author | clasohm |
Mon, 05 Feb 1996 21:27:16 +0100 | |
changeset 1475 | 7f5a4cd08209 |
parent 1370 | 7361ac9b024d |
child 1531 | e5eb247ad13c |
permissions | -rw-r--r-- |
923 | 1 |
(* Title: HOL/Nat.thy |
2 |
ID: $Id$ |
|
3 |
Author: Tobias Nipkow, Cambridge University Computer Laboratory |
|
4 |
Copyright 1991 University of Cambridge |
|
5 |
||
6 |
Definition of types ind and nat. |
|
7 |
||
8 |
Type nat is defined as a set Nat over type ind. |
|
9 |
*) |
|
10 |
||
11 |
Nat = WF + |
|
12 |
||
13 |
(** type ind **) |
|
14 |
||
15 |
types |
|
16 |
ind |
|
17 |
||
18 |
arities |
|
19 |
ind :: term |
|
20 |
||
21 |
consts |
|
1370
7361ac9b024d
removed quotes from types in consts and syntax sections
clasohm
parents:
1151
diff
changeset
|
22 |
Zero_Rep :: ind |
7361ac9b024d
removed quotes from types in consts and syntax sections
clasohm
parents:
1151
diff
changeset
|
23 |
Suc_Rep :: ind => ind |
923 | 24 |
|
25 |
rules |
|
26 |
(*the axiom of infinity in 2 parts*) |
|
27 |
inj_Suc_Rep "inj(Suc_Rep)" |
|
28 |
Suc_Rep_not_Zero_Rep "Suc_Rep(x) ~= Zero_Rep" |
|
29 |
||
30 |
||
31 |
||
32 |
(** type nat **) |
|
33 |
||
34 |
(* type definition *) |
|
35 |
||
1475 | 36 |
typedef (Nat) |
923 | 37 |
nat = "lfp(%X. {Zero_Rep} Un (Suc_Rep``X))" (lfp_def) |
38 |
||
39 |
instance |
|
40 |
nat :: ord |
|
41 |
||
42 |
||
43 |
(* abstract constants and syntax *) |
|
44 |
||
45 |
consts |
|
1370
7361ac9b024d
removed quotes from types in consts and syntax sections
clasohm
parents:
1151
diff
changeset
|
46 |
"0" :: nat ("0") |
7361ac9b024d
removed quotes from types in consts and syntax sections
clasohm
parents:
1151
diff
changeset
|
47 |
Suc :: nat => nat |
7361ac9b024d
removed quotes from types in consts and syntax sections
clasohm
parents:
1151
diff
changeset
|
48 |
nat_case :: ['a, nat => 'a, nat] => 'a |
923 | 49 |
pred_nat :: "(nat * nat) set" |
1370
7361ac9b024d
removed quotes from types in consts and syntax sections
clasohm
parents:
1151
diff
changeset
|
50 |
nat_rec :: [nat, 'a, [nat, 'a] => 'a] => 'a |
923 | 51 |
|
52 |
translations |
|
53 |
"case p of 0 => a | Suc(y) => b" == "nat_case a (%y.b) p" |
|
54 |
||
55 |
defs |
|
56 |
Zero_def "0 == Abs_Nat(Zero_Rep)" |
|
57 |
Suc_def "Suc == (%n. Abs_Nat(Suc_Rep(Rep_Nat(n))))" |
|
58 |
||
59 |
(*nat operations and recursion*) |
|
1151 | 60 |
nat_case_def "nat_case a f n == @z. (n=0 --> z=a) |
61 |
& (!x. n=Suc(x) --> z=f(x))" |
|
972
e61b058d58d2
changed syntax of tuples from <..., ...> to (..., ...)
clasohm
parents:
923
diff
changeset
|
62 |
pred_nat_def "pred_nat == {p. ? n. p = (n, Suc(n))}" |
923 | 63 |
|
972
e61b058d58d2
changed syntax of tuples from <..., ...> to (..., ...)
clasohm
parents:
923
diff
changeset
|
64 |
less_def "m<n == (m,n):trancl(pred_nat)" |
923 | 65 |
|
66 |
le_def "m<=(n::nat) == ~(n<m)" |
|
67 |
||
1475 | 68 |
nat_rec_def"nat_rec n c d == wfrec pred_nat (%f. nat_case c (%m. d m (f m))) n" |
923 | 69 |
end |