0
|
1 |
(* Title: LK/lk.thy
|
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
4 |
Copyright 1993 University of Cambridge
|
|
5 |
|
|
6 |
Classical First-Order Sequent Calculus
|
|
7 |
*)
|
|
8 |
|
|
9 |
LK = Pure +
|
283
|
10 |
|
0
|
11 |
classes term < logic
|
283
|
12 |
|
0
|
13 |
default term
|
283
|
14 |
|
|
15 |
types
|
|
16 |
o sequence seqobj seqcont sequ sobj
|
|
17 |
|
|
18 |
arities
|
|
19 |
o :: logic
|
|
20 |
|
0
|
21 |
consts
|
|
22 |
True,False :: "o"
|
|
23 |
"=" :: "['a,'a] => o" (infixl 50)
|
|
24 |
"Not" :: "o => o" ("~ _" [40] 40)
|
|
25 |
"&" :: "[o,o] => o" (infixr 35)
|
|
26 |
"|" :: "[o,o] => o" (infixr 30)
|
|
27 |
"-->","<->" :: "[o,o] => o" (infixr 25)
|
|
28 |
The :: "('a => o) => 'a" (binder "THE " 10)
|
|
29 |
All :: "('a => o) => o" (binder "ALL " 10)
|
|
30 |
Ex :: "('a => o) => o" (binder "EX " 10)
|
|
31 |
|
|
32 |
(*Representation of sequents*)
|
|
33 |
Trueprop :: "[sobj=>sobj,sobj=>sobj] => prop"
|
|
34 |
Seqof :: "o => sobj=>sobj"
|
|
35 |
"@Trueprop" :: "[sequence,sequence] => prop" ("((_)/ |- (_))" [6,6] 5)
|
|
36 |
"@MtSeq" :: "sequence" ("" [] 1000)
|
|
37 |
"@NmtSeq" :: "[seqobj,seqcont] => sequence" ("__" [] 1000)
|
|
38 |
"@MtSeqCont" :: "seqcont" ("" [] 1000)
|
|
39 |
"@SeqCont" :: "[seqobj,seqcont] => seqcont" (",/ __" [] 1000)
|
|
40 |
"" :: "o => seqobj" ("_" [] 1000)
|
|
41 |
"@SeqId" :: "id => seqobj" ("$_" [] 1000)
|
|
42 |
"@SeqVar" :: "var => seqobj" ("$_")
|
|
43 |
|
|
44 |
rules
|
|
45 |
(*Structural rules*)
|
|
46 |
|
|
47 |
basic "$H, P, $G |- $E, P, $F"
|
|
48 |
|
|
49 |
thinR "$H |- $E, $F ==> $H |- $E, P, $F"
|
|
50 |
thinL "$H, $G |- $E ==> $H, P, $G |- $E"
|
|
51 |
|
|
52 |
cut "[| $H |- $E, P; $H, P |- $E |] ==> $H |- $E"
|
|
53 |
|
|
54 |
(*Propositional rules*)
|
|
55 |
|
|
56 |
conjR "[| $H|- $E, P, $F; $H|- $E, Q, $F |] ==> $H|- $E, P&Q, $F"
|
|
57 |
conjL "$H, P, Q, $G |- $E ==> $H, P & Q, $G |- $E"
|
|
58 |
|
|
59 |
disjR "$H |- $E, P, Q, $F ==> $H |- $E, P|Q, $F"
|
|
60 |
disjL "[| $H, P, $G |- $E; $H, Q, $G |- $E |] ==> $H, P|Q, $G |- $E"
|
|
61 |
|
|
62 |
impR "$H, P |- $E, Q, $F ==> $H |- $E, P-->Q, $F"
|
|
63 |
impL "[| $H,$G |- $E,P; $H, Q, $G |- $E |] ==> $H, P-->Q, $G |- $E"
|
|
64 |
|
|
65 |
notR "$H, P |- $E, $F ==> $H |- $E, ~P, $F"
|
|
66 |
notL "$H, $G |- $E, P ==> $H, ~P, $G |- $E"
|
|
67 |
|
|
68 |
FalseL "$H, False, $G |- $E"
|
|
69 |
|
|
70 |
True_def "True == False-->False"
|
|
71 |
iff_def "P<->Q == (P-->Q) & (Q-->P)"
|
|
72 |
|
|
73 |
(*Quantifiers*)
|
|
74 |
|
|
75 |
allR "(!!x.$H |- $E, P(x), $F) ==> $H |- $E, ALL x.P(x), $F"
|
|
76 |
allL "$H, P(x), $G, ALL x.P(x) |- $E ==> $H, ALL x.P(x), $G |- $E"
|
|
77 |
|
|
78 |
exR "$H |- $E, P(x), $F, EX x.P(x) ==> $H |- $E, EX x.P(x), $F"
|
|
79 |
exL "(!!x.$H, P(x), $G |- $E) ==> $H, EX x.P(x), $G |- $E"
|
|
80 |
|
|
81 |
(*Equality*)
|
|
82 |
|
|
83 |
refl "$H |- $E, a=a, $F"
|
|
84 |
sym "$H |- $E, a=b, $F ==> $H |- $E, b=a, $F"
|
|
85 |
trans "[| $H|- $E, a=b, $F; $H|- $E, b=c, $F |] ==> $H|- $E, a=c, $F"
|
|
86 |
|
|
87 |
|
|
88 |
(*Descriptions*)
|
|
89 |
|
|
90 |
The "[| $H |- $E, P(a), $F; !!x.$H, P(x) |- $E, x=a, $F |] ==> \
|
|
91 |
\ $H |- $E, P(THE x.P(x)), $F"
|
|
92 |
end
|
|
93 |
|
|
94 |
ML
|
|
95 |
|
|
96 |
(*Abstract over "sobj" -- representation of a sequence of formulae *)
|
|
97 |
fun abs_sobj t = Abs("sobj", Type("sobj",[]), t);
|
|
98 |
|
|
99 |
(*Representation of empty sequence*)
|
|
100 |
val Sempty = abs_sobj (Bound 0);
|
|
101 |
|
|
102 |
fun seq_obj_tr(Const("@SeqId",_)$id) = id |
|
|
103 |
seq_obj_tr(Const("@SeqVar",_)$id) = id |
|
|
104 |
seq_obj_tr(fm) = Const("Seqof",dummyT)$fm;
|
|
105 |
|
|
106 |
fun seq_tr(_$obj$seq) = seq_obj_tr(obj)$seq_tr(seq) |
|
|
107 |
seq_tr(_) = Bound 0;
|
|
108 |
|
|
109 |
fun seq_tr1(Const("@MtSeq",_)) = Sempty |
|
|
110 |
seq_tr1(seq) = abs_sobj(seq_tr seq);
|
|
111 |
|
|
112 |
fun true_tr[s1,s2] = Const("Trueprop",dummyT)$seq_tr1 s1$seq_tr1 s2;
|
|
113 |
|
|
114 |
fun seq_obj_tr'(Const("Seqof",_)$fm) = fm |
|
|
115 |
seq_obj_tr'(id) = Const("@SeqId",dummyT)$id;
|
|
116 |
|
|
117 |
fun seq_tr'(obj$sq,C) =
|
|
118 |
let val sq' = case sq of
|
|
119 |
Bound 0 => Const("@MtSeqCont",dummyT) |
|
|
120 |
_ => seq_tr'(sq,Const("@SeqCont",dummyT))
|
|
121 |
in C $ seq_obj_tr' obj $ sq' end;
|
|
122 |
|
|
123 |
fun seq_tr1'(Bound 0) = Const("@MtSeq",dummyT) |
|
|
124 |
seq_tr1' s = seq_tr'(s,Const("@NmtSeq",dummyT));
|
|
125 |
|
|
126 |
fun true_tr'[Abs(_,_,s1),Abs(_,_,s2)] =
|
|
127 |
Const("@Trueprop",dummyT)$seq_tr1' s1$seq_tr1' s2;
|
|
128 |
|
|
129 |
val parse_translation = [("@Trueprop",true_tr)];
|
|
130 |
val print_translation = [("Trueprop",true_tr')];
|