| author | nipkow | 
| Tue, 19 Jan 2016 11:46:54 +0100 | |
| changeset 62204 | 7f5579b12b0a | 
| parent 62083 | 7582b39f51ed | 
| child 62347 | 2230b7047376 | 
| permissions | -rw-r--r-- | 
| 3390 
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
 paulson parents: diff
changeset | 1 | (* Title: HOL/Power.thy | 
| 
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
 paulson parents: diff
changeset | 2 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | 
| 
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
 paulson parents: diff
changeset | 3 | Copyright 1997 University of Cambridge | 
| 
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
 paulson parents: diff
changeset | 4 | *) | 
| 
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
 paulson parents: diff
changeset | 5 | |
| 60758 | 6 | section \<open>Exponentiation\<close> | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 7 | |
| 15131 | 8 | theory Power | 
| 55096 | 9 | imports Num Equiv_Relations | 
| 15131 | 10 | begin | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 11 | |
| 60867 | 12 | context linordered_ring (* TODO: move *) | 
| 13 | begin | |
| 14 | ||
| 15 | lemma sum_squares_ge_zero: | |
| 16 | "0 \<le> x * x + y * y" | |
| 17 | by (intro add_nonneg_nonneg zero_le_square) | |
| 18 | ||
| 19 | lemma not_sum_squares_lt_zero: | |
| 20 | "\<not> x * x + y * y < 0" | |
| 21 | by (simp add: not_less sum_squares_ge_zero) | |
| 22 | ||
| 23 | end | |
| 24 | ||
| 60758 | 25 | subsection \<open>Powers for Arbitrary Monoids\<close> | 
| 30960 | 26 | |
| 30996 | 27 | class power = one + times | 
| 30960 | 28 | begin | 
| 24996 | 29 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61944diff
changeset | 30 | primrec power :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixr "^" 80) | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61944diff
changeset | 31 | where | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61944diff
changeset | 32 | power_0: "a ^ 0 = 1" | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61944diff
changeset | 33 | | power_Suc: "a ^ Suc n = a * a ^ n" | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 34 | |
| 30996 | 35 | notation (latex output) | 
| 36 |   power ("(_\<^bsup>_\<^esup>)" [1000] 1000)
 | |
| 37 | ||
| 60758 | 38 | text \<open>Special syntax for squares.\<close> | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61944diff
changeset | 39 | abbreviation power2 :: "'a \<Rightarrow> 'a"  ("(_\<^sup>2)" [1000] 999)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61944diff
changeset | 40 | where "x\<^sup>2 \<equiv> x ^ 2" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 41 | |
| 30960 | 42 | end | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 43 | |
| 30996 | 44 | context monoid_mult | 
| 45 | begin | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 46 | |
| 39438 
c5ece2a7a86e
Isar "default" step needs to fail for solved problems, for clear distinction of '.' and '..' for example -- amending lapse introduced in 9de4d64eee3b (April 2004);
 wenzelm parents: 
36409diff
changeset | 47 | subclass power . | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 48 | |
| 30996 | 49 | lemma power_one [simp]: | 
| 50 | "1 ^ n = 1" | |
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30242diff
changeset | 51 | by (induct n) simp_all | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 52 | |
| 30996 | 53 | lemma power_one_right [simp]: | 
| 31001 | 54 | "a ^ 1 = a" | 
| 30996 | 55 | by simp | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 56 | |
| 59741 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59009diff
changeset | 57 | lemma power_Suc0_right [simp]: | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59009diff
changeset | 58 | "a ^ Suc 0 = a" | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59009diff
changeset | 59 | by simp | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59009diff
changeset | 60 | |
| 30996 | 61 | lemma power_commutes: | 
| 62 | "a ^ n * a = a * a ^ n" | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57418diff
changeset | 63 | by (induct n) (simp_all add: mult.assoc) | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
17149diff
changeset | 64 | |
| 30996 | 65 | lemma power_Suc2: | 
| 66 | "a ^ Suc n = a ^ n * a" | |
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30242diff
changeset | 67 | by (simp add: power_commutes) | 
| 28131 
3130d7b3149d
add lemma power_Suc2; generalize power_minus from class comm_ring_1 to ring_1
 huffman parents: 
25874diff
changeset | 68 | |
| 30996 | 69 | lemma power_add: | 
| 70 | "a ^ (m + n) = a ^ m * a ^ n" | |
| 71 | by (induct m) (simp_all add: algebra_simps) | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 72 | |
| 30996 | 73 | lemma power_mult: | 
| 74 | "a ^ (m * n) = (a ^ m) ^ n" | |
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30242diff
changeset | 75 | by (induct n) (simp_all add: power_add) | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 76 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 77 | lemma power2_eq_square: "a\<^sup>2 = a * a" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 78 | by (simp add: numeral_2_eq_2) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 79 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 80 | lemma power3_eq_cube: "a ^ 3 = a * a * a" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57418diff
changeset | 81 | by (simp add: numeral_3_eq_3 mult.assoc) | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 82 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 83 | lemma power_even_eq: | 
| 53076 | 84 | "a ^ (2 * n) = (a ^ n)\<^sup>2" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57418diff
changeset | 85 | by (subst mult.commute) (simp add: power_mult) | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 86 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 87 | lemma power_odd_eq: | 
| 53076 | 88 | "a ^ Suc (2*n) = a * (a ^ n)\<^sup>2" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 89 | by (simp add: power_even_eq) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 90 | |
| 47255 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 91 | lemma power_numeral_even: | 
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 92 | "z ^ numeral (Num.Bit0 w) = (let w = z ^ (numeral w) in w * w)" | 
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 93 | unfolding numeral_Bit0 power_add Let_def .. | 
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 94 | |
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 95 | lemma power_numeral_odd: | 
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 96 | "z ^ numeral (Num.Bit1 w) = (let w = z ^ (numeral w) in z * w * w)" | 
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 97 | unfolding numeral_Bit1 One_nat_def add_Suc_right add_0_right | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57418diff
changeset | 98 | unfolding power_Suc power_add Let_def mult.assoc .. | 
| 47255 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 99 | |
| 49824 | 100 | lemma funpow_times_power: | 
| 101 | "(times x ^^ f x) = times (x ^ f x)" | |
| 102 | proof (induct "f x" arbitrary: f) | |
| 103 | case 0 then show ?case by (simp add: fun_eq_iff) | |
| 104 | next | |
| 105 | case (Suc n) | |
| 106 | def g \<equiv> "\<lambda>x. f x - 1" | |
| 107 | with Suc have "n = g x" by simp | |
| 108 | with Suc have "times x ^^ g x = times (x ^ g x)" by simp | |
| 109 | moreover from Suc g_def have "f x = g x + 1" by simp | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57418diff
changeset | 110 | ultimately show ?case by (simp add: power_add funpow_add fun_eq_iff mult.assoc) | 
| 49824 | 111 | qed | 
| 112 | ||
| 58656 | 113 | lemma power_commuting_commutes: | 
| 114 | assumes "x * y = y * x" | |
| 115 | shows "x ^ n * y = y * x ^n" | |
| 116 | proof (induct n) | |
| 117 | case (Suc n) | |
| 118 | have "x ^ Suc n * y = x ^ n * y * x" | |
| 119 | by (subst power_Suc2) (simp add: assms ac_simps) | |
| 120 | also have "\<dots> = y * x ^ Suc n" | |
| 121 | unfolding Suc power_Suc2 | |
| 122 | by (simp add: ac_simps) | |
| 123 | finally show ?case . | |
| 124 | qed simp | |
| 125 | ||
| 30996 | 126 | end | 
| 127 | ||
| 128 | context comm_monoid_mult | |
| 129 | begin | |
| 130 | ||
| 56480 
093ea91498e6
field_simps: better support for negation and division, and power
 hoelzl parents: 
55811diff
changeset | 131 | lemma power_mult_distrib [field_simps]: | 
| 30996 | 132 | "(a * b) ^ n = (a ^ n) * (b ^ n)" | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 133 | by (induct n) (simp_all add: ac_simps) | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 134 | |
| 30996 | 135 | end | 
| 136 | ||
| 60758 | 137 | text\<open>Extract constant factors from powers\<close> | 
| 59741 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59009diff
changeset | 138 | declare power_mult_distrib [where a = "numeral w" for w, simp] | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59009diff
changeset | 139 | declare power_mult_distrib [where b = "numeral w" for w, simp] | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59009diff
changeset | 140 | |
| 60155 
91477b3a2d6b
Tidying. Improved simplification for numerals, esp in exponents.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 141 | lemma power_add_numeral [simp]: | 
| 
91477b3a2d6b
Tidying. Improved simplification for numerals, esp in exponents.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 142 | fixes a :: "'a :: monoid_mult" | 
| 
91477b3a2d6b
Tidying. Improved simplification for numerals, esp in exponents.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 143 | shows "a^numeral m * a^numeral n = a^numeral (m + n)" | 
| 
91477b3a2d6b
Tidying. Improved simplification for numerals, esp in exponents.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 144 | by (simp add: power_add [symmetric]) | 
| 
91477b3a2d6b
Tidying. Improved simplification for numerals, esp in exponents.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 145 | |
| 
91477b3a2d6b
Tidying. Improved simplification for numerals, esp in exponents.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 146 | lemma power_add_numeral2 [simp]: | 
| 
91477b3a2d6b
Tidying. Improved simplification for numerals, esp in exponents.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 147 | fixes a :: "'a :: monoid_mult" | 
| 
91477b3a2d6b
Tidying. Improved simplification for numerals, esp in exponents.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 148 | shows "a^numeral m * (a^numeral n * b) = a^numeral (m + n) * b" | 
| 
91477b3a2d6b
Tidying. Improved simplification for numerals, esp in exponents.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 149 | by (simp add: mult.assoc [symmetric]) | 
| 
91477b3a2d6b
Tidying. Improved simplification for numerals, esp in exponents.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 150 | |
| 
91477b3a2d6b
Tidying. Improved simplification for numerals, esp in exponents.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 151 | lemma power_mult_numeral [simp]: | 
| 
91477b3a2d6b
Tidying. Improved simplification for numerals, esp in exponents.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 152 | fixes a :: "'a :: monoid_mult" | 
| 
91477b3a2d6b
Tidying. Improved simplification for numerals, esp in exponents.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 153 | shows"(a^numeral m)^numeral n = a^numeral (m * n)" | 
| 
91477b3a2d6b
Tidying. Improved simplification for numerals, esp in exponents.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 154 | by (simp only: numeral_mult power_mult) | 
| 
91477b3a2d6b
Tidying. Improved simplification for numerals, esp in exponents.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 155 | |
| 47191 | 156 | context semiring_numeral | 
| 157 | begin | |
| 158 | ||
| 159 | lemma numeral_sqr: "numeral (Num.sqr k) = numeral k * numeral k" | |
| 160 | by (simp only: sqr_conv_mult numeral_mult) | |
| 161 | ||
| 162 | lemma numeral_pow: "numeral (Num.pow k l) = numeral k ^ numeral l" | |
| 163 | by (induct l, simp_all only: numeral_class.numeral.simps pow.simps | |
| 164 | numeral_sqr numeral_mult power_add power_one_right) | |
| 165 | ||
| 166 | lemma power_numeral [simp]: "numeral k ^ numeral l = numeral (Num.pow k l)" | |
| 167 | by (rule numeral_pow [symmetric]) | |
| 168 | ||
| 169 | end | |
| 170 | ||
| 30996 | 171 | context semiring_1 | 
| 172 | begin | |
| 173 | ||
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 174 | lemma of_nat_power [simp]: | 
| 30996 | 175 | "of_nat (m ^ n) = of_nat m ^ n" | 
| 176 | by (induct n) (simp_all add: of_nat_mult) | |
| 177 | ||
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
58889diff
changeset | 178 | lemma zero_power: | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
58889diff
changeset | 179 | "0 < n \<Longrightarrow> 0 ^ n = 0" | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
58889diff
changeset | 180 | by (cases n) simp_all | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
58889diff
changeset | 181 | |
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
58889diff
changeset | 182 | lemma power_zero_numeral [simp]: | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
58889diff
changeset | 183 | "0 ^ numeral k = 0" | 
| 47209 
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
 huffman parents: 
47192diff
changeset | 184 | by (simp add: numeral_eq_Suc) | 
| 47191 | 185 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 186 | lemma zero_power2: "0\<^sup>2 = 0" (* delete? *) | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 187 | by (rule power_zero_numeral) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 188 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 189 | lemma one_power2: "1\<^sup>2 = 1" (* delete? *) | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 190 | by (rule power_one) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 191 | |
| 60867 | 192 | lemma power_0_Suc [simp]: | 
| 193 | "0 ^ Suc n = 0" | |
| 194 | by simp | |
| 195 | ||
| 196 | text\<open>It looks plausible as a simprule, but its effect can be strange.\<close> | |
| 197 | lemma power_0_left: | |
| 198 | "0 ^ n = (if n = 0 then 1 else 0)" | |
| 199 | by (cases n) simp_all | |
| 200 | ||
| 30996 | 201 | end | 
| 202 | ||
| 203 | context comm_semiring_1 | |
| 204 | begin | |
| 205 | ||
| 60758 | 206 | text \<open>The divides relation\<close> | 
| 30996 | 207 | |
| 208 | lemma le_imp_power_dvd: | |
| 209 | assumes "m \<le> n" shows "a ^ m dvd a ^ n" | |
| 210 | proof | |
| 211 | have "a ^ n = a ^ (m + (n - m))" | |
| 60758 | 212 | using \<open>m \<le> n\<close> by simp | 
| 30996 | 213 | also have "\<dots> = a ^ m * a ^ (n - m)" | 
| 214 | by (rule power_add) | |
| 215 | finally show "a ^ n = a ^ m * a ^ (n - m)" . | |
| 216 | qed | |
| 217 | ||
| 218 | lemma power_le_dvd: | |
| 219 | "a ^ n dvd b \<Longrightarrow> m \<le> n \<Longrightarrow> a ^ m dvd b" | |
| 220 | by (rule dvd_trans [OF le_imp_power_dvd]) | |
| 221 | ||
| 222 | lemma dvd_power_same: | |
| 223 | "x dvd y \<Longrightarrow> x ^ n dvd y ^ n" | |
| 224 | by (induct n) (auto simp add: mult_dvd_mono) | |
| 225 | ||
| 226 | lemma dvd_power_le: | |
| 227 | "x dvd y \<Longrightarrow> m \<ge> n \<Longrightarrow> x ^ n dvd y ^ m" | |
| 228 | by (rule power_le_dvd [OF dvd_power_same]) | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 229 | |
| 30996 | 230 | lemma dvd_power [simp]: | 
| 231 | assumes "n > (0::nat) \<or> x = 1" | |
| 232 | shows "x dvd (x ^ n)" | |
| 233 | using assms proof | |
| 234 | assume "0 < n" | |
| 235 | then have "x ^ n = x ^ Suc (n - 1)" by simp | |
| 236 | then show "x dvd (x ^ n)" by simp | |
| 237 | next | |
| 238 | assume "x = 1" | |
| 239 | then show "x dvd (x ^ n)" by simp | |
| 240 | qed | |
| 241 | ||
| 242 | end | |
| 243 | ||
| 60867 | 244 | class semiring_1_no_zero_divisors = semiring_1 + semiring_no_zero_divisors | 
| 245 | begin | |
| 246 | ||
| 247 | subclass power . | |
| 248 | ||
| 249 | lemma power_eq_0_iff [simp]: | |
| 250 | "a ^ n = 0 \<longleftrightarrow> a = 0 \<and> n > 0" | |
| 251 | by (induct n) auto | |
| 252 | ||
| 253 | lemma power_not_zero: | |
| 254 | "a \<noteq> 0 \<Longrightarrow> a ^ n \<noteq> 0" | |
| 255 | by (induct n) auto | |
| 256 | ||
| 257 | lemma zero_eq_power2 [simp]: | |
| 258 | "a\<^sup>2 = 0 \<longleftrightarrow> a = 0" | |
| 259 | unfolding power2_eq_square by simp | |
| 260 | ||
| 261 | end | |
| 262 | ||
| 263 | context semidom | |
| 264 | begin | |
| 265 | ||
| 266 | subclass semiring_1_no_zero_divisors .. | |
| 267 | ||
| 268 | end | |
| 269 | ||
| 30996 | 270 | context ring_1 | 
| 271 | begin | |
| 272 | ||
| 273 | lemma power_minus: | |
| 274 | "(- a) ^ n = (- 1) ^ n * a ^ n" | |
| 275 | proof (induct n) | |
| 276 | case 0 show ?case by simp | |
| 277 | next | |
| 278 | case (Suc n) then show ?case | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57418diff
changeset | 279 | by (simp del: power_Suc add: power_Suc2 mult.assoc) | 
| 30996 | 280 | qed | 
| 281 | ||
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 282 | lemma power_minus': "NO_MATCH 1 x \<Longrightarrow> (-x) ^ n = (-1)^n * x ^ n" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 283 | by (rule power_minus) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 284 | |
| 47191 | 285 | lemma power_minus_Bit0: | 
| 286 | "(- x) ^ numeral (Num.Bit0 k) = x ^ numeral (Num.Bit0 k)" | |
| 287 | by (induct k, simp_all only: numeral_class.numeral.simps power_add | |
| 288 | power_one_right mult_minus_left mult_minus_right minus_minus) | |
| 289 | ||
| 290 | lemma power_minus_Bit1: | |
| 291 | "(- x) ^ numeral (Num.Bit1 k) = - (x ^ numeral (Num.Bit1 k))" | |
| 47220 
52426c62b5d0
replace lemmas eval_nat_numeral with a simpler reformulation
 huffman parents: 
47209diff
changeset | 292 | by (simp only: eval_nat_numeral(3) power_Suc power_minus_Bit0 mult_minus_left) | 
| 47191 | 293 | |
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 294 | lemma power2_minus [simp]: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 295 | "(- a)\<^sup>2 = a\<^sup>2" | 
| 60867 | 296 | by (fact power_minus_Bit0) | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 297 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 298 | lemma power_minus1_even [simp]: | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58157diff
changeset | 299 | "(- 1) ^ (2*n) = 1" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 300 | proof (induct n) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 301 | case 0 show ?case by simp | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 302 | next | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 303 | case (Suc n) then show ?case by (simp add: power_add power2_eq_square) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 304 | qed | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 305 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 306 | lemma power_minus1_odd: | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58157diff
changeset | 307 | "(- 1) ^ Suc (2*n) = -1" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 308 | by simp | 
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 309 | |
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 310 | lemma power_minus_even [simp]: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 311 | "(-a) ^ (2*n) = a ^ (2*n)" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 312 | by (simp add: power_minus [of a]) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 313 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 314 | end | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 315 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 316 | context ring_1_no_zero_divisors | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 317 | begin | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 318 | |
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 319 | subclass semiring_1_no_zero_divisors .. | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 320 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 321 | lemma power2_eq_1_iff: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 322 | "a\<^sup>2 = 1 \<longleftrightarrow> a = 1 \<or> a = - 1" | 
| 60867 | 323 | using square_eq_1_iff [of a] by (simp add: power2_eq_square) | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 324 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 325 | end | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 326 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 327 | context idom | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 328 | begin | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 329 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 330 | lemma power2_eq_iff: "x\<^sup>2 = y\<^sup>2 \<longleftrightarrow> x = y \<or> x = - y" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 331 | unfolding power2_eq_square by (rule square_eq_iff) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 332 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 333 | end | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 334 | |
| 60867 | 335 | context algebraic_semidom | 
| 336 | begin | |
| 337 | ||
| 338 | lemma div_power: | |
| 339 | assumes "b dvd a" | |
| 340 | shows "(a div b) ^ n = a ^ n div b ^ n" | |
| 341 | using assms by (induct n) (simp_all add: div_mult_div_if_dvd dvd_power_same) | |
| 342 | ||
| 343 | end | |
| 344 | ||
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60155diff
changeset | 345 | context normalization_semidom | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60155diff
changeset | 346 | begin | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60155diff
changeset | 347 | |
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60155diff
changeset | 348 | lemma normalize_power: | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60155diff
changeset | 349 | "normalize (a ^ n) = normalize a ^ n" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60155diff
changeset | 350 | by (induct n) (simp_all add: normalize_mult) | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60155diff
changeset | 351 | |
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60155diff
changeset | 352 | lemma unit_factor_power: | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60155diff
changeset | 353 | "unit_factor (a ^ n) = unit_factor a ^ n" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60155diff
changeset | 354 | by (induct n) (simp_all add: unit_factor_mult) | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60155diff
changeset | 355 | |
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60155diff
changeset | 356 | end | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60155diff
changeset | 357 | |
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 358 | context division_ring | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 359 | begin | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 360 | |
| 60867 | 361 | text\<open>Perhaps these should be simprules.\<close> | 
| 362 | lemma power_inverse [field_simps, divide_simps]: | |
| 363 | "inverse a ^ n = inverse (a ^ n)" | |
| 364 | proof (cases "a = 0") | |
| 365 | case True then show ?thesis by (simp add: power_0_left) | |
| 366 | next | |
| 367 | case False then have "inverse (a ^ n) = inverse a ^ n" | |
| 368 | by (induct n) (simp_all add: nonzero_inverse_mult_distrib power_commutes) | |
| 369 | then show ?thesis by simp | |
| 370 | qed | |
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 371 | |
| 60867 | 372 | lemma power_one_over [field_simps, divide_simps]: | 
| 373 | "(1 / a) ^ n = 1 / a ^ n" | |
| 374 | using power_inverse [of a] by (simp add: divide_inverse) | |
| 375 | ||
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 376 | end | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 377 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 378 | context field | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 379 | begin | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 380 | |
| 60867 | 381 | lemma power_diff: | 
| 382 | assumes nz: "a \<noteq> 0" | |
| 383 | shows "n \<le> m \<Longrightarrow> a ^ (m - n) = a ^ m / a ^ n" | |
| 384 | by (induct m n rule: diff_induct) (simp_all add: nz power_not_zero) | |
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 385 | |
| 60867 | 386 | lemma power_divide [field_simps, divide_simps]: | 
| 387 | "(a / b) ^ n = a ^ n / b ^ n" | |
| 388 | by (induct n) simp_all | |
| 389 | ||
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 390 | end | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 391 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 392 | |
| 60758 | 393 | subsection \<open>Exponentiation on ordered types\<close> | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 394 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
33364diff
changeset | 395 | context linordered_semidom | 
| 30996 | 396 | begin | 
| 397 | ||
| 398 | lemma zero_less_power [simp]: | |
| 399 | "0 < a \<Longrightarrow> 0 < a ^ n" | |
| 56544 | 400 | by (induct n) simp_all | 
| 30996 | 401 | |
| 402 | lemma zero_le_power [simp]: | |
| 403 | "0 \<le> a \<Longrightarrow> 0 \<le> a ^ n" | |
| 56536 | 404 | by (induct n) simp_all | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 405 | |
| 47241 | 406 | lemma power_mono: | 
| 407 | "a \<le> b \<Longrightarrow> 0 \<le> a \<Longrightarrow> a ^ n \<le> b ^ n" | |
| 408 | by (induct n) (auto intro: mult_mono order_trans [of 0 a b]) | |
| 409 | ||
| 410 | lemma one_le_power [simp]: "1 \<le> a \<Longrightarrow> 1 \<le> a ^ n" | |
| 411 | using power_mono [of 1 a n] by simp | |
| 412 | ||
| 413 | lemma power_le_one: "\<lbrakk>0 \<le> a; a \<le> 1\<rbrakk> \<Longrightarrow> a ^ n \<le> 1" | |
| 414 | using power_mono [of a 1 n] by simp | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 415 | |
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 416 | lemma power_gt1_lemma: | 
| 30996 | 417 | assumes gt1: "1 < a" | 
| 418 | shows "1 < a * a ^ n" | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 419 | proof - | 
| 30996 | 420 | from gt1 have "0 \<le> a" | 
| 421 | by (fact order_trans [OF zero_le_one less_imp_le]) | |
| 422 | have "1 * 1 < a * 1" using gt1 by simp | |
| 423 | also have "\<dots> \<le> a * a ^ n" using gt1 | |
| 60758 | 424 | by (simp only: mult_mono \<open>0 \<le> a\<close> one_le_power order_less_imp_le | 
| 14577 | 425 | zero_le_one order_refl) | 
| 426 | finally show ?thesis by simp | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 427 | qed | 
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 428 | |
| 30996 | 429 | lemma power_gt1: | 
| 430 | "1 < a \<Longrightarrow> 1 < a ^ Suc n" | |
| 431 | by (simp add: power_gt1_lemma) | |
| 24376 | 432 | |
| 30996 | 433 | lemma one_less_power [simp]: | 
| 434 | "1 < a \<Longrightarrow> 0 < n \<Longrightarrow> 1 < a ^ n" | |
| 435 | by (cases n) (simp_all add: power_gt1_lemma) | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 436 | |
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 437 | lemma power_le_imp_le_exp: | 
| 30996 | 438 | assumes gt1: "1 < a" | 
| 439 | shows "a ^ m \<le> a ^ n \<Longrightarrow> m \<le> n" | |
| 440 | proof (induct m arbitrary: n) | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 441 | case 0 | 
| 14577 | 442 | show ?case by simp | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 443 | next | 
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 444 | case (Suc m) | 
| 14577 | 445 | show ?case | 
| 446 | proof (cases n) | |
| 447 | case 0 | |
| 30996 | 448 | with Suc.prems Suc.hyps have "a * a ^ m \<le> 1" by simp | 
| 14577 | 449 | with gt1 show ?thesis | 
| 450 | by (force simp only: power_gt1_lemma | |
| 30996 | 451 | not_less [symmetric]) | 
| 14577 | 452 | next | 
| 453 | case (Suc n) | |
| 30996 | 454 | with Suc.prems Suc.hyps show ?thesis | 
| 14577 | 455 | by (force dest: mult_left_le_imp_le | 
| 30996 | 456 | simp add: less_trans [OF zero_less_one gt1]) | 
| 14577 | 457 | qed | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 458 | qed | 
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 459 | |
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 460 | lemma of_nat_zero_less_power_iff [simp]: | 
| 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 461 | "of_nat x ^ n > 0 \<longleftrightarrow> x > 0 \<or> n = 0" | 
| 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 462 | by (induct n) auto | 
| 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 463 | |
| 61799 | 464 | text\<open>Surely we can strengthen this? It holds for \<open>0<a<1\<close> too.\<close> | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 465 | lemma power_inject_exp [simp]: | 
| 30996 | 466 | "1 < a \<Longrightarrow> a ^ m = a ^ n \<longleftrightarrow> m = n" | 
| 14577 | 467 | by (force simp add: order_antisym power_le_imp_le_exp) | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 468 | |
| 60758 | 469 | text\<open>Can relax the first premise to @{term "0<a"} in the case of the
 | 
| 470 | natural numbers.\<close> | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 471 | lemma power_less_imp_less_exp: | 
| 30996 | 472 | "1 < a \<Longrightarrow> a ^ m < a ^ n \<Longrightarrow> m < n" | 
| 473 | by (simp add: order_less_le [of m n] less_le [of "a^m" "a^n"] | |
| 474 | power_le_imp_le_exp) | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 475 | |
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 476 | lemma power_strict_mono [rule_format]: | 
| 30996 | 477 | "a < b \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 < n \<longrightarrow> a ^ n < b ^ n" | 
| 478 | by (induct n) | |
| 479 | (auto simp add: mult_strict_mono le_less_trans [of 0 a b]) | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 480 | |
| 61799 | 481 | text\<open>Lemma for \<open>power_strict_decreasing\<close>\<close> | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 482 | lemma power_Suc_less: | 
| 30996 | 483 | "0 < a \<Longrightarrow> a < 1 \<Longrightarrow> a * a ^ n < a ^ n" | 
| 484 | by (induct n) | |
| 485 | (auto simp add: mult_strict_left_mono) | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 486 | |
| 30996 | 487 | lemma power_strict_decreasing [rule_format]: | 
| 488 | "n < N \<Longrightarrow> 0 < a \<Longrightarrow> a < 1 \<longrightarrow> a ^ N < a ^ n" | |
| 489 | proof (induct N) | |
| 490 | case 0 then show ?case by simp | |
| 491 | next | |
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 492 | case (Suc N) then show ?case | 
| 30996 | 493 | apply (auto simp add: power_Suc_less less_Suc_eq) | 
| 494 | apply (subgoal_tac "a * a^N < 1 * a^n") | |
| 495 | apply simp | |
| 496 | apply (rule mult_strict_mono) apply auto | |
| 497 | done | |
| 498 | qed | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 499 | |
| 61799 | 500 | text\<open>Proof resembles that of \<open>power_strict_decreasing\<close>\<close> | 
| 30996 | 501 | lemma power_decreasing [rule_format]: | 
| 502 | "n \<le> N \<Longrightarrow> 0 \<le> a \<Longrightarrow> a \<le> 1 \<longrightarrow> a ^ N \<le> a ^ n" | |
| 503 | proof (induct N) | |
| 504 | case 0 then show ?case by simp | |
| 505 | next | |
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 506 | case (Suc N) then show ?case | 
| 30996 | 507 | apply (auto simp add: le_Suc_eq) | 
| 508 | apply (subgoal_tac "a * a^N \<le> 1 * a^n", simp) | |
| 509 | apply (rule mult_mono) apply auto | |
| 510 | done | |
| 511 | qed | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 512 | |
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 513 | lemma power_Suc_less_one: | 
| 30996 | 514 | "0 < a \<Longrightarrow> a < 1 \<Longrightarrow> a ^ Suc n < 1" | 
| 515 | using power_strict_decreasing [of 0 "Suc n" a] by simp | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 516 | |
| 61799 | 517 | text\<open>Proof again resembles that of \<open>power_strict_decreasing\<close>\<close> | 
| 30996 | 518 | lemma power_increasing [rule_format]: | 
| 519 | "n \<le> N \<Longrightarrow> 1 \<le> a \<Longrightarrow> a ^ n \<le> a ^ N" | |
| 520 | proof (induct N) | |
| 521 | case 0 then show ?case by simp | |
| 522 | next | |
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 523 | case (Suc N) then show ?case | 
| 30996 | 524 | apply (auto simp add: le_Suc_eq) | 
| 525 | apply (subgoal_tac "1 * a^n \<le> a * a^N", simp) | |
| 526 | apply (rule mult_mono) apply (auto simp add: order_trans [OF zero_le_one]) | |
| 527 | done | |
| 528 | qed | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 529 | |
| 61799 | 530 | text\<open>Lemma for \<open>power_strict_increasing\<close>\<close> | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 531 | lemma power_less_power_Suc: | 
| 30996 | 532 | "1 < a \<Longrightarrow> a ^ n < a * a ^ n" | 
| 533 | by (induct n) (auto simp add: mult_strict_left_mono less_trans [OF zero_less_one]) | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 534 | |
| 30996 | 535 | lemma power_strict_increasing [rule_format]: | 
| 536 | "n < N \<Longrightarrow> 1 < a \<longrightarrow> a ^ n < a ^ N" | |
| 537 | proof (induct N) | |
| 538 | case 0 then show ?case by simp | |
| 539 | next | |
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 540 | case (Suc N) then show ?case | 
| 30996 | 541 | apply (auto simp add: power_less_power_Suc less_Suc_eq) | 
| 542 | apply (subgoal_tac "1 * a^n < a * a^N", simp) | |
| 543 | apply (rule mult_strict_mono) apply (auto simp add: less_trans [OF zero_less_one] less_imp_le) | |
| 544 | done | |
| 545 | qed | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 546 | |
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25062diff
changeset | 547 | lemma power_increasing_iff [simp]: | 
| 30996 | 548 | "1 < b \<Longrightarrow> b ^ x \<le> b ^ y \<longleftrightarrow> x \<le> y" | 
| 549 | by (blast intro: power_le_imp_le_exp power_increasing less_imp_le) | |
| 15066 | 550 | |
| 551 | lemma power_strict_increasing_iff [simp]: | |
| 30996 | 552 | "1 < b \<Longrightarrow> b ^ x < b ^ y \<longleftrightarrow> x < y" | 
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 553 | by (blast intro: power_less_imp_less_exp power_strict_increasing) | 
| 15066 | 554 | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 555 | lemma power_le_imp_le_base: | 
| 30996 | 556 | assumes le: "a ^ Suc n \<le> b ^ Suc n" | 
| 557 | and ynonneg: "0 \<le> b" | |
| 558 | shows "a \<le> b" | |
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25062diff
changeset | 559 | proof (rule ccontr) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25062diff
changeset | 560 | assume "~ a \<le> b" | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25062diff
changeset | 561 | then have "b < a" by (simp only: linorder_not_le) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25062diff
changeset | 562 | then have "b ^ Suc n < a ^ Suc n" | 
| 41550 | 563 | by (simp only: assms power_strict_mono) | 
| 30996 | 564 | from le and this show False | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25062diff
changeset | 565 | by (simp add: linorder_not_less [symmetric]) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25062diff
changeset | 566 | qed | 
| 14577 | 567 | |
| 22853 | 568 | lemma power_less_imp_less_base: | 
| 569 | assumes less: "a ^ n < b ^ n" | |
| 570 | assumes nonneg: "0 \<le> b" | |
| 571 | shows "a < b" | |
| 572 | proof (rule contrapos_pp [OF less]) | |
| 573 | assume "~ a < b" | |
| 574 | hence "b \<le> a" by (simp only: linorder_not_less) | |
| 575 | hence "b ^ n \<le> a ^ n" using nonneg by (rule power_mono) | |
| 30996 | 576 | thus "\<not> a ^ n < b ^ n" by (simp only: linorder_not_less) | 
| 22853 | 577 | qed | 
| 578 | ||
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 579 | lemma power_inject_base: | 
| 30996 | 580 | "a ^ Suc n = b ^ Suc n \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> a = b" | 
| 581 | by (blast intro: power_le_imp_le_base antisym eq_refl sym) | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 582 | |
| 22955 | 583 | lemma power_eq_imp_eq_base: | 
| 30996 | 584 | "a ^ n = b ^ n \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 < n \<Longrightarrow> a = b" | 
| 585 | by (cases n) (simp_all del: power_Suc, rule power_inject_base) | |
| 22955 | 586 | |
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 587 | lemma power2_le_imp_le: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 588 | "x\<^sup>2 \<le> y\<^sup>2 \<Longrightarrow> 0 \<le> y \<Longrightarrow> x \<le> y" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 589 | unfolding numeral_2_eq_2 by (rule power_le_imp_le_base) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 590 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 591 | lemma power2_less_imp_less: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 592 | "x\<^sup>2 < y\<^sup>2 \<Longrightarrow> 0 \<le> y \<Longrightarrow> x < y" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 593 | by (rule power_less_imp_less_base) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 594 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 595 | lemma power2_eq_imp_eq: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 596 | "x\<^sup>2 = y\<^sup>2 \<Longrightarrow> 0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> x = y" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 597 | unfolding numeral_2_eq_2 by (erule (2) power_eq_imp_eq_base) simp | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 598 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 599 | end | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 600 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 601 | context linordered_ring_strict | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 602 | begin | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 603 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 604 | lemma sum_squares_eq_zero_iff: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 605 | "x * x + y * y = 0 \<longleftrightarrow> x = 0 \<and> y = 0" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 606 | by (simp add: add_nonneg_eq_0_iff) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 607 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 608 | lemma sum_squares_le_zero_iff: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 609 | "x * x + y * y \<le> 0 \<longleftrightarrow> x = 0 \<and> y = 0" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 610 | by (simp add: le_less not_sum_squares_lt_zero sum_squares_eq_zero_iff) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 611 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 612 | lemma sum_squares_gt_zero_iff: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 613 | "0 < x * x + y * y \<longleftrightarrow> x \<noteq> 0 \<or> y \<noteq> 0" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 614 | by (simp add: not_le [symmetric] sum_squares_le_zero_iff) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 615 | |
| 30996 | 616 | end | 
| 617 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
33364diff
changeset | 618 | context linordered_idom | 
| 30996 | 619 | begin | 
| 29978 
33df3c4eb629
generalize le_imp_power_dvd and power_le_dvd; move from Divides to Power
 huffman parents: 
29608diff
changeset | 620 | |
| 61944 | 621 | lemma power_abs: "\<bar>a ^ n\<bar> = \<bar>a\<bar> ^ n" | 
| 30996 | 622 | by (induct n) (auto simp add: abs_mult) | 
| 623 | ||
| 61944 | 624 | lemma abs_power_minus [simp]: "\<bar>(-a) ^ n\<bar> = \<bar>a ^ n\<bar>" | 
| 35216 | 625 | by (simp add: power_abs) | 
| 30996 | 626 | |
| 61944 | 627 | lemma zero_less_power_abs_iff [simp]: "0 < \<bar>a\<bar> ^ n \<longleftrightarrow> a \<noteq> 0 \<or> n = 0" | 
| 30996 | 628 | proof (induct n) | 
| 629 | case 0 show ?case by simp | |
| 630 | next | |
| 631 | case (Suc n) show ?case by (auto simp add: Suc zero_less_mult_iff) | |
| 29978 
33df3c4eb629
generalize le_imp_power_dvd and power_le_dvd; move from Divides to Power
 huffman parents: 
29608diff
changeset | 632 | qed | 
| 
33df3c4eb629
generalize le_imp_power_dvd and power_le_dvd; move from Divides to Power
 huffman parents: 
29608diff
changeset | 633 | |
| 61944 | 634 | lemma zero_le_power_abs [simp]: "0 \<le> \<bar>a\<bar> ^ n" | 
| 30996 | 635 | by (rule zero_le_power [OF abs_ge_zero]) | 
| 636 | ||
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 637 | lemma zero_le_power2 [simp]: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 638 | "0 \<le> a\<^sup>2" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 639 | by (simp add: power2_eq_square) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 640 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 641 | lemma zero_less_power2 [simp]: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 642 | "0 < a\<^sup>2 \<longleftrightarrow> a \<noteq> 0" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 643 | by (force simp add: power2_eq_square zero_less_mult_iff linorder_neq_iff) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 644 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 645 | lemma power2_less_0 [simp]: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 646 | "\<not> a\<^sup>2 < 0" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 647 | by (force simp add: power2_eq_square mult_less_0_iff) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 648 | |
| 58787 | 649 | lemma power2_less_eq_zero_iff [simp]: | 
| 650 | "a\<^sup>2 \<le> 0 \<longleftrightarrow> a = 0" | |
| 651 | by (simp add: le_less) | |
| 652 | ||
| 61944 | 653 | lemma abs_power2 [simp]: "\<bar>a\<^sup>2\<bar> = a\<^sup>2" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 654 | by (simp add: power2_eq_square abs_mult abs_mult_self) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 655 | |
| 61944 | 656 | lemma power2_abs [simp]: "\<bar>a\<bar>\<^sup>2 = a\<^sup>2" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 657 | by (simp add: power2_eq_square abs_mult_self) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 658 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 659 | lemma odd_power_less_zero: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 660 | "a < 0 \<Longrightarrow> a ^ Suc (2*n) < 0" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 661 | proof (induct n) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 662 | case 0 | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 663 | then show ?case by simp | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 664 | next | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 665 | case (Suc n) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 666 | have "a ^ Suc (2 * Suc n) = (a*a) * a ^ Suc(2*n)" | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 667 | by (simp add: ac_simps power_add power2_eq_square) | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 668 | thus ?case | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 669 | by (simp del: power_Suc add: Suc mult_less_0_iff mult_neg_neg) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 670 | qed | 
| 30996 | 671 | |
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 672 | lemma odd_0_le_power_imp_0_le: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 673 | "0 \<le> a ^ Suc (2*n) \<Longrightarrow> 0 \<le> a" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 674 | using odd_power_less_zero [of a n] | 
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 675 | by (force simp add: linorder_not_less [symmetric]) | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 676 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 677 | lemma zero_le_even_power'[simp]: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 678 | "0 \<le> a ^ (2*n)" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 679 | proof (induct n) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 680 | case 0 | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 681 | show ?case by simp | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 682 | next | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 683 | case (Suc n) | 
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 684 | have "a ^ (2 * Suc n) = (a*a) * a ^ (2*n)" | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 685 | by (simp add: ac_simps power_add power2_eq_square) | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 686 | thus ?case | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 687 | by (simp add: Suc zero_le_mult_iff) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 688 | qed | 
| 30996 | 689 | |
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 690 | lemma sum_power2_ge_zero: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 691 | "0 \<le> x\<^sup>2 + y\<^sup>2" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 692 | by (intro add_nonneg_nonneg zero_le_power2) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 693 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 694 | lemma not_sum_power2_lt_zero: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 695 | "\<not> x\<^sup>2 + y\<^sup>2 < 0" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 696 | unfolding not_less by (rule sum_power2_ge_zero) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 697 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 698 | lemma sum_power2_eq_zero_iff: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 699 | "x\<^sup>2 + y\<^sup>2 = 0 \<longleftrightarrow> x = 0 \<and> y = 0" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 700 | unfolding power2_eq_square by (simp add: add_nonneg_eq_0_iff) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 701 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 702 | lemma sum_power2_le_zero_iff: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 703 | "x\<^sup>2 + y\<^sup>2 \<le> 0 \<longleftrightarrow> x = 0 \<and> y = 0" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 704 | by (simp add: le_less sum_power2_eq_zero_iff not_sum_power2_lt_zero) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 705 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 706 | lemma sum_power2_gt_zero_iff: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 707 | "0 < x\<^sup>2 + y\<^sup>2 \<longleftrightarrow> x \<noteq> 0 \<or> y \<noteq> 0" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 708 | unfolding not_le [symmetric] by (simp add: sum_power2_le_zero_iff) | 
| 30996 | 709 | |
| 59865 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 710 | lemma abs_le_square_iff: | 
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 711 | "\<bar>x\<bar> \<le> \<bar>y\<bar> \<longleftrightarrow> x\<^sup>2 \<le> y\<^sup>2" | 
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 712 | proof | 
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 713 | assume "\<bar>x\<bar> \<le> \<bar>y\<bar>" | 
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 714 | then have "\<bar>x\<bar>\<^sup>2 \<le> \<bar>y\<bar>\<^sup>2" by (rule power_mono, simp) | 
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 715 | then show "x\<^sup>2 \<le> y\<^sup>2" by simp | 
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 716 | next | 
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 717 | assume "x\<^sup>2 \<le> y\<^sup>2" | 
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 718 | then show "\<bar>x\<bar> \<le> \<bar>y\<bar>" | 
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 719 | by (auto intro!: power2_le_imp_le [OF _ abs_ge_zero]) | 
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 720 | qed | 
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 721 | |
| 61944 | 722 | lemma abs_square_le_1:"x\<^sup>2 \<le> 1 \<longleftrightarrow> \<bar>x\<bar> \<le> 1" | 
| 59865 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 723 | using abs_le_square_iff [of x 1] | 
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 724 | by simp | 
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 725 | |
| 61944 | 726 | lemma abs_square_eq_1: "x\<^sup>2 = 1 \<longleftrightarrow> \<bar>x\<bar> = 1" | 
| 59865 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 727 | by (auto simp add: abs_if power2_eq_1_iff) | 
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 728 | |
| 61944 | 729 | lemma abs_square_less_1: "x\<^sup>2 < 1 \<longleftrightarrow> \<bar>x\<bar> < 1" | 
| 59865 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 730 | using abs_square_eq_1 [of x] abs_square_le_1 [of x] | 
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 731 | by (auto simp add: le_less) | 
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 732 | |
| 30996 | 733 | end | 
| 734 | ||
| 29978 
33df3c4eb629
generalize le_imp_power_dvd and power_le_dvd; move from Divides to Power
 huffman parents: 
29608diff
changeset | 735 | |
| 60758 | 736 | subsection \<open>Miscellaneous rules\<close> | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 737 | |
| 60867 | 738 | lemma (in linordered_semidom) self_le_power: | 
| 739 | "1 \<le> a \<Longrightarrow> 0 < n \<Longrightarrow> a \<le> a ^ n" | |
| 740 | using power_increasing [of 1 n a] power_one_right [of a] by auto | |
| 55718 
34618f031ba9
A few lemmas about summations, etc.
 paulson <lp15@cam.ac.uk> parents: 
55096diff
changeset | 741 | |
| 60867 | 742 | lemma (in power) power_eq_if: | 
| 743 | "p ^ m = (if m=0 then 1 else p * (p ^ (m - 1)))" | |
| 47255 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 744 | unfolding One_nat_def by (cases m) simp_all | 
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 745 | |
| 58787 | 746 | lemma (in comm_semiring_1) power2_sum: | 
| 747 | "(x + y)\<^sup>2 = x\<^sup>2 + y\<^sup>2 + 2 * x * y" | |
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 748 | by (simp add: algebra_simps power2_eq_square mult_2_right) | 
| 30996 | 749 | |
| 58787 | 750 | lemma (in comm_ring_1) power2_diff: | 
| 751 | "(x - y)\<^sup>2 = x\<^sup>2 + y\<^sup>2 - 2 * x * y" | |
| 752 | by (simp add: algebra_simps power2_eq_square mult_2_right) | |
| 30996 | 753 | |
| 60974 
6a6f15d8fbc4
New material and fixes related to the forthcoming Stone-Weierstrass development
 paulson <lp15@cam.ac.uk> parents: 
60867diff
changeset | 754 | lemma (in comm_ring_1) power2_commute: | 
| 
6a6f15d8fbc4
New material and fixes related to the forthcoming Stone-Weierstrass development
 paulson <lp15@cam.ac.uk> parents: 
60867diff
changeset | 755 | "(x - y)\<^sup>2 = (y - x)\<^sup>2" | 
| 
6a6f15d8fbc4
New material and fixes related to the forthcoming Stone-Weierstrass development
 paulson <lp15@cam.ac.uk> parents: 
60867diff
changeset | 756 | by (simp add: algebra_simps power2_eq_square) | 
| 
6a6f15d8fbc4
New material and fixes related to the forthcoming Stone-Weierstrass development
 paulson <lp15@cam.ac.uk> parents: 
60867diff
changeset | 757 | |
| 60758 | 758 | text \<open>Simprules for comparisons where common factors can be cancelled.\<close> | 
| 47255 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 759 | |
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 760 | lemmas zero_compare_simps = | 
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 761 | add_strict_increasing add_strict_increasing2 add_increasing | 
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 762 | zero_le_mult_iff zero_le_divide_iff | 
| 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 763 | zero_less_mult_iff zero_less_divide_iff | 
| 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 764 | mult_le_0_iff divide_le_0_iff | 
| 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 765 | mult_less_0_iff divide_less_0_iff | 
| 47255 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 766 | zero_le_power2 power2_less_0 | 
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 767 | |
| 30313 | 768 | |
| 60758 | 769 | subsection \<open>Exponentiation for the Natural Numbers\<close> | 
| 14577 | 770 | |
| 30996 | 771 | lemma nat_one_le_power [simp]: | 
| 772 | "Suc 0 \<le> i \<Longrightarrow> Suc 0 \<le> i ^ n" | |
| 773 | by (rule one_le_power [of i n, unfolded One_nat_def]) | |
| 23305 | 774 | |
| 30996 | 775 | lemma nat_zero_less_power_iff [simp]: | 
| 776 | "x ^ n > 0 \<longleftrightarrow> x > (0::nat) \<or> n = 0" | |
| 777 | by (induct n) auto | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 778 | |
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 779 | lemma nat_power_eq_Suc_0_iff [simp]: | 
| 30996 | 780 | "x ^ m = Suc 0 \<longleftrightarrow> m = 0 \<or> x = Suc 0" | 
| 781 | by (induct m) auto | |
| 30056 | 782 | |
| 30996 | 783 | lemma power_Suc_0 [simp]: | 
| 784 | "Suc 0 ^ n = Suc 0" | |
| 785 | by simp | |
| 30056 | 786 | |
| 61799 | 787 | text\<open>Valid for the naturals, but what if \<open>0<i<1\<close>? | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 788 | Premises cannot be weakened: consider the case where @{term "i=0"},
 | 
| 60758 | 789 | @{term "m=1"} and @{term "n=0"}.\<close>
 | 
| 21413 | 790 | lemma nat_power_less_imp_less: | 
| 61076 | 791 | assumes nonneg: "0 < (i::nat)" | 
| 30996 | 792 | assumes less: "i ^ m < i ^ n" | 
| 21413 | 793 | shows "m < n" | 
| 794 | proof (cases "i = 1") | |
| 795 | case True with less power_one [where 'a = nat] show ?thesis by simp | |
| 796 | next | |
| 797 | case False with nonneg have "1 < i" by auto | |
| 798 | from power_strict_increasing_iff [OF this] less show ?thesis .. | |
| 799 | qed | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 800 | |
| 33274 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
31998diff
changeset | 801 | lemma power_dvd_imp_le: | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
31998diff
changeset | 802 | "i ^ m dvd i ^ n \<Longrightarrow> (1::nat) < i \<Longrightarrow> m \<le> n" | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
31998diff
changeset | 803 | apply (rule power_le_imp_le_exp, assumption) | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
31998diff
changeset | 804 | apply (erule dvd_imp_le, simp) | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
31998diff
changeset | 805 | done | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
31998diff
changeset | 806 | |
| 51263 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49824diff
changeset | 807 | lemma power2_nat_le_eq_le: | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49824diff
changeset | 808 | fixes m n :: nat | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 809 | shows "m\<^sup>2 \<le> n\<^sup>2 \<longleftrightarrow> m \<le> n" | 
| 51263 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49824diff
changeset | 810 | by (auto intro: power2_le_imp_le power_mono) | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49824diff
changeset | 811 | |
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49824diff
changeset | 812 | lemma power2_nat_le_imp_le: | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49824diff
changeset | 813 | fixes m n :: nat | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 814 | assumes "m\<^sup>2 \<le> n" | 
| 51263 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49824diff
changeset | 815 | shows "m \<le> n" | 
| 54249 | 816 | proof (cases m) | 
| 817 | case 0 then show ?thesis by simp | |
| 818 | next | |
| 819 | case (Suc k) | |
| 820 | show ?thesis | |
| 821 | proof (rule ccontr) | |
| 822 | assume "\<not> m \<le> n" | |
| 823 | then have "n < m" by simp | |
| 824 | with assms Suc show False | |
| 60867 | 825 | by (simp add: power2_eq_square) | 
| 54249 | 826 | qed | 
| 827 | qed | |
| 51263 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49824diff
changeset | 828 | |
| 60758 | 829 | subsubsection \<open>Cardinality of the Powerset\<close> | 
| 55096 | 830 | |
| 831 | lemma card_UNIV_bool [simp]: "card (UNIV :: bool set) = 2" | |
| 832 | unfolding UNIV_bool by simp | |
| 833 | ||
| 834 | lemma card_Pow: "finite A \<Longrightarrow> card (Pow A) = 2 ^ card A" | |
| 835 | proof (induct rule: finite_induct) | |
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 836 | case empty | 
| 55096 | 837 | show ?case by auto | 
| 838 | next | |
| 839 | case (insert x A) | |
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 840 | then have "inj_on (insert x) (Pow A)" | 
| 55096 | 841 | unfolding inj_on_def by (blast elim!: equalityE) | 
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 842 | then have "card (Pow A) + card (insert x ` Pow A) = 2 * 2 ^ card A" | 
| 55096 | 843 | by (simp add: mult_2 card_image Pow_insert insert.hyps) | 
| 844 | then show ?case using insert | |
| 845 | apply (simp add: Pow_insert) | |
| 846 | apply (subst card_Un_disjoint, auto) | |
| 847 | done | |
| 848 | qed | |
| 849 | ||
| 57418 | 850 | |
| 60758 | 851 | subsubsection \<open>Generalized sum over a set\<close> | 
| 57418 | 852 | |
| 853 | lemma setsum_zero_power [simp]: | |
| 854 | fixes c :: "nat \<Rightarrow> 'a::division_ring" | |
| 855 | shows "(\<Sum>i\<in>A. c i * 0^i) = (if finite A \<and> 0 \<in> A then c 0 else 0)" | |
| 856 | apply (cases "finite A") | |
| 857 | by (induction A rule: finite_induct) auto | |
| 858 | ||
| 859 | lemma setsum_zero_power' [simp]: | |
| 860 | fixes c :: "nat \<Rightarrow> 'a::field" | |
| 861 | shows "(\<Sum>i\<in>A. c i * 0^i / d i) = (if finite A \<and> 0 \<in> A then c 0 / d 0 else 0)" | |
| 862 | using setsum_zero_power [of "\<lambda>i. c i / d i" A] | |
| 863 | by auto | |
| 864 | ||
| 865 | ||
| 60758 | 866 | subsubsection \<open>Generalized product over a set\<close> | 
| 55096 | 867 | |
| 868 | lemma setprod_constant: "finite A ==> (\<Prod>x\<in> A. (y::'a::{comm_monoid_mult})) = y^(card A)"
 | |
| 869 | apply (erule finite_induct) | |
| 870 | apply auto | |
| 871 | done | |
| 872 | ||
| 57418 | 873 | lemma setprod_power_distrib: | 
| 874 | fixes f :: "'a \<Rightarrow> 'b::comm_semiring_1" | |
| 875 | shows "setprod f A ^ n = setprod (\<lambda>x. (f x) ^ n) A" | |
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 876 | proof (cases "finite A") | 
| 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 877 | case True then show ?thesis | 
| 57418 | 878 | by (induct A rule: finite_induct) (auto simp add: power_mult_distrib) | 
| 879 | next | |
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 880 | case False then show ?thesis | 
| 57418 | 881 | by simp | 
| 882 | qed | |
| 883 | ||
| 58437 | 884 | lemma power_setsum: | 
| 885 | "c ^ (\<Sum>a\<in>A. f a) = (\<Prod>a\<in>A. c ^ f a)" | |
| 886 | by (induct A rule: infinite_finite_induct) (simp_all add: power_add) | |
| 887 | ||
| 55096 | 888 | lemma setprod_gen_delta: | 
| 889 | assumes fS: "finite S" | |
| 890 | shows "setprod (\<lambda>k. if k=a then b k else c) S = (if a \<in> S then (b a ::'a::comm_monoid_mult) * c^ (card S - 1) else c^ card S)" | |
| 891 | proof- | |
| 892 | let ?f = "(\<lambda>k. if k=a then b k else c)" | |
| 893 |   {assume a: "a \<notin> S"
 | |
| 894 | hence "\<forall> k\<in> S. ?f k = c" by simp | |
| 895 | hence ?thesis using a setprod_constant[OF fS, of c] by simp } | |
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 896 | moreover | 
| 55096 | 897 |   {assume a: "a \<in> S"
 | 
| 898 |     let ?A = "S - {a}"
 | |
| 899 |     let ?B = "{a}"
 | |
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 900 | have eq: "S = ?A \<union> ?B" using a by blast | 
| 55096 | 901 |     have dj: "?A \<inter> ?B = {}" by simp
 | 
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 902 | from fS have fAB: "finite ?A" "finite ?B" by auto | 
| 55096 | 903 | have fA0:"setprod ?f ?A = setprod (\<lambda>i. c) ?A" | 
| 57418 | 904 | apply (rule setprod.cong) by auto | 
| 55096 | 905 | have cA: "card ?A = card S - 1" using fS a by auto | 
| 906 | have fA1: "setprod ?f ?A = c ^ card ?A" unfolding fA0 apply (rule setprod_constant) using fS by auto | |
| 907 | have "setprod ?f ?A * setprod ?f ?B = setprod ?f S" | |
| 57418 | 908 | using setprod.union_disjoint[OF fAB dj, of ?f, unfolded eq[symmetric]] | 
| 55096 | 909 | by simp | 
| 910 | then have ?thesis using a cA | |
| 57418 | 911 | by (simp add: fA1 field_simps cong add: setprod.cong cong del: if_weak_cong)} | 
| 55096 | 912 | ultimately show ?thesis by blast | 
| 913 | qed | |
| 914 | ||
| 60758 | 915 | subsection \<open>Code generator tweak\<close> | 
| 31155 
92d8ff6af82c
monomorphic code generation for power operations
 haftmann parents: 
31021diff
changeset | 916 | |
| 52435 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
51263diff
changeset | 917 | code_identifier | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
51263diff
changeset | 918 | code_module Power \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith | 
| 33364 | 919 | |
| 3390 
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
 paulson parents: diff
changeset | 920 | end |