 | 
| 2 | ||
| 16417 | 3 | theory OG_Examples imports OG_Syntax begin | 
| 13020 | 4 | |
| 5 | subsection {* Mutual Exclusion *}
 | |
| 6 | ||
| 7 | subsubsection {* Peterson's Algorithm I*}
 | |
| 8 | ||
| 9 | text {* Eike Best. "Semantics of Sequential and Parallel Programs", page 217. *}
 | |
| 10 | ||
| 11 | record Petersons_mutex_1 = | |
| 12 | pr1 :: nat | |
| 13 | pr2 :: nat | |
| 14 | in1 :: bool | |
| 15 | in2 :: bool | |
| 16 | hold :: nat | |
| 17 | ||
| 18 | lemma Petersons_mutex_1: | |
| 53241 | 19 | "\<parallel>- \<lbrace>\<acute>pr1=0 \<and> \<not>\<acute>in1 \<and> \<acute>pr2=0 \<and> \<not>\<acute>in2 \<rbrace> | 
| 20 | COBEGIN \<lbrace>\<acute>pr1=0 \<and> \<not>\<acute>in1\<rbrace> | |
| 21 | WHILE True INV \<lbrace>\<acute>pr1=0 \<and> \<not>\<acute>in1\<rbrace> | |
| 13020 | 22 | DO | 
| 53241 | 23 | \<lbrace>\<acute>pr1=0 \<and> \<not>\<acute>in1\<rbrace> \<langle> \<acute>in1:=True,,\<acute>pr1:=1 \<rangle>;; | 
| 24 | \<lbrace>\<acute>pr1=1 \<and> \<acute>in1\<rbrace> \<langle> \<acute>hold:=1,,\<acute>pr1:=2 \<rangle>;; | |
| 25 | \<lbrace>\<acute>pr1=2 \<and> \<acute>in1 \<and> (\<acute>hold=1 \<or> \<acute>hold=2 \<and> \<acute>pr2=2)\<rbrace> | |
| 13020 | 26 | AWAIT (\<not>\<acute>in2 \<or> \<not>(\<acute>hold=1)) THEN \<acute>pr1:=3 END;; | 
| 53241 | 27 | \<lbrace>\<acute>pr1=3 \<and> \<acute>in1 \<and> (\<acute>hold=1 \<or> \<acute>hold=2 \<and> \<acute>pr2=2)\<rbrace> | 
| 13020 | 28 | \<langle>\<acute>in1:=False,,\<acute>pr1:=0\<rangle> | 
| 53241 | 29 | OD \<lbrace>\<acute>pr1=0 \<and> \<not>\<acute>in1\<rbrace> | 
| 13020 | 30 | \<parallel> | 
| 53241 | 31 | \<lbrace>\<acute>pr2=0 \<and> \<not>\<acute>in2\<rbrace> | 
| 32 | WHILE True INV \<lbrace>\<acute>pr2=0 \<and> \<not>\<acute>in2\<rbrace> | |
| 13020 | 33 | DO | 
| 53241 | 34 | \<lbrace>\<acute>pr2=0 \<and> \<not>\<acute>in2\<rbrace> \<langle> \<acute>in2:=True,,\<acute>pr2:=1 \<rangle>;; | 
| 35 | \<lbrace>\<acute>pr2=1 \<and> \<acute>in2\<rbrace> \<langle> \<acute>hold:=2,,\<acute>pr2:=2 \<rangle>;; | |
| 36 | \<lbrace>\<acute>pr2=2 \<and> \<acute>in2 \<and> (\<acute>hold=2 \<or> (\<acute>hold=1 \<and> \<acute>pr1=2))\<rbrace> | |
| 13020 | 37 | AWAIT (\<not>\<acute>in1 \<or> \<not>(\<acute>hold=2)) THEN \<acute>pr2:=3 END;; | 
| 53241 | 38 | \<lbrace>\<acute>pr2=3 \<and> \<acute>in2 \<and> (\<acute>hold=2 \<or> (\<acute>hold=1 \<and> \<acute>pr1=2))\<rbrace> | 
| 13020 | 39 | \<langle>\<acute>in2:=False,,\<acute>pr2:=0\<rangle> | 
| 53241 | 40 | OD \<lbrace>\<acute>pr2=0 \<and> \<not>\<acute>in2\<rbrace> | 
| 13020 | 41 | COEND | 
| 53241 | 42 | \<lbrace>\<acute>pr1=0 \<and> \<not>\<acute>in1 \<and> \<acute>pr2=0 \<and> \<not>\<acute>in2\<rbrace>" | 
| 13020 | 43 | apply oghoare | 
| 44 | --{* 104 verification conditions. *}
 | |
| 45 | apply auto | |
| 46 | done | |
| 47 | ||
| 48 | subsubsection {*Peterson's Algorithm II: A Busy Wait Solution *}
 | |
| 49 | ||
| 50 | text {* Apt and Olderog. "Verification of sequential and concurrent Programs", page 282. *}
 | |
| 51 | ||
| 52 | record Busy_wait_mutex = | |
| 53 | flag1 :: bool | |
| 54 | flag2 :: bool | |
| 55 | turn :: nat | |
| 56 | after1 :: bool | |
| 57 | after2 :: bool | |
| 58 | ||
| 59 | lemma Busy_wait_mutex: | |
| 53241 | 60 | "\<parallel>- \<lbrace>True\<rbrace> | 
| 13020 | 61 | \<acute>flag1:=False,, \<acute>flag2:=False,, | 
| 53241 | 62 | COBEGIN \<lbrace>\<not>\<acute>flag1\<rbrace> | 
| 13020 | 63 | WHILE True | 
| 53241 | 64 | INV \<lbrace>\<not>\<acute>flag1\<rbrace> | 
| 65 | DO \<lbrace>\<not>\<acute>flag1\<rbrace> \<langle> \<acute>flag1:=True,,\<acute>after1:=False \<rangle>;; | |
| 66 | \<lbrace>\<acute>flag1 \<and> \<not>\<acute>after1\<rbrace> \<langle> \<acute>turn:=1,,\<acute>after1:=True \<rangle>;; | |
| 67 | \<lbrace>\<acute>flag1 \<and> \<acute>after1 \<and> (\<acute>turn=1 \<or> \<acute>turn=2)\<rbrace> | |
| 13020 | 68 | WHILE \<not>(\<acute>flag2 \<longrightarrow> \<acute>turn=2) | 
| 53241 | 69 | INV \<lbrace>\<acute>flag1 \<and> \<acute>after1 \<and> (\<acute>turn=1 \<or> \<acute>turn=2)\<rbrace> | 
| 70 | DO \<lbrace>\<acute>flag1 \<and> \<acute>after1 \<and> (\<acute>turn=1 \<or> \<acute>turn=2)\<rbrace> SKIP OD;; | |
| 71 | \<lbrace>\<acute>flag1 \<and> \<acute>after1 \<and> (\<acute>flag2 \<and> \<acute>after2 \<longrightarrow> \<acute>turn=2)\<rbrace> | |
| 13020 | 72 | \<acute>flag1:=False | 
| 73 | OD | |
| 53241 | 74 | \<lbrace>False\<rbrace> | 
| 13020 | 75 | \<parallel> | 
| 53241 | 76 | \<lbrace>\<not>\<acute>flag2\<rbrace> | 
| 13020 | 77 | WHILE True | 
| 53241 | 78 | INV \<lbrace>\<not>\<acute>flag2\<rbrace> | 
| 79 | DO \<lbrace>\<not>\<acute>flag2\<rbrace> \<langle> \<acute>flag2:=True,,\<acute>after2:=False \<rangle>;; | |
| 80 | \<lbrace>\<acute>flag2 \<and> \<not>\<acute>after2\<rbrace> \<langle> \<acute>turn:=2,,\<acute>after2:=True \<rangle>;; | |
| 81 | \<lbrace>\<acute>flag2 \<and> \<acute>after2 \<and> (\<acute>turn=1 \<or> \<acute>turn=2)\<rbrace> | |
| 13020 | 82 | WHILE \<not>(\<acute>flag1 \<longrightarrow> \<acute>turn=1) | 
| 53241 | 83 | INV \<lbrace>\<acute>flag2 \<and> \<acute>after2 \<and> (\<acute>turn=1 \<or> \<acute>turn=2)\<rbrace> | 
| 84 | DO \<lbrace>\<acute>flag2 \<and> \<acute>after2 \<and> (\<acute>turn=1 \<or> \<acute>turn=2)\<rbrace> SKIP OD;; | |
| 85 | \<lbrace>\<acute>flag2 \<and> \<acute>after2 \<and> (\<acute>flag1 \<and> \<acute>after1 \<longrightarrow> \<acute>turn=1)\<rbrace> | |
| 13020 | 86 | \<acute>flag2:=False | 
| 87 | OD | |
| 53241 | 88 | \<lbrace>False\<rbrace> | 
| 13020 | 89 | COEND | 
| 53241 | 90 | \<lbrace>False\<rbrace>" | 
| 13020 | 91 | apply oghoare | 
| 92 | --{* 122 vc *}
 | |
| 93 | apply auto | |
| 94 | done | |
| 95 | ||
| 96 | subsubsection {* Peterson's Algorithm III: A Solution using Semaphores  *}
 | |
| 97 | ||
| 98 | record Semaphores_mutex = | |
| 99 | out :: bool | |
| 100 | who :: nat | |
| 101 | ||
| 102 | lemma Semaphores_mutex: | |
| 53241 | 103 | "\<parallel>- \<lbrace>i\<noteq>j\<rbrace> | 
| 13020 | 104 | \<acute>out:=True ,, | 
| 53241 | 105 | COBEGIN \<lbrace>i\<noteq>j\<rbrace> | 
| 106 | WHILE True INV \<lbrace>i\<noteq>j\<rbrace> | |
| 107 | DO \<lbrace>i\<noteq>j\<rbrace> AWAIT \<acute>out THEN \<acute>out:=False,, \<acute>who:=i END;; | |
| 108 | \<lbrace>\<not>\<acute>out \<and> \<acute>who=i \<and> i\<noteq>j\<rbrace> \<acute>out:=True OD | |
| 109 | \<lbrace>False\<rbrace> | |
| 13020 | 110 | \<parallel> | 
| 53241 | 111 | \<lbrace>i\<noteq>j\<rbrace> | 
| 112 | WHILE True INV \<lbrace>i\<noteq>j\<rbrace> | |
| 113 | DO \<lbrace>i\<noteq>j\<rbrace> AWAIT \<acute>out THEN \<acute>out:=False,,\<acute>who:=j END;; | |
| 114 | \<lbrace>\<not>\<acute>out \<and> \<acute>who=j \<and> i\<noteq>j\<rbrace> \<acute>out:=True OD | |
| 115 | \<lbrace>False\<rbrace> | |
| 13020 | 116 | COEND | 
| 53241 | 117 | \<lbrace>False\<rbrace>" | 
| 13020 | 118 | apply oghoare | 
| 119 | --{* 38 vc *}
 | |
| 120 | apply auto | |
| 121 | done | |
| 122 | ||
| 123 | subsubsection {* Peterson's Algorithm III: Parameterized version: *}
 | |
| 124 | ||
| 125 | lemma Semaphores_parameterized_mutex: | |
| 53241 | 126 | "0<n \<Longrightarrow> \<parallel>- \<lbrace>True\<rbrace> | 
| 13020 | 127 | \<acute>out:=True ,, | 
| 128 | COBEGIN | |
| 129 | SCHEME [0\<le> i< n] | |
| 53241 | 130 | \<lbrace>True\<rbrace> | 
| 131 | WHILE True INV \<lbrace>True\<rbrace> | |
| 132 | DO \<lbrace>True\<rbrace> AWAIT \<acute>out THEN \<acute>out:=False,, \<acute>who:=i END;; | |
| 133 | \<lbrace>\<not>\<acute>out \<and> \<acute>who=i\<rbrace> \<acute>out:=True OD | |
| 134 | \<lbrace>False\<rbrace> | |
| 13020 | 135 | COEND | 
| 53241 | 136 | \<lbrace>False\<rbrace>" | 
| 13020 | 137 | apply oghoare | 
| 13187 | 138 | --{* 20 vc *}
 | 
| 13020 | 139 | apply auto | 
| 140 | done | |
| 141 | ||
| 142 | subsubsection{* The Ticket Algorithm *}
 | |
| 143 | ||
| 144 | record Ticket_mutex = | |
| 145 | num :: nat | |
| 146 | nextv :: nat | |
| 147 | turn :: "nat list" | |
| 148 | index :: nat | |
| 149 | ||
| 150 | lemma Ticket_mutex: | |
| 151 | "\<lbrakk> 0<n; I=\<guillemotleft>n=length \<acute>turn \<and> 0<\<acute>nextv \<and> (\<forall>k l. k<n \<and> l<n \<and> k\<noteq>l | |
| 152 | \<longrightarrow> \<acute>turn!k < \<acute>num \<and> (\<acute>turn!k =0 \<or> \<acute>turn!k\<noteq>\<acute>turn!l))\<guillemotright> \<rbrakk> | |
| 53241 | 153 | \<Longrightarrow> \<parallel>- \<lbrace>n=length \<acute>turn\<rbrace> | 
| 13020 | 154 | \<acute>index:= 0,, | 
| 53241 | 155 | WHILE \<acute>index < n INV \<lbrace>n=length \<acute>turn \<and> (\<forall>i<\<acute>index. \<acute>turn!i=0)\<rbrace> | 
| 13020 | 156 | DO \<acute>turn:= \<acute>turn[\<acute>index:=0],, \<acute>index:=\<acute>index +1 OD,, | 
| 157 | \<acute>num:=1 ,, \<acute>nextv:=1 ,, | |
| 158 | COBEGIN | |
| 159 | SCHEME [0\<le> i< n] | |
| 53241 | 160 | \<lbrace>\<acute>I\<rbrace> | 
| 161 | WHILE True INV \<lbrace>\<acute>I\<rbrace> | |
| 162 | DO \<lbrace>\<acute>I\<rbrace> \<langle> \<acute>turn :=\<acute>turn[i:=\<acute>num],, \<acute>num:=\<acute>num+1 \<rangle>;; | |
| 163 | \<lbrace>\<acute>I\<rbrace> WAIT \<acute>turn!i=\<acute>nextv END;; | |
| 164 | \<lbrace>\<acute>I \<and> \<acute>turn!i=\<acute>nextv\<rbrace> \<acute>nextv:=\<acute>nextv+1 | |
| 13020 | 165 | OD | 
| 53241 | 166 | \<lbrace>False\<rbrace> | 
| 13020 | 167 | COEND | 
| 53241 | 168 | \<lbrace>False\<rbrace>" | 
| 13020 | 169 | apply oghoare | 
| 170 | --{* 35 vc *}
 | |
| 171 | apply simp_all | |
| 13187 | 172 | --{* 21 vc *}
 | 
| 42793 | 173 | apply(tactic {* ALLGOALS (clarify_tac @{context}) *})
 | 
| 13187 | 174 | --{* 11 vc *}
 | 
| 13020 | 175 | apply simp_all | 
| 42793 | 176 | apply(tactic {* ALLGOALS (clarify_tac @{context}) *})
 | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16417diff
changeset | 177 | --{* 10 subgoals left *}
 | 
| 13020 | 178 | apply(erule less_SucE) | 
| 179 | apply simp | |
| 180 | apply simp | |
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16417diff
changeset | 181 | --{* 9 subgoals left *}
 | 
| 13020 | 182 | apply(case_tac "i=k") | 
| 183 | apply force | |
| 184 | apply simp | |
| 185 | apply(case_tac "i=l") | |
| 186 | apply force | |
| 187 | apply force | |
| 188 | --{* 8 subgoals left *}
 | |
| 189 | prefer 8 | |
| 190 | apply force | |
| 191 | apply force | |
| 192 | --{* 6 subgoals left *}
 | |
| 193 | prefer 6 | |
| 194 | apply(erule_tac x=i in allE) | |
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
42793diff
changeset | 195 | apply fastforce | 
| 13020 | 196 | --{* 5 subgoals left *}
 | 
| 197 | prefer 5 | |
| 27095 | 198 | apply(case_tac [!] "j=k") | 
| 13187 | 199 | --{* 10 subgoals left *}
 | 
| 13020 | 200 | apply simp_all | 
| 13601 | 201 | apply(erule_tac x=k in allE) | 
| 13020 | 202 | apply force | 
| 13187 | 203 | --{* 9 subgoals left *}
 | 
| 13020 | 204 | apply(case_tac "j=l") | 
| 205 | apply simp | |
| 206 | apply(erule_tac x=k in allE) | |
| 207 | apply(erule_tac x=k in allE) | |
| 208 | apply(erule_tac x=l in allE) | |
| 209 | apply force | |
| 210 | apply(erule_tac x=k in allE) | |
| 211 | apply(erule_tac x=k in allE) | |
| 212 | apply(erule_tac x=l in allE) | |
| 213 | apply force | |
| 214 | --{* 8 subgoals left *}
 | |
| 215 | apply force | |
| 216 | apply(case_tac "j=l") | |
| 217 | apply simp | |
| 218 | apply(erule_tac x=k in allE) | |
| 219 | apply(erule_tac x=l in allE) | |
| 220 | apply force | |
| 221 | apply force | |
| 222 | apply force | |
| 13187 | 223 | --{* 5 subgoals left *}
 | 
| 13020 | 224 | apply(erule_tac x=k in allE) | 
| 225 | apply(erule_tac x=l in allE) | |
| 226 | apply(case_tac "j=l") | |
| 227 | apply force | |
| 228 | apply force | |
| 229 | apply force | |
| 13187 | 230 | --{* 3 subgoals left *}
 | 
| 13020 | 231 | apply(erule_tac x=k in allE) | 
| 232 | apply(erule_tac x=l in allE) | |
| 233 | apply(case_tac "j=l") | |
| 234 | apply force | |
| 235 | apply force | |
| 236 | apply force | |
| 13187 | 237 | --{* 1 subgoals left *}
 | 
| 13020 | 238 | apply(erule_tac x=k in allE) | 
| 239 | apply(erule_tac x=l in allE) | |
| 240 | apply(case_tac "j=l") | |
| 241 | apply force | |
| 242 | apply force | |
| 243 | done | |
| 244 | ||
| 245 | subsection{* Parallel Zero Search *}
 | |
| 246 | ||
| 247 | text {* Synchronized Zero Search. Zero-6 *}
 | |
| 248 | ||
| 249 | text {*Apt and Olderog. "Verification of sequential and concurrent Programs" page 294: *}
 | |
| 250 | ||
| 251 | record Zero_search = | |
| 252 | turn :: nat | |
| 253 | found :: bool | |
| 254 | x :: nat | |
| 255 | y :: nat | |
| 256 | ||
| 257 | lemma Zero_search: | |
| 258 | "\<lbrakk>I1= \<guillemotleft> a\<le>\<acute>x \<and> (\<acute>found \<longrightarrow> (a<\<acute>x \<and> f(\<acute>x)=0) \<or> (\<acute>y\<le>a \<and> f(\<acute>y)=0)) | |
| 259 | \<and> (\<not>\<acute>found \<and> a<\<acute> x \<longrightarrow> f(\<acute>x)\<noteq>0) \<guillemotright> ; | |
| 260 | I2= \<guillemotleft>\<acute>y\<le>a+1 \<and> (\<acute>found \<longrightarrow> (a<\<acute>x \<and> f(\<acute>x)=0) \<or> (\<acute>y\<le>a \<and> f(\<acute>y)=0)) | |
| 261 | \<and> (\<not>\<acute>found \<and> \<acute>y\<le>a \<longrightarrow> f(\<acute>y)\<noteq>0) \<guillemotright> \<rbrakk> \<Longrightarrow> | |
| 53241 | 262 | \<parallel>- \<lbrace>\<exists> u. f(u)=0\<rbrace> | 
| 13020 | 263 | \<acute>turn:=1,, \<acute>found:= False,, | 
| 264 | \<acute>x:=a,, \<acute>y:=a+1 ,, | |
| 53241 | 265 | COBEGIN \<lbrace>\<acute>I1\<rbrace> | 
| 13020 | 266 | WHILE \<not>\<acute>found | 
| 53241 | 267 | INV \<lbrace>\<acute>I1\<rbrace> | 
| 268 | DO \<lbrace>a\<le>\<acute>x \<and> (\<acute>found \<longrightarrow> \<acute>y\<le>a \<and> f(\<acute>y)=0) \<and> (a<\<acute>x \<longrightarrow> f(\<acute>x)\<noteq>0)\<rbrace> | |
| 13020 | 269 | WAIT \<acute>turn=1 END;; | 
| 53241 | 270 | \<lbrace>a\<le>\<acute>x \<and> (\<acute>found \<longrightarrow> \<acute>y\<le>a \<and> f(\<acute>y)=0) \<and> (a<\<acute>x \<longrightarrow> f(\<acute>x)\<noteq>0)\<rbrace> | 
| 13020 | 271 | \<acute>turn:=2;; | 
| 53241 | 272 | \<lbrace>a\<le>\<acute>x \<and> (\<acute>found \<longrightarrow> \<acute>y\<le>a \<and> f(\<acute>y)=0) \<and> (a<\<acute>x \<longrightarrow> f(\<acute>x)\<noteq>0)\<rbrace> | 
| 13020 | 273 | \<langle> \<acute>x:=\<acute>x+1,, | 
| 274 | IF f(\<acute>x)=0 THEN \<acute>found:=True ELSE SKIP FI\<rangle> | |
| 275 | OD;; | |
| 53241 | 276 | \<lbrace>\<acute>I1 \<and> \<acute>found\<rbrace> | 
| 13020 | 277 | \<acute>turn:=2 | 
| 53241 | 278 | \<lbrace>\<acute>I1 \<and> \<acute>found\<rbrace> | 
| 13020 | 279 | \<parallel> | 
| 53241 | 280 | \<lbrace>\<acute>I2\<rbrace> | 
| 13020 | 281 | WHILE \<not>\<acute>found | 
| 53241 | 282 | INV \<lbrace>\<acute>I2\<rbrace> | 
| 283 | DO \<lbrace>\<acute>y\<le>a+1 \<and> (\<acute>found \<longrightarrow> a<\<acute>x \<and> f(\<acute>x)=0) \<and> (\<acute>y\<le>a \<longrightarrow> f(\<acute>y)\<noteq>0)\<rbrace> | |
| 13020 | 284 | WAIT \<acute>turn=2 END;; | 
| 53241 | 285 | \<lbrace>\<acute>y\<le>a+1 \<and> (\<acute>found \<longrightarrow> a<\<acute>x \<and> f(\<acute>x)=0) \<and> (\<acute>y\<le>a \<longrightarrow> f(\<acute>y)\<noteq>0)\<rbrace> | 
| 13020 | 286 | \<acute>turn:=1;; | 
| 53241 | 287 | \<lbrace>\<acute>y\<le>a+1 \<and> (\<acute>found \<longrightarrow> a<\<acute>x \<and> f(\<acute>x)=0) \<and> (\<acute>y\<le>a \<longrightarrow> f(\<acute>y)\<noteq>0)\<rbrace> | 
| 13020 | 288 | \<langle> \<acute>y:=(\<acute>y - 1),, | 
| 289 | IF f(\<acute>y)=0 THEN \<acute>found:=True ELSE SKIP FI\<rangle> | |
| 290 | OD;; | |
| 53241 | 291 | \<lbrace>\<acute>I2 \<and> \<acute>found\<rbrace> | 
| 13020 | 292 | \<acute>turn:=1 | 
| 53241 | 293 | \<lbrace>\<acute>I2 \<and> \<acute>found\<rbrace> | 
| 13020 | 294 | COEND | 
| 53241 | 295 | \<lbrace>f(\<acute>x)=0 \<or> f(\<acute>y)=0\<rbrace>" | 
| 13020 | 296 | apply oghoare | 
| 297 | --{* 98 verification conditions *}
 | |
| 298 | apply auto | |
| 299 | --{* auto takes about 3 minutes !! *}
 | |
| 300 | done | |
| 301 | ||
| 302 | text {* Easier Version: without AWAIT.  Apt and Olderog. page 256: *}
 | |
| 303 | ||
| 304 | lemma Zero_Search_2: | |
| 305 | "\<lbrakk>I1=\<guillemotleft> a\<le>\<acute>x \<and> (\<acute>found \<longrightarrow> (a<\<acute>x \<and> f(\<acute>x)=0) \<or> (\<acute>y\<le>a \<and> f(\<acute>y)=0)) | |
| 306 | \<and> (\<not>\<acute>found \<and> a<\<acute>x \<longrightarrow> f(\<acute>x)\<noteq>0)\<guillemotright>; | |
| 307 | I2= \<guillemotleft>\<acute>y\<le>a+1 \<and> (\<acute>found \<longrightarrow> (a<\<acute>x \<and> f(\<acute>x)=0) \<or> (\<acute>y\<le>a \<and> f(\<acute>y)=0)) | |
| 308 | \<and> (\<not>\<acute>found \<and> \<acute>y\<le>a \<longrightarrow> f(\<acute>y)\<noteq>0)\<guillemotright>\<rbrakk> \<Longrightarrow> | |
| 53241 | 309 | \<parallel>- \<lbrace>\<exists>u. f(u)=0\<rbrace> | 
| 13020 | 310 | \<acute>found:= False,, | 
| 311 | \<acute>x:=a,, \<acute>y:=a+1,, | |
| 53241 | 312 | COBEGIN \<lbrace>\<acute>I1\<rbrace> | 
| 13020 | 313 | WHILE \<not>\<acute>found | 
| 53241 | 314 | INV \<lbrace>\<acute>I1\<rbrace> | 
| 315 | DO \<lbrace>a\<le>\<acute>x \<and> (\<acute>found \<longrightarrow> \<acute>y\<le>a \<and> f(\<acute>y)=0) \<and> (a<\<acute>x \<longrightarrow> f(\<acute>x)\<noteq>0)\<rbrace> | |
| 13020 | 316 | \<langle> \<acute>x:=\<acute>x+1,,IF f(\<acute>x)=0 THEN \<acute>found:=True ELSE SKIP FI\<rangle> | 
| 317 | OD | |
| 53241 | 318 | \<lbrace>\<acute>I1 \<and> \<acute>found\<rbrace> | 
| 13020 | 319 | \<parallel> | 
| 53241 | 320 | \<lbrace>\<acute>I2\<rbrace> | 
| 13020 | 321 | WHILE \<not>\<acute>found | 
| 53241 | 322 | INV \<lbrace>\<acute>I2\<rbrace> | 
| 323 | DO \<lbrace>\<acute>y\<le>a+1 \<and> (\<acute>found \<longrightarrow> a<\<acute>x \<and> f(\<acute>x)=0) \<and> (\<acute>y\<le>a \<longrightarrow> f(\<acute>y)\<noteq>0)\<rbrace> | |
| 13020 | 324 | \<langle> \<acute>y:=(\<acute>y - 1),,IF f(\<acute>y)=0 THEN \<acute>found:=True ELSE SKIP FI\<rangle> | 
| 325 | OD | |
| 53241 | 326 | \<lbrace>\<acute>I2 \<and> \<acute>found\<rbrace> | 
| 13020 | 327 | COEND | 
| 53241 | 328 | \<lbrace>f(\<acute>x)=0 \<or> f(\<acute>y)=0\<rbrace>" | 
| 13020 | 329 | apply oghoare | 
| 330 | --{* 20 vc *}
 | |
| 331 | apply auto | |
| 332 | --{* auto takes aprox. 2 minutes. *}
 | |
| 333 | done | |
| 334 | ||
| 335 | subsection {* Producer/Consumer *}
 | |
| 336 | ||
| 337 | subsubsection {* Previous lemmas *}
 | |
| 338 | ||
| 13517 | 339 | lemma nat_lemma2: "\<lbrakk> b = m*(n::nat) + t; a = s*n + u; t=u; b-a < n \<rbrakk> \<Longrightarrow> m \<le> s" | 
| 13020 | 340 | proof - | 
| 13517 | 341 | assume "b = m*(n::nat) + t" "a = s*n + u" "t=u" | 
| 13020 | 342 | hence "(m - s) * n = b - a" by (simp add: diff_mult_distrib) | 
| 343 | also assume "\<dots> < n" | |
| 344 | finally have "m - s < 1" by simp | |
| 345 | thus ?thesis by arith | |
| 346 | qed | |
| 347 | ||
| 348 | lemma mod_lemma: "\<lbrakk> (c::nat) \<le> a; a < b; b - c < n \<rbrakk> \<Longrightarrow> b mod n \<noteq> a mod n" | |
| 349 | apply(subgoal_tac "b=b div n*n + b mod n" ) | |
| 350 | prefer 2 apply (simp add: mod_div_equality [symmetric]) | |
| 351 | apply(subgoal_tac "a=a div n*n + a mod n") | |
| 352 | prefer 2 | |
| 353 | apply(simp add: mod_div_equality [symmetric]) | |
| 13517 | 354 | apply(subgoal_tac "b - a \<le> b - c") | 
| 355 | prefer 2 apply arith | |
| 13020 | 356 | apply(drule le_less_trans) | 
| 357 | back | |
| 358 | apply assumption | |
| 359 | apply(frule less_not_refl2) | |
| 360 | apply(drule less_imp_le) | |
| 13517 | 361 | apply (drule_tac m = "a" and k = n in div_le_mono) | 
| 13020 | 362 | apply(safe) | 
| 13517 | 363 | apply(frule_tac b = "b" and a = "a" and n = "n" in nat_lemma2, assumption, assumption) | 
| 13020 | 364 | apply assumption | 
| 13517 | 365 | apply(drule order_antisym, assumption) | 
| 366 | apply(rotate_tac -3) | |
| 13020 | 367 | apply(simp) | 
| 368 | done | |
| 369 | ||
| 13517 | 370 | |
| 13020 | 371 | subsubsection {* Producer/Consumer Algorithm *}
 | 
| 372 | ||
| 373 | record Producer_consumer = | |
| 374 | ins :: nat | |
| 375 | outs :: nat | |
| 376 | li :: nat | |
| 377 | lj :: nat | |
| 378 | vx :: nat | |
| 379 | vy :: nat | |
| 380 | buffer :: "nat list" | |
| 381 | b :: "nat list" | |
| 382 | ||
| 383 | text {* The whole proof takes aprox. 4 minutes. *}
 | |
| 384 | ||
| 385 | lemma Producer_consumer: | |
| 386 | "\<lbrakk>INIT= \<guillemotleft>0<length a \<and> 0<length \<acute>buffer \<and> length \<acute>b=length a\<guillemotright> ; | |
| 387 | I= \<guillemotleft>(\<forall>k<\<acute>ins. \<acute>outs\<le>k \<longrightarrow> (a ! k) = \<acute>buffer ! (k mod (length \<acute>buffer))) \<and> | |
| 388 | \<acute>outs\<le>\<acute>ins \<and> \<acute>ins-\<acute>outs\<le>length \<acute>buffer\<guillemotright> ; | |
| 389 | I1= \<guillemotleft>\<acute>I \<and> \<acute>li\<le>length a\<guillemotright> ; | |
| 390 | p1= \<guillemotleft>\<acute>I1 \<and> \<acute>li=\<acute>ins\<guillemotright> ; | |
| 391 | I2 = \<guillemotleft>\<acute>I \<and> (\<forall>k<\<acute>lj. (a ! k)=(\<acute>b ! k)) \<and> \<acute>lj\<le>length a\<guillemotright> ; | |
| 392 | p2 = \<guillemotleft>\<acute>I2 \<and> \<acute>lj=\<acute>outs\<guillemotright> \<rbrakk> \<Longrightarrow> | |
| 53241 | 393 | \<parallel>- \<lbrace>\<acute>INIT\<rbrace> | 
| 13020 | 394 | \<acute>ins:=0,, \<acute>outs:=0,, \<acute>li:=0,, \<acute>lj:=0,, | 
| 53241 | 395 | COBEGIN \<lbrace>\<acute>p1 \<and> \<acute>INIT\<rbrace> | 
| 13020 | 396 | WHILE \<acute>li <length a | 
| 53241 | 397 | INV \<lbrace>\<acute>p1 \<and> \<acute>INIT\<rbrace> | 
| 398 | DO \<lbrace>\<acute>p1 \<and> \<acute>INIT \<and> \<acute>li<length a\<rbrace> | |
| 13020 | 399 | \<acute>vx:= (a ! \<acute>li);; | 
| 53241 | 400 | \<lbrace>\<acute>p1 \<and> \<acute>INIT \<and> \<acute>li<length a \<and> \<acute>vx=(a ! \<acute>li)\<rbrace> | 
| 13020 | 401 | WAIT \<acute>ins-\<acute>outs < length \<acute>buffer END;; | 
| 53241 | 402 | \<lbrace>\<acute>p1 \<and> \<acute>INIT \<and> \<acute>li<length a \<and> \<acute>vx=(a ! \<acute>li) | 
| 403 | \<and> \<acute>ins-\<acute>outs < length \<acute>buffer\<rbrace> | |
| 13020 | 404 | \<acute>buffer:=(list_update \<acute>buffer (\<acute>ins mod (length \<acute>buffer)) \<acute>vx);; | 
| 53241 | 405 | \<lbrace>\<acute>p1 \<and> \<acute>INIT \<and> \<acute>li<length a | 
| 13020 | 406 | \<and> (a ! \<acute>li)=(\<acute>buffer ! (\<acute>ins mod (length \<acute>buffer))) | 
| 53241 | 407 | \<and> \<acute>ins-\<acute>outs <length \<acute>buffer\<rbrace> | 
| 13020 | 408 | \<acute>ins:=\<acute>ins+1;; | 
| 53241 | 409 | \<lbrace>\<acute>I1 \<and> \<acute>INIT \<and> (\<acute>li+1)=\<acute>ins \<and> \<acute>li<length a\<rbrace> | 
| 13020 | 410 | \<acute>li:=\<acute>li+1 | 
| 411 | OD | |
| 53241 | 412 | \<lbrace>\<acute>p1 \<and> \<acute>INIT \<and> \<acute>li=length a\<rbrace> | 
| 13020 | 413 | \<parallel> | 
| 53241 | 414 | \<lbrace>\<acute>p2 \<and> \<acute>INIT\<rbrace> | 
| 13020 | 415 | WHILE \<acute>lj < length a | 
| 53241 | 416 | INV \<lbrace>\<acute>p2 \<and> \<acute>INIT\<rbrace> | 
| 417 | DO \<lbrace>\<acute>p2 \<and> \<acute>lj<length a \<and> \<acute>INIT\<rbrace> | |
| 13020 | 418 | WAIT \<acute>outs<\<acute>ins END;; | 
| 53241 | 419 | \<lbrace>\<acute>p2 \<and> \<acute>lj<length a \<and> \<acute>outs<\<acute>ins \<and> \<acute>INIT\<rbrace> | 
| 13020 | 420 | \<acute>vy:=(\<acute>buffer ! (\<acute>outs mod (length \<acute>buffer)));; | 
| 53241 | 421 | \<lbrace>\<acute>p2 \<and> \<acute>lj<length a \<and> \<acute>outs<\<acute>ins \<and> \<acute>vy=(a ! \<acute>lj) \<and> \<acute>INIT\<rbrace> | 
| 13020 | 422 | \<acute>outs:=\<acute>outs+1;; | 
| 53241 | 423 | \<lbrace>\<acute>I2 \<and> (\<acute>lj+1)=\<acute>outs \<and> \<acute>lj<length a \<and> \<acute>vy=(a ! \<acute>lj) \<and> \<acute>INIT\<rbrace> | 
| 13020 | 424 | \<acute>b:=(list_update \<acute>b \<acute>lj \<acute>vy);; | 
| 53241 | 425 | \<lbrace>\<acute>I2 \<and> (\<acute>lj+1)=\<acute>outs \<and> \<acute>lj<length a \<and> (a ! \<acute>lj)=(\<acute>b ! \<acute>lj) \<and> \<acute>INIT\<rbrace> | 
| 13020 | 426 | \<acute>lj:=\<acute>lj+1 | 
| 427 | OD | |
| 53241 | 428 | \<lbrace>\<acute>p2 \<and> \<acute>lj=length a \<and> \<acute>INIT\<rbrace> | 
| 13020 | 429 | COEND | 
| 53241 | 430 | \<lbrace> \<forall>k<length a. (a ! k)=(\<acute>b ! k)\<rbrace>" | 
| 13020 | 431 | apply oghoare | 
| 432 | --{* 138 vc  *}
 | |
| 42793 | 433 | apply(tactic {* ALLGOALS (clarify_tac @{context}) *})
 | 
| 13020 | 434 | --{* 112 subgoals left *}
 | 
| 435 | apply(simp_all (no_asm)) | |
| 34233 
156c42518cfc
removed more asm_rl's - unfortunately slowdown of 1 min.
 nipkow parents: 
32621diff
changeset | 436 | --{* 97 subgoals left *}
 | 
| 13020 | 437 | apply(tactic {*ALLGOALS (conjI_Tac (K all_tac)) *})
 | 
| 13601 | 438 | --{* 930 subgoals left *}
 | 
| 42793 | 439 | apply(tactic {* ALLGOALS (clarify_tac @{context}) *})
 | 
| 34233 
156c42518cfc
removed more asm_rl's - unfortunately slowdown of 1 min.
 nipkow parents: 
32621diff
changeset | 440 | --{* 99 subgoals left *}
 | 
| 
156c42518cfc
removed more asm_rl's - unfortunately slowdown of 1 min.
 nipkow parents: 
32621diff
changeset | 441 | apply(simp_all (*asm_lr*) only:length_0_conv [THEN sym]) | 
| 
156c42518cfc
removed more asm_rl's - unfortunately slowdown of 1 min.
 nipkow parents: 
32621diff
changeset | 442 | --{* 20 subgoals left *}
 | 
| 
156c42518cfc
removed more asm_rl's - unfortunately slowdown of 1 min.
 nipkow parents: 
32621diff
changeset | 443 | apply (simp_all (*asm_lr*) del:length_0_conv length_greater_0_conv add: nth_list_update mod_lemma) | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16417diff
changeset | 444 | --{* 9 subgoals left *}
 | 
| 13020 | 445 | apply (force simp add:less_Suc_eq) | 
| 446 | apply(drule sym) | |
| 447 | apply (force simp add:less_Suc_eq)+ | |
| 448 | done | |
| 449 | ||
| 450 | subsection {* Parameterized Examples *}
 | |
| 451 | ||
| 452 | subsubsection {* Set Elements of an Array to Zero *}
 | |
| 453 | ||
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 454 | record Example1 = | 
| 13020 | 455 | a :: "nat \<Rightarrow> nat" | 
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 456 | |
| 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 457 | lemma Example1: | 
| 53241 | 458 | "\<parallel>- \<lbrace>True\<rbrace> | 
| 459 | COBEGIN SCHEME [0\<le>i<n] \<lbrace>True\<rbrace> \<acute>a:=\<acute>a (i:=0) \<lbrace>\<acute>a i=0\<rbrace> COEND | |
| 460 | \<lbrace>\<forall>i < n. \<acute>a i = 0\<rbrace>" | |
| 13020 | 461 | apply oghoare | 
| 462 | apply simp_all | |
| 463 | done | |
| 464 | ||
| 465 | text {* Same example with lists as auxiliary variables. *}
 | |
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 466 | record Example1_list = | 
| 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 467 | A :: "nat list" | 
| 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 468 | lemma Example1_list: | 
| 53241 | 469 | "\<parallel>- \<lbrace>n < length \<acute>A\<rbrace> | 
| 13020 | 470 | COBEGIN | 
| 53241 | 471 | SCHEME [0\<le>i<n] \<lbrace>n < length \<acute>A\<rbrace> \<acute>A:=\<acute>A[i:=0] \<lbrace>\<acute>A!i=0\<rbrace> | 
| 13020 | 472 | COEND | 
| 53241 | 473 | \<lbrace>\<forall>i < n. \<acute>A!i = 0\<rbrace>" | 
| 13020 | 474 | apply oghoare | 
| 13187 | 475 | apply force+ | 
| 13020 | 476 | done | 
| 477 | ||
| 478 | subsubsection {* Increment a Variable in Parallel *}
 | |
| 479 | ||
| 15561 | 480 | text {* First some lemmas about summation properties. *}
 | 
| 481 | (* | |
| 15043 | 482 | lemma Example2_lemma1: "!!b. j<n \<Longrightarrow> (\<Sum>i::nat<n. b i) = (0::nat) \<Longrightarrow> b j = 0 " | 
| 13020 | 483 | apply(induct n) | 
| 484 | apply simp_all | |
| 485 | apply(force simp add: less_Suc_eq) | |
| 486 | done | |
| 15561 | 487 | *) | 
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 488 | lemma Example2_lemma2_aux: "!!b. j<n \<Longrightarrow> | 
| 15561 | 489 | (\<Sum>i=0..<n. (b i::nat)) = | 
| 490 | (\<Sum>i=0..<j. b i) + b j + (\<Sum>i=0..<n-(Suc j) . b (Suc j + i))" | |
| 13020 | 491 | apply(induct n) | 
| 492 | apply simp_all | |
| 493 | apply(simp add:less_Suc_eq) | |
| 494 | apply(auto) | |
| 495 | apply(subgoal_tac "n - j = Suc(n- Suc j)") | |
| 496 | apply simp | |
| 497 | apply arith | |
| 13187 | 498 | done | 
| 13020 | 499 | |
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 500 | lemma Example2_lemma2_aux2: | 
| 15561 | 501 | "!!b. j\<le> s \<Longrightarrow> (\<Sum>i::nat=0..<j. (b (s:=t)) i) = (\<Sum>i=0..<j. b i)" | 
| 27095 | 502 | apply(induct j) | 
| 503 | apply simp_all | |
| 13020 | 504 | done | 
| 505 | ||
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 506 | lemma Example2_lemma2: | 
| 15561 | 507 | "!!b. \<lbrakk>j<n; b j=0\<rbrakk> \<Longrightarrow> Suc (\<Sum>i::nat=0..<n. b i)=(\<Sum>i=0..<n. (b (j := Suc 0)) i)" | 
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 508 | apply(frule_tac b="(b (j:=(Suc 0)))" in Example2_lemma2_aux) | 
| 15561 | 509 | apply(erule_tac  t="setsum (b(j := (Suc 0))) {0..<n}" in ssubst)
 | 
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 510 | apply(frule_tac b=b in Example2_lemma2_aux) | 
| 15561 | 511 | apply(erule_tac  t="setsum b {0..<n}" in ssubst)
 | 
| 512 | apply(subgoal_tac "Suc (setsum b {0..<j} + b j + (\<Sum>i=0..<n - Suc j. b (Suc j + i)))=(setsum b {0..<j} + Suc (b j) + (\<Sum>i=0..<n - Suc j. b (Suc j + i)))")
 | |
| 13020 | 513 | apply(rotate_tac -1) | 
| 514 | apply(erule ssubst) | |
| 515 | apply(subgoal_tac "j\<le>j") | |
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 516 | apply(drule_tac b="b" and t="(Suc 0)" in Example2_lemma2_aux2) | 
| 13020 | 517 | apply(rotate_tac -1) | 
| 518 | apply(erule ssubst) | |
| 519 | apply simp_all | |
| 520 | done | |
| 521 | ||
| 522 | ||
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 523 | record Example2 = | 
| 13020 | 524 | c :: "nat \<Rightarrow> nat" | 
| 525 | x :: nat | |
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 526 | |
| 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 527 | lemma Example_2: "0<n \<Longrightarrow> | 
| 53241 | 528 | \<parallel>- \<lbrace>\<acute>x=0 \<and> (\<Sum>i=0..<n. \<acute>c i)=0\<rbrace> | 
| 13020 | 529 | COBEGIN | 
| 530 | SCHEME [0\<le>i<n] | |
| 53241 | 531 | \<lbrace>\<acute>x=(\<Sum>i=0..<n. \<acute>c i) \<and> \<acute>c i=0\<rbrace> | 
| 13020 | 532 | \<langle> \<acute>x:=\<acute>x+(Suc 0),, \<acute>c:=\<acute>c (i:=(Suc 0)) \<rangle> | 
| 53241 | 533 | \<lbrace>\<acute>x=(\<Sum>i=0..<n. \<acute>c i) \<and> \<acute>c i=(Suc 0)\<rbrace> | 
| 13020 | 534 | COEND | 
| 53241 | 535 | \<lbrace>\<acute>x=n\<rbrace>" | 
| 13020 | 536 | apply oghoare | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16417diff
changeset | 537 | apply (simp_all cong del: strong_setsum_cong) | 
| 42793 | 538 | apply (tactic {* ALLGOALS (clarify_tac @{context}) *})
 | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16417diff
changeset | 539 | apply (simp_all cong del: strong_setsum_cong) | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16417diff
changeset | 540 | apply(erule (1) Example2_lemma2) | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16417diff
changeset | 541 | apply(erule (1) Example2_lemma2) | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16417diff
changeset | 542 | apply(erule (1) Example2_lemma2) | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16417diff
changeset | 543 | apply(simp) | 
| 13020 | 544 | done | 
| 545 | ||
| 13187 | 546 | end |