| author | blanchet | 
| Fri, 01 Aug 2014 19:32:46 +0200 | |
| changeset 57760 | 7f11f325c47d | 
| parent 57492 | 74bf65a1910a | 
| child 58305 | 57752a91eec4 | 
| permissions | -rw-r--r-- | 
| 44656 | 1  | 
(* Author: Tobias Nipkow *)  | 
2  | 
||
| 45111 | 3  | 
theory Abs_Int_den1  | 
4  | 
imports Abs_Int_den0_const  | 
|
| 44656 | 5  | 
begin  | 
6  | 
||
7  | 
subsection "Backward Analysis of Expressions"  | 
|
8  | 
||
9  | 
class L_top_bot = SL_top +  | 
|
10  | 
fixes meet :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "\<sqinter>" 65)  | 
|
11  | 
and Bot :: "'a"  | 
|
12  | 
assumes meet_le1 [simp]: "x \<sqinter> y \<sqsubseteq> x"  | 
|
13  | 
and meet_le2 [simp]: "x \<sqinter> y \<sqsubseteq> y"  | 
|
14  | 
and meet_greatest: "x \<sqsubseteq> y \<Longrightarrow> x \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> y \<sqinter> z"  | 
|
15  | 
assumes bot[simp]: "Bot \<sqsubseteq> x"  | 
|
16  | 
||
17  | 
locale Rep1 = Rep rep for rep :: "'a::L_top_bot \<Rightarrow> 'b set" +  | 
|
18  | 
assumes inter_rep_subset_rep_meet: "rep a1 \<inter> rep a2 \<subseteq> rep(a1 \<sqinter> a2)"  | 
|
19  | 
and rep_Bot: "rep Bot = {}"
 | 
|
20  | 
begin  | 
|
21  | 
||
22  | 
lemma in_rep_meet: "x <: a1 \<Longrightarrow> x <: a2 \<Longrightarrow> x <: a1 \<sqinter> a2"  | 
|
23  | 
by (metis IntI inter_rep_subset_rep_meet set_mp)  | 
|
24  | 
||
25  | 
lemma rep_meet[simp]: "rep(a1 \<sqinter> a2) = rep a1 \<inter> rep a2"  | 
|
26  | 
by (metis equalityI inter_rep_subset_rep_meet le_inf_iff le_rep meet_le1 meet_le2)  | 
|
27  | 
||
28  | 
end  | 
|
29  | 
||
30  | 
||
31  | 
locale Val_abs1 = Val_abs rep num' plus' + Rep1 rep  | 
|
32  | 
for rep :: "'a::L_top_bot \<Rightarrow> int set" and num' plus' +  | 
|
| 45023 | 33  | 
fixes filter_plus' :: "'a \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a * 'a"  | 
34  | 
and filter_less' :: "bool \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a * 'a"  | 
|
35  | 
assumes filter_plus': "filter_plus' a a1 a2 = (a1',a2') \<Longrightarrow>  | 
|
| 44656 | 36  | 
n1 <: a1 \<Longrightarrow> n2 <: a2 \<Longrightarrow> n1+n2 <: a \<Longrightarrow> n1 <: a1' \<and> n2 <: a2'"  | 
| 45023 | 37  | 
and filter_less': "filter_less' (n1<n2) a1 a2 = (a1',a2') \<Longrightarrow>  | 
| 44656 | 38  | 
n1 <: a1 \<Longrightarrow> n2 <: a2 \<Longrightarrow> n1 <: a1' \<and> n2 <: a2'"  | 
39  | 
||
40  | 
datatype 'a up = bot | Up 'a  | 
|
41  | 
||
42  | 
instantiation up :: (SL_top)SL_top  | 
|
43  | 
begin  | 
|
44  | 
||
45  | 
fun le_up where  | 
|
46  | 
"Up x \<sqsubseteq> Up y = (x \<sqsubseteq> y)" |  | 
|
47  | 
"bot \<sqsubseteq> y = True" |  | 
|
48  | 
"Up _ \<sqsubseteq> bot = False"  | 
|
49  | 
||
50  | 
lemma [simp]: "(x \<sqsubseteq> bot) = (x = bot)"  | 
|
51  | 
by (cases x) simp_all  | 
|
52  | 
||
53  | 
lemma [simp]: "(Up x \<sqsubseteq> u) = (EX y. u = Up y & x \<sqsubseteq> y)"  | 
|
54  | 
by (cases u) auto  | 
|
55  | 
||
56  | 
fun join_up where  | 
|
57  | 
"Up x \<squnion> Up y = Up(x \<squnion> y)" |  | 
|
58  | 
"bot \<squnion> y = y" |  | 
|
59  | 
"x \<squnion> bot = x"  | 
|
60  | 
||
61  | 
lemma [simp]: "x \<squnion> bot = x"  | 
|
62  | 
by (cases x) simp_all  | 
|
63  | 
||
64  | 
||
65  | 
definition "Top = Up Top"  | 
|
66  | 
||
67  | 
instance proof  | 
|
68  | 
case goal1 show ?case by(cases x, simp_all)  | 
|
69  | 
next  | 
|
70  | 
case goal2 thus ?case  | 
|
71  | 
by(cases z, simp, cases y, simp, cases x, auto intro: le_trans)  | 
|
72  | 
next  | 
|
73  | 
case goal3 thus ?case by(cases x, simp, cases y, simp_all)  | 
|
74  | 
next  | 
|
75  | 
case goal4 thus ?case by(cases y, simp, cases x, simp_all)  | 
|
76  | 
next  | 
|
77  | 
case goal5 thus ?case by(cases z, simp, cases y, simp, cases x, simp_all)  | 
|
78  | 
next  | 
|
79  | 
case goal6 thus ?case by(cases x, simp_all add: Top_up_def)  | 
|
80  | 
qed  | 
|
81  | 
||
82  | 
end  | 
|
83  | 
||
84  | 
||
| 44932 | 85  | 
locale Abs_Int1 = Val_abs1 +  | 
| 44944 | 86  | 
fixes pfp :: "('a astate up \<Rightarrow> 'a astate up) \<Rightarrow> 'a astate up \<Rightarrow> 'a astate up"
 | 
87  | 
assumes pfp: "f(pfp f x0) \<sqsubseteq> pfp f x0"  | 
|
88  | 
assumes above: "x0 \<sqsubseteq> pfp f x0"  | 
|
| 44656 | 89  | 
begin  | 
90  | 
||
91  | 
(* FIXME avoid duplicating this defn *)  | 
|
92  | 
abbreviation astate_in_rep (infix "<:" 50) where  | 
|
93  | 
"s <: S == ALL x. s x <: lookup S x"  | 
|
94  | 
||
95  | 
abbreviation in_rep_up :: "state \<Rightarrow> 'a astate up \<Rightarrow> bool" (infix "<::" 50) where  | 
|
96  | 
"s <:: S == EX S0. S = Up S0 \<and> s <: S0"  | 
|
97  | 
||
98  | 
lemma in_rep_up_trans: "(s::state) <:: S \<Longrightarrow> S \<sqsubseteq> T \<Longrightarrow> s <:: T"  | 
|
99  | 
apply auto  | 
|
100  | 
by (metis in_mono le_astate_def le_rep lookup_def top)  | 
|
101  | 
||
102  | 
lemma in_rep_join_UpI: "s <:: S1 | s <:: S2 \<Longrightarrow> s <:: S1 \<squnion> S2"  | 
|
103  | 
by (metis in_rep_up_trans SL_top_class.join_ge1 SL_top_class.join_ge2)  | 
|
104  | 
||
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52046 
diff
changeset
 | 
105  | 
fun aval' :: "aexp \<Rightarrow> 'a astate up \<Rightarrow> 'a" ("aval\<^sup>#") where
 | 
| 44656 | 106  | 
"aval' _ bot = Bot" |  | 
107  | 
"aval' (N n) _ = num' n" |  | 
|
108  | 
"aval' (V x) (Up S) = lookup S x" |  | 
|
109  | 
"aval' (Plus a1 a2) S = plus' (aval' a1 S) (aval' a2 S)"  | 
|
110  | 
||
111  | 
lemma aval'_sound: "s <:: S \<Longrightarrow> aval a s <: aval' a S"  | 
|
112  | 
by (induct a) (auto simp: rep_num' rep_plus')  | 
|
113  | 
||
114  | 
fun afilter :: "aexp \<Rightarrow> 'a \<Rightarrow> 'a astate up \<Rightarrow> 'a astate up" where  | 
|
115  | 
"afilter (N n) a S = (if n <: a then S else bot)" |  | 
|
116  | 
"afilter (V x) a S = (case S of bot \<Rightarrow> bot | Up S \<Rightarrow>  | 
|
117  | 
let a' = lookup S x \<sqinter> a in  | 
|
| 44932 | 118  | 
if a' \<sqsubseteq> Bot then bot else Up(update S x a'))" |  | 
| 44656 | 119  | 
"afilter (Plus e1 e2) a S =  | 
| 45023 | 120  | 
(let (a1,a2) = filter_plus' a (aval' e1 S) (aval' e2 S)  | 
| 44656 | 121  | 
in afilter e1 a1 (afilter e2 a2 S))"  | 
122  | 
||
| 44932 | 123  | 
text{* The test for @{const Bot} in the @{const V}-case is important: @{const
 | 
124  | 
Bot} indicates that a variable has no possible values, i.e.\ that the current  | 
|
| 45017 | 125  | 
program point is unreachable. But then the abstract state should collapse to  | 
| 44932 | 126  | 
@{const bot}. Put differently, we maintain the invariant that in an abstract
 | 
127  | 
state all variables are mapped to non-@{const Bot} values. Otherwise the
 | 
|
128  | 
(pointwise) join of two abstract states, one of which contains @{const Bot}
 | 
|
129  | 
values, may produce too large a result, thus making the analysis less  | 
|
130  | 
precise. *}  | 
|
131  | 
||
132  | 
||
| 44656 | 133  | 
fun bfilter :: "bexp \<Rightarrow> bool \<Rightarrow> 'a astate up \<Rightarrow> 'a astate up" where  | 
| 45200 | 134  | 
"bfilter (Bc v) res S = (if v=res then S else bot)" |  | 
| 44656 | 135  | 
"bfilter (Not b) res S = bfilter b (\<not> res) S" |  | 
136  | 
"bfilter (And b1 b2) res S =  | 
|
137  | 
(if res then bfilter b1 True (bfilter b2 True S)  | 
|
138  | 
else bfilter b1 False S \<squnion> bfilter b2 False S)" |  | 
|
139  | 
"bfilter (Less e1 e2) res S =  | 
|
| 45023 | 140  | 
(let (res1,res2) = filter_less' res (aval' e1 S) (aval' e2 S)  | 
| 44656 | 141  | 
in afilter e1 res1 (afilter e2 res2 S))"  | 
142  | 
||
143  | 
lemma afilter_sound: "s <:: S \<Longrightarrow> aval e s <: a \<Longrightarrow> s <:: afilter e a S"  | 
|
| 45015 | 144  | 
proof(induction e arbitrary: a S)  | 
| 44656 | 145  | 
case N thus ?case by simp  | 
146  | 
next  | 
|
147  | 
case (V x)  | 
|
148  | 
obtain S' where "S = Up S'" and "s <: S'" using `s <:: S` by auto  | 
|
149  | 
moreover hence "s x <: lookup S' x" by(simp)  | 
|
150  | 
moreover have "s x <: a" using V by simp  | 
|
151  | 
ultimately show ?case using V(1)  | 
|
152  | 
by(simp add: lookup_update Let_def)  | 
|
153  | 
(metis le_rep emptyE in_rep_meet rep_Bot subset_empty)  | 
|
154  | 
next  | 
|
155  | 
case (Plus e1 e2) thus ?case  | 
|
| 45023 | 156  | 
using filter_plus'[OF _ aval'_sound[OF Plus(3)] aval'_sound[OF Plus(3)]]  | 
| 44656 | 157  | 
by (auto split: prod.split)  | 
158  | 
qed  | 
|
159  | 
||
160  | 
lemma bfilter_sound: "s <:: S \<Longrightarrow> bv = bval b s \<Longrightarrow> s <:: bfilter b bv S"  | 
|
| 45015 | 161  | 
proof(induction b arbitrary: S bv)  | 
| 45200 | 162  | 
case Bc thus ?case by simp  | 
| 44656 | 163  | 
next  | 
164  | 
case (Not b) thus ?case by simp  | 
|
165  | 
next  | 
|
166  | 
case (And b1 b2) thus ?case by (auto simp: in_rep_join_UpI)  | 
|
167  | 
next  | 
|
168  | 
case (Less e1 e2) thus ?case  | 
|
| 
57492
 
74bf65a1910a
Hypsubst preserves equality hypotheses
 
Thomas Sewell <thomas.sewell@nicta.com.au> 
parents: 
53015 
diff
changeset
 | 
169  | 
apply hypsubst_thin  | 
| 
 
74bf65a1910a
Hypsubst preserves equality hypotheses
 
Thomas Sewell <thomas.sewell@nicta.com.au> 
parents: 
53015 
diff
changeset
 | 
170  | 
apply (auto split: prod.split)  | 
| 
 
74bf65a1910a
Hypsubst preserves equality hypotheses
 
Thomas Sewell <thomas.sewell@nicta.com.au> 
parents: 
53015 
diff
changeset
 | 
171  | 
apply (metis afilter_sound filter_less' aval'_sound Less)  | 
| 
 
74bf65a1910a
Hypsubst preserves equality hypotheses
 
Thomas Sewell <thomas.sewell@nicta.com.au> 
parents: 
53015 
diff
changeset
 | 
172  | 
done  | 
| 44656 | 173  | 
qed  | 
174  | 
||
175  | 
fun AI :: "com \<Rightarrow> 'a astate up \<Rightarrow> 'a astate up" where  | 
|
176  | 
"AI SKIP S = S" |  | 
|
177  | 
"AI (x ::= a) S =  | 
|
178  | 
(case S of bot \<Rightarrow> bot | Up S \<Rightarrow> Up(update S x (aval' a (Up S))))" |  | 
|
| 
52046
 
bc01725d7918
replaced `;' by `;;' to disambiguate syntax; unexpected slight increase in build time
 
nipkow 
parents: 
47818 
diff
changeset
 | 
179  | 
"AI (c1;;c2) S = AI c2 (AI c1 S)" |  | 
| 44656 | 180  | 
"AI (IF b THEN c1 ELSE c2) S =  | 
181  | 
AI c1 (bfilter b True S) \<squnion> AI c2 (bfilter b False S)" |  | 
|
182  | 
"AI (WHILE b DO c) S =  | 
|
| 44944 | 183  | 
bfilter b False (pfp (\<lambda>S. AI c (bfilter b True S)) S)"  | 
| 44656 | 184  | 
|
185  | 
lemma AI_sound: "(c,s) \<Rightarrow> t \<Longrightarrow> s <:: S \<Longrightarrow> t <:: AI c S"  | 
|
| 45015 | 186  | 
proof(induction c arbitrary: s t S)  | 
| 
44890
 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 
nipkow 
parents: 
44656 
diff
changeset
 | 
187  | 
case SKIP thus ?case by fastforce  | 
| 44656 | 188  | 
next  | 
189  | 
case Assign thus ?case  | 
|
190  | 
by (auto simp: lookup_update aval'_sound)  | 
|
191  | 
next  | 
|
| 47818 | 192  | 
case Seq thus ?case by fastforce  | 
| 44656 | 193  | 
next  | 
194  | 
case If thus ?case by (auto simp: in_rep_join_UpI bfilter_sound)  | 
|
195  | 
next  | 
|
196  | 
case (While b c)  | 
|
| 44944 | 197  | 
let ?P = "pfp (\<lambda>S. AI c (bfilter b True S)) S"  | 
| 44656 | 198  | 
  { fix s t
 | 
199  | 
have "(WHILE b DO c,s) \<Rightarrow> t \<Longrightarrow> s <:: ?P \<Longrightarrow>  | 
|
200  | 
t <:: bfilter b False ?P"  | 
|
| 45015 | 201  | 
proof(induction "WHILE b DO c" s t rule: big_step_induct)  | 
| 44656 | 202  | 
case WhileFalse thus ?case by(metis bfilter_sound)  | 
203  | 
next  | 
|
204  | 
case WhileTrue show ?case  | 
|
205  | 
by(rule WhileTrue, rule in_rep_up_trans[OF _ pfp],  | 
|
| 45015 | 206  | 
rule While.IH[OF WhileTrue(2)],  | 
| 44656 | 207  | 
rule bfilter_sound[OF WhileTrue.prems], simp add: WhileTrue(1))  | 
208  | 
qed  | 
|
209  | 
}  | 
|
| 44932 | 210  | 
with in_rep_up_trans[OF `s <:: S` above] While(2,3) AI.simps(5)  | 
| 44656 | 211  | 
show ?case by simp  | 
212  | 
qed  | 
|
213  | 
||
214  | 
end  | 
|
215  | 
||
216  | 
end  |