35849
|
1 |
(* Author: Clemens Ballarin, started 15 April 1997
|
|
2 |
|
|
3 |
Universal property and evaluation homomorphism of univariate polynomials.
|
7998
|
4 |
*)
|
|
5 |
|
35849
|
6 |
theory PolyHomo
|
|
7 |
imports UnivPoly2
|
|
8 |
begin
|
7998
|
9 |
|
21423
|
10 |
definition
|
|
11 |
EVAL2 :: "['a::ring => 'b, 'b, 'a up] => 'b::ring" where
|
|
12 |
"EVAL2 phi a p = setsum (%i. phi (coeff p i) * a ^ i) {..deg p}"
|
|
13 |
|
|
14 |
definition
|
|
15 |
EVAL :: "['a::ring, 'a up] => 'a" where
|
|
16 |
"EVAL = EVAL2 (%x. x)"
|
|
17 |
|
|
18 |
lemma SUM_shrink_lemma:
|
|
19 |
"!! f::(nat=>'a::ring).
|
|
20 |
m <= n & (ALL i. m < i & i <= n --> f i = 0) -->
|
|
21 |
setsum f {..m} = setsum f {..n}"
|
|
22 |
apply (induct_tac n)
|
|
23 |
(* Base case *)
|
|
24 |
apply (simp (no_asm))
|
|
25 |
(* Induction step *)
|
|
26 |
apply (case_tac "m <= n")
|
|
27 |
apply auto
|
|
28 |
apply (subgoal_tac "m = Suc n")
|
|
29 |
apply (simp (no_asm_simp))
|
|
30 |
apply arith
|
|
31 |
done
|
|
32 |
|
|
33 |
lemma SUM_shrink:
|
|
34 |
"!! f::(nat=>'a::ring).
|
|
35 |
[| m <= n; !!i. [| m < i; i <= n |] ==> f i = 0; P (setsum f {..n}) |]
|
|
36 |
==> P (setsum f {..m})"
|
|
37 |
apply (cut_tac m = m and n = n and f = f in SUM_shrink_lemma)
|
|
38 |
apply simp
|
|
39 |
done
|
|
40 |
|
|
41 |
lemma SUM_extend:
|
|
42 |
"!! f::(nat=>'a::ring).
|
|
43 |
[| m <= n; !!i. [| m < i; i <= n |] ==> f i = 0; P (setsum f {..m}) |]
|
|
44 |
==> P (setsum f {..n})"
|
|
45 |
apply (cut_tac m = m and n = n and f = f in SUM_shrink_lemma)
|
|
46 |
apply simp
|
|
47 |
done
|
|
48 |
|
|
49 |
lemma DiagSum_lemma:
|
|
50 |
"!!f::nat=>'a::ring. j <= n + m -->
|
|
51 |
setsum (%k. setsum (%i. f i * g (k - i)) {..k}) {..j} =
|
|
52 |
setsum (%k. setsum (%i. f k * g i) {..j - k}) {..j}"
|
|
53 |
apply (induct_tac j)
|
|
54 |
(* Base case *)
|
|
55 |
apply (simp (no_asm))
|
|
56 |
(* Induction step *)
|
|
57 |
apply (simp (no_asm) add: Suc_diff_le natsum_add)
|
|
58 |
apply (simp (no_asm_simp))
|
|
59 |
done
|
|
60 |
|
|
61 |
lemma DiagSum:
|
|
62 |
"!!f::nat=>'a::ring.
|
|
63 |
setsum (%k. setsum (%i. f i * g (k - i)) {..k}) {..n + m} =
|
|
64 |
setsum (%k. setsum (%i. f k * g i) {..n + m - k}) {..n + m}"
|
|
65 |
apply (rule DiagSum_lemma [THEN mp])
|
|
66 |
apply (rule le_refl)
|
|
67 |
done
|
|
68 |
|
|
69 |
lemma CauchySum:
|
|
70 |
"!! f::nat=>'a::ring. [| bound n f; bound m g|] ==>
|
|
71 |
setsum (%k. setsum (%i. f i * g (k-i)) {..k}) {..n + m} =
|
|
72 |
setsum f {..n} * setsum g {..m}"
|
|
73 |
apply (simp (no_asm) add: natsum_ldistr DiagSum)
|
|
74 |
(* SUM_rdistr must be applied after SUM_ldistr ! *)
|
|
75 |
apply (simp (no_asm) add: natsum_rdistr)
|
|
76 |
apply (rule_tac m = n and n = "n + m" in SUM_extend)
|
|
77 |
apply (rule le_add1)
|
|
78 |
apply force
|
|
79 |
apply (rule natsum_cong)
|
|
80 |
apply (rule refl)
|
|
81 |
apply (rule_tac m = m and n = "n +m - i" in SUM_shrink)
|
|
82 |
apply (simp (no_asm_simp) add: le_add_diff)
|
|
83 |
apply auto
|
|
84 |
done
|
|
85 |
|
|
86 |
(* Evaluation homomorphism *)
|
7998
|
87 |
|
21423
|
88 |
lemma EVAL2_homo:
|
|
89 |
"!! phi::('a::ring=>'b::ring). homo phi ==> homo (EVAL2 phi a)"
|
|
90 |
apply (rule homoI)
|
|
91 |
apply (unfold EVAL2_def)
|
|
92 |
(* + commutes *)
|
|
93 |
(* degree estimations:
|
|
94 |
bound of all sums can be extended to max (deg aa) (deg b) *)
|
|
95 |
apply (rule_tac m = "deg (aa + b) " and n = "max (deg aa) (deg b)" in SUM_shrink)
|
|
96 |
apply (rule deg_add)
|
|
97 |
apply (simp (no_asm_simp) del: coeff_add add: deg_aboveD)
|
|
98 |
apply (rule_tac m = "deg aa" and n = "max (deg aa) (deg b)" in SUM_shrink)
|
|
99 |
apply (rule le_maxI1)
|
|
100 |
apply (simp (no_asm_simp) add: deg_aboveD)
|
|
101 |
apply (rule_tac m = "deg b" and n = "max (deg aa) (deg b) " in SUM_shrink)
|
|
102 |
apply (rule le_maxI2)
|
|
103 |
apply (simp (no_asm_simp) add: deg_aboveD)
|
|
104 |
(* actual homom property + *)
|
|
105 |
apply (simp (no_asm_simp) add: l_distr natsum_add)
|
|
106 |
|
|
107 |
(* * commutes *)
|
|
108 |
apply (rule_tac m = "deg (aa * b) " and n = "deg aa + deg b" in SUM_shrink)
|
|
109 |
apply (rule deg_mult_ring)
|
|
110 |
apply (simp (no_asm_simp) del: coeff_mult add: deg_aboveD)
|
|
111 |
apply (rule trans)
|
|
112 |
apply (rule_tac [2] CauchySum)
|
|
113 |
prefer 2
|
|
114 |
apply (simp add: boundI deg_aboveD)
|
|
115 |
prefer 2
|
|
116 |
apply (simp add: boundI deg_aboveD)
|
|
117 |
(* getting a^i and a^(k-i) together is difficult, so we do it manually *)
|
|
118 |
apply (rule_tac s = "setsum (%k. setsum (%i. phi (coeff aa i) * (phi (coeff b (k - i)) * (a ^ i * a ^ (k - i)))) {..k}) {..deg aa + deg b}" in trans)
|
|
119 |
apply (simp (no_asm_simp) add: power_mult leD [THEN add_diff_inverse] natsum_ldistr)
|
|
120 |
apply (simp (no_asm))
|
|
121 |
(* 1 commutes *)
|
|
122 |
apply (simp (no_asm_simp))
|
|
123 |
done
|
|
124 |
|
|
125 |
lemma EVAL2_const:
|
|
126 |
"!!phi::'a::ring=>'b::ring. EVAL2 phi a (monom b 0) = phi b"
|
|
127 |
by (simp add: EVAL2_def)
|
|
128 |
|
|
129 |
lemma EVAL2_monom1:
|
|
130 |
"!! phi::'a::domain=>'b::ring. homo phi ==> EVAL2 phi a (monom 1 1) = a"
|
|
131 |
by (simp add: EVAL2_def)
|
|
132 |
(* Must be able to distinguish 0 from 1, hence 'a::domain *)
|
|
133 |
|
|
134 |
lemma EVAL2_monom:
|
|
135 |
"!! phi::'a::domain=>'b::ring. homo phi ==> EVAL2 phi a (monom 1 n) = a ^ n"
|
|
136 |
apply (unfold EVAL2_def)
|
|
137 |
apply (simp (no_asm))
|
|
138 |
apply (case_tac n)
|
|
139 |
apply auto
|
|
140 |
done
|
|
141 |
|
|
142 |
lemma EVAL2_smult:
|
|
143 |
"!!phi::'a::ring=>'b::ring.
|
|
144 |
homo phi ==> EVAL2 phi a (b *s p) = phi b * EVAL2 phi a p"
|
|
145 |
by (simp (no_asm_simp) add: monom_mult_is_smult [symmetric] EVAL2_homo EVAL2_const)
|
|
146 |
|
|
147 |
lemma monom_decomp: "monom (a::'a::ring) n = monom a 0 * monom 1 n"
|
|
148 |
apply (simp (no_asm) add: monom_mult_is_smult)
|
|
149 |
apply (rule up_eqI)
|
|
150 |
apply (simp (no_asm))
|
|
151 |
done
|
|
152 |
|
|
153 |
lemma EVAL2_monom_n:
|
|
154 |
"!! phi::'a::domain=>'b::ring.
|
|
155 |
homo phi ==> EVAL2 phi a (monom b n) = phi b * a ^ n"
|
|
156 |
apply (subst monom_decomp)
|
|
157 |
apply (simp (no_asm_simp) add: EVAL2_homo EVAL2_const EVAL2_monom)
|
|
158 |
done
|
|
159 |
|
|
160 |
lemma EVAL_homo: "!!a::'a::ring. homo (EVAL a)"
|
|
161 |
by (simp add: EVAL_def EVAL2_homo)
|
|
162 |
|
|
163 |
lemma EVAL_const: "!!a::'a::ring. EVAL a (monom b 0) = b"
|
|
164 |
by (simp add: EVAL_def EVAL2_const)
|
|
165 |
|
|
166 |
lemma EVAL_monom: "!!a::'a::domain. EVAL a (monom 1 n) = a ^ n"
|
|
167 |
by (simp add: EVAL_def EVAL2_monom)
|
|
168 |
|
|
169 |
lemma EVAL_smult: "!!a::'a::ring. EVAL a (b *s p) = b * EVAL a p"
|
|
170 |
by (simp add: EVAL_def EVAL2_smult)
|
|
171 |
|
|
172 |
lemma EVAL_monom_n: "!!a::'a::domain. EVAL a (monom b n) = b * a ^ n"
|
|
173 |
by (simp add: EVAL_def EVAL2_monom_n)
|
|
174 |
|
|
175 |
|
|
176 |
(* Examples *)
|
|
177 |
|
|
178 |
lemma "EVAL (x::'a::domain) (a*X^2 + b*X^1 + c*X^0) = a * x ^ 2 + b * x ^ 1 + c"
|
|
179 |
by (simp del: power_Suc add: EVAL_homo EVAL_monom EVAL_monom_n)
|
|
180 |
|
|
181 |
lemma
|
|
182 |
"EVAL (y::'a::domain)
|
|
183 |
(EVAL (monom x 0) (monom 1 1 + monom (a*X^2 + b*X^1 + c*X^0) 0)) =
|
|
184 |
x ^ 1 + (a * y ^ 2 + b * y ^ 1 + c)"
|
25762
|
185 |
by (simp del: add: EVAL_homo EVAL_monom EVAL_monom_n EVAL_const)
|
7998
|
186 |
|
|
187 |
end
|