| author | traytel | 
| Mon, 12 Aug 2013 20:04:03 +0200 | |
| changeset 52986 | 7f7bbeb16538 | 
| parent 52380 | 3cc46b8cca5e | 
| child 54230 | b1d955791529 | 
| permissions | -rw-r--r-- | 
| 41959 | 1 | (* Title: HOL/Library/Polynomial.thy | 
| 29451 | 2 | Author: Brian Huffman | 
| 41959 | 3 | Author: Clemens Ballarin | 
| 52380 | 4 | Author: Florian Haftmann | 
| 29451 | 5 | *) | 
| 6 | ||
| 52380 | 7 | header {* Polynomials as type over a ring structure *}
 | 
| 29451 | 8 | |
| 9 | theory Polynomial | |
| 52380 | 10 | imports Main GCD | 
| 29451 | 11 | begin | 
| 12 | ||
| 52380 | 13 | subsection {* Auxiliary: operations for lists (later) representing coefficients *}
 | 
| 14 | ||
| 15 | definition strip_while :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a list"
 | |
| 16 | where | |
| 17 | "strip_while P = rev \<circ> dropWhile P \<circ> rev" | |
| 18 | ||
| 19 | lemma strip_while_Nil [simp]: | |
| 20 | "strip_while P [] = []" | |
| 21 | by (simp add: strip_while_def) | |
| 22 | ||
| 23 | lemma strip_while_append [simp]: | |
| 24 | "\<not> P x \<Longrightarrow> strip_while P (xs @ [x]) = xs @ [x]" | |
| 25 | by (simp add: strip_while_def) | |
| 26 | ||
| 27 | lemma strip_while_append_rec [simp]: | |
| 28 | "P x \<Longrightarrow> strip_while P (xs @ [x]) = strip_while P xs" | |
| 29 | by (simp add: strip_while_def) | |
| 30 | ||
| 31 | lemma strip_while_Cons [simp]: | |
| 32 | "\<not> P x \<Longrightarrow> strip_while P (x # xs) = x # strip_while P xs" | |
| 33 | by (induct xs rule: rev_induct) (simp_all add: strip_while_def) | |
| 34 | ||
| 35 | lemma strip_while_eq_Nil [simp]: | |
| 36 | "strip_while P xs = [] \<longleftrightarrow> (\<forall>x\<in>set xs. P x)" | |
| 37 | by (simp add: strip_while_def) | |
| 38 | ||
| 39 | lemma strip_while_eq_Cons_rec: | |
| 40 | "strip_while P (x # xs) = x # strip_while P xs \<longleftrightarrow> \<not> (P x \<and> (\<forall>x\<in>set xs. P x))" | |
| 41 | by (induct xs rule: rev_induct) (simp_all add: strip_while_def) | |
| 42 | ||
| 43 | lemma strip_while_not_last [simp]: | |
| 44 | "\<not> P (last xs) \<Longrightarrow> strip_while P xs = xs" | |
| 45 | by (cases xs rule: rev_cases) simp_all | |
| 46 | ||
| 47 | lemma split_strip_while_append: | |
| 48 | fixes xs :: "'a list" | |
| 49 | obtains ys zs :: "'a list" | |
| 50 | where "strip_while P xs = ys" and "\<forall>x\<in>set zs. P x" and "xs = ys @ zs" | |
| 51 | proof (rule that) | |
| 52 | show "strip_while P xs = strip_while P xs" .. | |
| 53 | show "\<forall>x\<in>set (rev (takeWhile P (rev xs))). P x" by (simp add: takeWhile_eq_all_conv [symmetric]) | |
| 54 | have "rev xs = rev (strip_while P xs @ rev (takeWhile P (rev xs)))" | |
| 55 | by (simp add: strip_while_def) | |
| 56 | then show "xs = strip_while P xs @ rev (takeWhile P (rev xs))" | |
| 57 | by (simp only: rev_is_rev_conv) | |
| 58 | qed | |
| 59 | ||
| 60 | ||
| 61 | definition nth_default :: "'a \<Rightarrow> 'a list \<Rightarrow> nat \<Rightarrow> 'a" | |
| 62 | where | |
| 63 | "nth_default x xs n = (if n < length xs then xs ! n else x)" | |
| 64 | ||
| 65 | lemma nth_default_Nil [simp]: | |
| 66 | "nth_default y [] n = y" | |
| 67 | by (simp add: nth_default_def) | |
| 68 | ||
| 69 | lemma nth_default_Cons_0 [simp]: | |
| 70 | "nth_default y (x # xs) 0 = x" | |
| 71 | by (simp add: nth_default_def) | |
| 72 | ||
| 73 | lemma nth_default_Cons_Suc [simp]: | |
| 74 | "nth_default y (x # xs) (Suc n) = nth_default y xs n" | |
| 75 | by (simp add: nth_default_def) | |
| 76 | ||
| 77 | lemma nth_default_map_eq: | |
| 78 | "f y = x \<Longrightarrow> nth_default x (map f xs) n = f (nth_default y xs n)" | |
| 79 | by (simp add: nth_default_def) | |
| 80 | ||
| 81 | lemma nth_default_strip_while_eq [simp]: | |
| 82 | "nth_default x (strip_while (HOL.eq x) xs) n = nth_default x xs n" | |
| 83 | proof - | |
| 84 | from split_strip_while_append obtain ys zs | |
| 85 | where "strip_while (HOL.eq x) xs = ys" and "\<forall>z\<in>set zs. x = z" and "xs = ys @ zs" by blast | |
| 86 | then show ?thesis by (simp add: nth_default_def not_less nth_append) | |
| 87 | qed | |
| 88 | ||
| 89 | ||
| 90 | definition cCons :: "'a::zero \<Rightarrow> 'a list \<Rightarrow> 'a list" (infixr "##" 65) | |
| 91 | where | |
| 92 | "x ## xs = (if xs = [] \<and> x = 0 then [] else x # xs)" | |
| 93 | ||
| 94 | lemma cCons_0_Nil_eq [simp]: | |
| 95 | "0 ## [] = []" | |
| 96 | by (simp add: cCons_def) | |
| 97 | ||
| 98 | lemma cCons_Cons_eq [simp]: | |
| 99 | "x ## y # ys = x # y # ys" | |
| 100 | by (simp add: cCons_def) | |
| 101 | ||
| 102 | lemma cCons_append_Cons_eq [simp]: | |
| 103 | "x ## xs @ y # ys = x # xs @ y # ys" | |
| 104 | by (simp add: cCons_def) | |
| 105 | ||
| 106 | lemma cCons_not_0_eq [simp]: | |
| 107 | "x \<noteq> 0 \<Longrightarrow> x ## xs = x # xs" | |
| 108 | by (simp add: cCons_def) | |
| 109 | ||
| 110 | lemma strip_while_not_0_Cons_eq [simp]: | |
| 111 | "strip_while (\<lambda>x. x = 0) (x # xs) = x ## strip_while (\<lambda>x. x = 0) xs" | |
| 112 | proof (cases "x = 0") | |
| 113 | case False then show ?thesis by simp | |
| 114 | next | |
| 115 | case True show ?thesis | |
| 116 | proof (induct xs rule: rev_induct) | |
| 117 | case Nil with True show ?case by simp | |
| 118 | next | |
| 119 | case (snoc y ys) then show ?case | |
| 120 | by (cases "y = 0") (simp_all add: append_Cons [symmetric] del: append_Cons) | |
| 121 | qed | |
| 122 | qed | |
| 123 | ||
| 124 | lemma tl_cCons [simp]: | |
| 125 | "tl (x ## xs) = xs" | |
| 126 | by (simp add: cCons_def) | |
| 127 | ||
| 128 | ||
| 129 | subsection {* Almost everywhere zero functions *}
 | |
| 130 | ||
| 131 | definition almost_everywhere_zero :: "(nat \<Rightarrow> 'a::zero) \<Rightarrow> bool" | |
| 132 | where | |
| 133 | "almost_everywhere_zero f \<longleftrightarrow> (\<exists>n. \<forall>i>n. f i = 0)" | |
| 134 | ||
| 135 | lemma almost_everywhere_zeroI: | |
| 136 | "(\<And>i. i > n \<Longrightarrow> f i = 0) \<Longrightarrow> almost_everywhere_zero f" | |
| 137 | by (auto simp add: almost_everywhere_zero_def) | |
| 138 | ||
| 139 | lemma almost_everywhere_zeroE: | |
| 140 | assumes "almost_everywhere_zero f" | |
| 141 | obtains n where "\<And>i. i > n \<Longrightarrow> f i = 0" | |
| 142 | proof - | |
| 143 | from assms have "\<exists>n. \<forall>i>n. f i = 0" by (simp add: almost_everywhere_zero_def) | |
| 144 | then obtain n where "\<And>i. i > n \<Longrightarrow> f i = 0" by blast | |
| 145 | with that show thesis . | |
| 146 | qed | |
| 147 | ||
| 148 | lemma almost_everywhere_zero_nat_case: | |
| 149 | assumes "almost_everywhere_zero f" | |
| 150 | shows "almost_everywhere_zero (nat_case a f)" | |
| 151 | using assms | |
| 152 | by (auto intro!: almost_everywhere_zeroI elim!: almost_everywhere_zeroE split: nat.split) | |
| 153 | blast | |
| 154 | ||
| 155 | lemma almost_everywhere_zero_Suc: | |
| 156 | assumes "almost_everywhere_zero f" | |
| 157 | shows "almost_everywhere_zero (\<lambda>n. f (Suc n))" | |
| 158 | proof - | |
| 159 | from assms obtain n where "\<And>i. i > n \<Longrightarrow> f i = 0" by (erule almost_everywhere_zeroE) | |
| 160 | then have "\<And>i. i > n \<Longrightarrow> f (Suc i) = 0" by auto | |
| 161 | then show ?thesis by (rule almost_everywhere_zeroI) | |
| 162 | qed | |
| 163 | ||
| 164 | ||
| 29451 | 165 | subsection {* Definition of type @{text poly} *}
 | 
| 166 | ||
| 52380 | 167 | typedef 'a poly = "{f :: nat \<Rightarrow> 'a::zero. almost_everywhere_zero f}"
 | 
| 29451 | 168 | morphisms coeff Abs_poly | 
| 52380 | 169 | unfolding almost_everywhere_zero_def by auto | 
| 29451 | 170 | |
| 52380 | 171 | setup_lifting (no_code) type_definition_poly | 
| 172 | ||
| 173 | lemma poly_eq_iff: "p = q \<longleftrightarrow> (\<forall>n. coeff p n = coeff q n)" | |
| 45694 
4a8743618257
prefer typedef without extra definition and alternative name;
 wenzelm parents: 
45605diff
changeset | 174 | by (simp add: coeff_inject [symmetric] fun_eq_iff) | 
| 29451 | 175 | |
| 52380 | 176 | lemma poly_eqI: "(\<And>n. coeff p n = coeff q n) \<Longrightarrow> p = q" | 
| 177 | by (simp add: poly_eq_iff) | |
| 178 | ||
| 179 | lemma coeff_almost_everywhere_zero: | |
| 180 | "almost_everywhere_zero (coeff p)" | |
| 181 | using coeff [of p] by simp | |
| 29451 | 182 | |
| 183 | ||
| 184 | subsection {* Degree of a polynomial *}
 | |
| 185 | ||
| 52380 | 186 | definition degree :: "'a::zero poly \<Rightarrow> nat" | 
| 187 | where | |
| 29451 | 188 | "degree p = (LEAST n. \<forall>i>n. coeff p i = 0)" | 
| 189 | ||
| 52380 | 190 | lemma coeff_eq_0: | 
| 191 | assumes "degree p < n" | |
| 192 | shows "coeff p n = 0" | |
| 29451 | 193 | proof - | 
| 52380 | 194 | from coeff_almost_everywhere_zero | 
| 195 | have "\<exists>n. \<forall>i>n. coeff p i = 0" by (blast intro: almost_everywhere_zeroE) | |
| 196 | then have "\<forall>i>degree p. coeff p i = 0" | |
| 29451 | 197 | unfolding degree_def by (rule LeastI_ex) | 
| 52380 | 198 | with assms show ?thesis by simp | 
| 29451 | 199 | qed | 
| 200 | ||
| 201 | lemma le_degree: "coeff p n \<noteq> 0 \<Longrightarrow> n \<le> degree p" | |
| 202 | by (erule contrapos_np, rule coeff_eq_0, simp) | |
| 203 | ||
| 204 | lemma degree_le: "\<forall>i>n. coeff p i = 0 \<Longrightarrow> degree p \<le> n" | |
| 205 | unfolding degree_def by (erule Least_le) | |
| 206 | ||
| 207 | lemma less_degree_imp: "n < degree p \<Longrightarrow> \<exists>i>n. coeff p i \<noteq> 0" | |
| 208 | unfolding degree_def by (drule not_less_Least, simp) | |
| 209 | ||
| 210 | ||
| 211 | subsection {* The zero polynomial *}
 | |
| 212 | ||
| 213 | instantiation poly :: (zero) zero | |
| 214 | begin | |
| 215 | ||
| 52380 | 216 | lift_definition zero_poly :: "'a poly" | 
| 217 | is "\<lambda>_. 0" by (rule almost_everywhere_zeroI) simp | |
| 29451 | 218 | |
| 219 | instance .. | |
| 52380 | 220 | |
| 29451 | 221 | end | 
| 222 | ||
| 52380 | 223 | lemma coeff_0 [simp]: | 
| 224 | "coeff 0 n = 0" | |
| 225 | by transfer rule | |
| 29451 | 226 | |
| 52380 | 227 | lemma degree_0 [simp]: | 
| 228 | "degree 0 = 0" | |
| 29451 | 229 | by (rule order_antisym [OF degree_le le0]) simp | 
| 230 | ||
| 231 | lemma leading_coeff_neq_0: | |
| 52380 | 232 | assumes "p \<noteq> 0" | 
| 233 | shows "coeff p (degree p) \<noteq> 0" | |
| 29451 | 234 | proof (cases "degree p") | 
| 235 | case 0 | |
| 236 | from `p \<noteq> 0` have "\<exists>n. coeff p n \<noteq> 0" | |
| 52380 | 237 | by (simp add: poly_eq_iff) | 
| 29451 | 238 | then obtain n where "coeff p n \<noteq> 0" .. | 
| 239 | hence "n \<le> degree p" by (rule le_degree) | |
| 240 | with `coeff p n \<noteq> 0` and `degree p = 0` | |
| 241 | show "coeff p (degree p) \<noteq> 0" by simp | |
| 242 | next | |
| 243 | case (Suc n) | |
| 244 | from `degree p = Suc n` have "n < degree p" by simp | |
| 245 | hence "\<exists>i>n. coeff p i \<noteq> 0" by (rule less_degree_imp) | |
| 246 | then obtain i where "n < i" and "coeff p i \<noteq> 0" by fast | |
| 247 | from `degree p = Suc n` and `n < i` have "degree p \<le> i" by simp | |
| 248 | also from `coeff p i \<noteq> 0` have "i \<le> degree p" by (rule le_degree) | |
| 249 | finally have "degree p = i" . | |
| 250 | with `coeff p i \<noteq> 0` show "coeff p (degree p) \<noteq> 0" by simp | |
| 251 | qed | |
| 252 | ||
| 52380 | 253 | lemma leading_coeff_0_iff [simp]: | 
| 254 | "coeff p (degree p) = 0 \<longleftrightarrow> p = 0" | |
| 29451 | 255 | by (cases "p = 0", simp, simp add: leading_coeff_neq_0) | 
| 256 | ||
| 257 | ||
| 258 | subsection {* List-style constructor for polynomials *}
 | |
| 259 | ||
| 52380 | 260 | lift_definition pCons :: "'a::zero \<Rightarrow> 'a poly \<Rightarrow> 'a poly" | 
| 261 | is "\<lambda>a p. nat_case a (coeff p)" | |
| 262 | using coeff_almost_everywhere_zero by (rule almost_everywhere_zero_nat_case) | |
| 29451 | 263 | |
| 52380 | 264 | lemmas coeff_pCons = pCons.rep_eq | 
| 29455 | 265 | |
| 52380 | 266 | lemma coeff_pCons_0 [simp]: | 
| 267 | "coeff (pCons a p) 0 = a" | |
| 268 | by transfer simp | |
| 29455 | 269 | |
| 52380 | 270 | lemma coeff_pCons_Suc [simp]: | 
| 271 | "coeff (pCons a p) (Suc n) = coeff p n" | |
| 29451 | 272 | by (simp add: coeff_pCons) | 
| 273 | ||
| 52380 | 274 | lemma degree_pCons_le: | 
| 275 | "degree (pCons a p) \<le> Suc (degree p)" | |
| 276 | by (rule degree_le) (simp add: coeff_eq_0 coeff_pCons split: nat.split) | |
| 29451 | 277 | |
| 278 | lemma degree_pCons_eq: | |
| 279 | "p \<noteq> 0 \<Longrightarrow> degree (pCons a p) = Suc (degree p)" | |
| 52380 | 280 | apply (rule order_antisym [OF degree_pCons_le]) | 
| 281 | apply (rule le_degree, simp) | |
| 282 | done | |
| 29451 | 283 | |
| 52380 | 284 | lemma degree_pCons_0: | 
| 285 | "degree (pCons a 0) = 0" | |
| 286 | apply (rule order_antisym [OF _ le0]) | |
| 287 | apply (rule degree_le, simp add: coeff_pCons split: nat.split) | |
| 288 | done | |
| 29451 | 289 | |
| 29460 
ad87e5d1488b
new lemmas about synthetic_div; declare degree_pCons_eq_if [simp]
 huffman parents: 
29457diff
changeset | 290 | lemma degree_pCons_eq_if [simp]: | 
| 29451 | 291 | "degree (pCons a p) = (if p = 0 then 0 else Suc (degree p))" | 
| 52380 | 292 | apply (cases "p = 0", simp_all) | 
| 293 | apply (rule order_antisym [OF _ le0]) | |
| 294 | apply (rule degree_le, simp add: coeff_pCons split: nat.split) | |
| 295 | apply (rule order_antisym [OF degree_pCons_le]) | |
| 296 | apply (rule le_degree, simp) | |
| 297 | done | |
| 29451 | 298 | |
| 52380 | 299 | lemma pCons_0_0 [simp]: | 
| 300 | "pCons 0 0 = 0" | |
| 301 | by (rule poly_eqI) (simp add: coeff_pCons split: nat.split) | |
| 29451 | 302 | |
| 303 | lemma pCons_eq_iff [simp]: | |
| 304 | "pCons a p = pCons b q \<longleftrightarrow> a = b \<and> p = q" | |
| 52380 | 305 | proof safe | 
| 29451 | 306 | assume "pCons a p = pCons b q" | 
| 307 | then have "coeff (pCons a p) 0 = coeff (pCons b q) 0" by simp | |
| 308 | then show "a = b" by simp | |
| 309 | next | |
| 310 | assume "pCons a p = pCons b q" | |
| 311 | then have "\<forall>n. coeff (pCons a p) (Suc n) = | |
| 312 | coeff (pCons b q) (Suc n)" by simp | |
| 52380 | 313 | then show "p = q" by (simp add: poly_eq_iff) | 
| 29451 | 314 | qed | 
| 315 | ||
| 52380 | 316 | lemma pCons_eq_0_iff [simp]: | 
| 317 | "pCons a p = 0 \<longleftrightarrow> a = 0 \<and> p = 0" | |
| 29451 | 318 | using pCons_eq_iff [of a p 0 0] by simp | 
| 319 | ||
| 320 | lemma pCons_cases [cases type: poly]: | |
| 321 | obtains (pCons) a q where "p = pCons a q" | |
| 322 | proof | |
| 323 | show "p = pCons (coeff p 0) (Abs_poly (\<lambda>n. coeff p (Suc n)))" | |
| 52380 | 324 | by transfer | 
| 325 | (simp add: Abs_poly_inverse almost_everywhere_zero_Suc fun_eq_iff split: nat.split) | |
| 29451 | 326 | qed | 
| 327 | ||
| 328 | lemma pCons_induct [case_names 0 pCons, induct type: poly]: | |
| 329 | assumes zero: "P 0" | |
| 330 | assumes pCons: "\<And>a p. P p \<Longrightarrow> P (pCons a p)" | |
| 331 | shows "P p" | |
| 332 | proof (induct p rule: measure_induct_rule [where f=degree]) | |
| 333 | case (less p) | |
| 334 | obtain a q where "p = pCons a q" by (rule pCons_cases) | |
| 335 | have "P q" | |
| 336 | proof (cases "q = 0") | |
| 337 | case True | |
| 338 | then show "P q" by (simp add: zero) | |
| 339 | next | |
| 340 | case False | |
| 341 | then have "degree (pCons a q) = Suc (degree q)" | |
| 342 | by (rule degree_pCons_eq) | |
| 343 | then have "degree q < degree p" | |
| 344 | using `p = pCons a q` by simp | |
| 345 | then show "P q" | |
| 346 | by (rule less.hyps) | |
| 347 | qed | |
| 348 | then have "P (pCons a q)" | |
| 349 | by (rule pCons) | |
| 350 | then show ?case | |
| 351 | using `p = pCons a q` by simp | |
| 352 | qed | |
| 353 | ||
| 354 | ||
| 52380 | 355 | subsection {* List-style syntax for polynomials *}
 | 
| 356 | ||
| 357 | syntax | |
| 358 |   "_poly" :: "args \<Rightarrow> 'a poly"  ("[:(_):]")
 | |
| 359 | ||
| 360 | translations | |
| 361 | "[:x, xs:]" == "CONST pCons x [:xs:]" | |
| 362 | "[:x:]" == "CONST pCons x 0" | |
| 363 | "[:x:]" <= "CONST pCons x (_constrain 0 t)" | |
| 364 | ||
| 365 | ||
| 366 | subsection {* Representation of polynomials by lists of coefficients *}
 | |
| 367 | ||
| 368 | primrec Poly :: "'a::zero list \<Rightarrow> 'a poly" | |
| 369 | where | |
| 370 | "Poly [] = 0" | |
| 371 | | "Poly (a # as) = pCons a (Poly as)" | |
| 372 | ||
| 373 | lemma Poly_replicate_0 [simp]: | |
| 374 | "Poly (replicate n 0) = 0" | |
| 375 | by (induct n) simp_all | |
| 376 | ||
| 377 | lemma Poly_eq_0: | |
| 378 | "Poly as = 0 \<longleftrightarrow> (\<exists>n. as = replicate n 0)" | |
| 379 | by (induct as) (auto simp add: Cons_replicate_eq) | |
| 380 | ||
| 381 | definition coeffs :: "'a poly \<Rightarrow> 'a::zero list" | |
| 382 | where | |
| 383 | "coeffs p = (if p = 0 then [] else map (\<lambda>i. coeff p i) [0 ..< Suc (degree p)])" | |
| 384 | ||
| 385 | lemma coeffs_eq_Nil [simp]: | |
| 386 | "coeffs p = [] \<longleftrightarrow> p = 0" | |
| 387 | by (simp add: coeffs_def) | |
| 388 | ||
| 389 | lemma not_0_coeffs_not_Nil: | |
| 390 | "p \<noteq> 0 \<Longrightarrow> coeffs p \<noteq> []" | |
| 391 | by simp | |
| 392 | ||
| 393 | lemma coeffs_0_eq_Nil [simp]: | |
| 394 | "coeffs 0 = []" | |
| 395 | by simp | |
| 29454 
b0f586f38dd7
add recursion combinator poly_rec; define poly function using poly_rec
 huffman parents: 
29453diff
changeset | 396 | |
| 52380 | 397 | lemma coeffs_pCons_eq_cCons [simp]: | 
| 398 | "coeffs (pCons a p) = a ## coeffs p" | |
| 399 | proof - | |
| 400 |   { fix ms :: "nat list" and f :: "nat \<Rightarrow> 'a" and x :: "'a"
 | |
| 401 | assume "\<forall>m\<in>set ms. m > 0" | |
| 402 | then have "map (nat_case x f) ms = map f (map (\<lambda>n. n - 1) ms)" | |
| 403 | by (induct ms) (auto, metis Suc_pred' nat_case_Suc) } | |
| 404 | note * = this | |
| 405 | show ?thesis | |
| 406 | by (simp add: coeffs_def * upt_conv_Cons coeff_pCons map_decr_upt One_nat_def del: upt_Suc) | |
| 407 | qed | |
| 408 | ||
| 409 | lemma not_0_cCons_eq [simp]: | |
| 410 | "p \<noteq> 0 \<Longrightarrow> a ## coeffs p = a # coeffs p" | |
| 411 | by (simp add: cCons_def) | |
| 412 | ||
| 413 | lemma Poly_coeffs [simp, code abstype]: | |
| 414 | "Poly (coeffs p) = p" | |
| 415 | by (induct p) (simp_all add: cCons_def) | |
| 416 | ||
| 417 | lemma coeffs_Poly [simp]: | |
| 418 | "coeffs (Poly as) = strip_while (HOL.eq 0) as" | |
| 419 | proof (induct as) | |
| 420 | case Nil then show ?case by simp | |
| 421 | next | |
| 422 | case (Cons a as) | |
| 423 | have "(\<forall>n. as \<noteq> replicate n 0) \<longleftrightarrow> (\<exists>a\<in>set as. a \<noteq> 0)" | |
| 424 | using replicate_length_same [of as 0] by (auto dest: sym [of _ as]) | |
| 425 | with Cons show ?case by auto | |
| 426 | qed | |
| 427 | ||
| 428 | lemma last_coeffs_not_0: | |
| 429 | "p \<noteq> 0 \<Longrightarrow> last (coeffs p) \<noteq> 0" | |
| 430 | by (induct p) (auto simp add: cCons_def) | |
| 431 | ||
| 432 | lemma strip_while_coeffs [simp]: | |
| 433 | "strip_while (HOL.eq 0) (coeffs p) = coeffs p" | |
| 434 | by (cases "p = 0") (auto dest: last_coeffs_not_0 intro: strip_while_not_last) | |
| 435 | ||
| 436 | lemma coeffs_eq_iff: | |
| 437 | "p = q \<longleftrightarrow> coeffs p = coeffs q" (is "?P \<longleftrightarrow> ?Q") | |
| 438 | proof | |
| 439 | assume ?P then show ?Q by simp | |
| 440 | next | |
| 441 | assume ?Q | |
| 442 | then have "Poly (coeffs p) = Poly (coeffs q)" by simp | |
| 443 | then show ?P by simp | |
| 444 | qed | |
| 445 | ||
| 446 | lemma coeff_Poly_eq: | |
| 447 | "coeff (Poly xs) n = nth_default 0 xs n" | |
| 448 | apply (induct xs arbitrary: n) apply simp_all | |
| 449 | by (metis nat_case_0 nat_case_Suc not0_implies_Suc nth_default_Cons_0 nth_default_Cons_Suc pCons.rep_eq) | |
| 29454 
b0f586f38dd7
add recursion combinator poly_rec; define poly function using poly_rec
 huffman parents: 
29453diff
changeset | 450 | |
| 52380 | 451 | lemma nth_default_coeffs_eq: | 
| 452 | "nth_default 0 (coeffs p) = coeff p" | |
| 453 | by (simp add: fun_eq_iff coeff_Poly_eq [symmetric]) | |
| 454 | ||
| 455 | lemma [code]: | |
| 456 | "coeff p = nth_default 0 (coeffs p)" | |
| 457 | by (simp add: nth_default_coeffs_eq) | |
| 458 | ||
| 459 | lemma coeffs_eqI: | |
| 460 | assumes coeff: "\<And>n. coeff p n = nth_default 0 xs n" | |
| 461 | assumes zero: "xs \<noteq> [] \<Longrightarrow> last xs \<noteq> 0" | |
| 462 | shows "coeffs p = xs" | |
| 463 | proof - | |
| 464 | from coeff have "p = Poly xs" by (simp add: poly_eq_iff coeff_Poly_eq) | |
| 465 | with zero show ?thesis by simp (cases xs, simp_all) | |
| 466 | qed | |
| 467 | ||
| 468 | lemma degree_eq_length_coeffs [code]: | |
| 469 | "degree p = length (coeffs p) - 1" | |
| 470 | by (simp add: coeffs_def) | |
| 471 | ||
| 472 | lemma length_coeffs_degree: | |
| 473 | "p \<noteq> 0 \<Longrightarrow> length (coeffs p) = Suc (degree p)" | |
| 474 | by (induct p) (auto simp add: cCons_def) | |
| 475 | ||
| 476 | lemma [code abstract]: | |
| 477 | "coeffs 0 = []" | |
| 478 | by (fact coeffs_0_eq_Nil) | |
| 479 | ||
| 480 | lemma [code abstract]: | |
| 481 | "coeffs (pCons a p) = a ## coeffs p" | |
| 482 | by (fact coeffs_pCons_eq_cCons) | |
| 483 | ||
| 484 | instantiation poly :: ("{zero, equal}") equal
 | |
| 485 | begin | |
| 486 | ||
| 487 | definition | |
| 488 | [code]: "HOL.equal (p::'a poly) q \<longleftrightarrow> HOL.equal (coeffs p) (coeffs q)" | |
| 489 | ||
| 490 | instance proof | |
| 491 | qed (simp add: equal equal_poly_def coeffs_eq_iff) | |
| 492 | ||
| 493 | end | |
| 494 | ||
| 495 | lemma [code nbe]: | |
| 496 | "HOL.equal (p :: _ poly) p \<longleftrightarrow> True" | |
| 497 | by (fact equal_refl) | |
| 29454 
b0f586f38dd7
add recursion combinator poly_rec; define poly function using poly_rec
 huffman parents: 
29453diff
changeset | 498 | |
| 52380 | 499 | definition is_zero :: "'a::zero poly \<Rightarrow> bool" | 
| 500 | where | |
| 501 | [code]: "is_zero p \<longleftrightarrow> List.null (coeffs p)" | |
| 502 | ||
| 503 | lemma is_zero_null [code_abbrev]: | |
| 504 | "is_zero p \<longleftrightarrow> p = 0" | |
| 505 | by (simp add: is_zero_def null_def) | |
| 506 | ||
| 507 | ||
| 508 | subsection {* Fold combinator for polynomials *}
 | |
| 509 | ||
| 510 | definition fold_coeffs :: "('a::zero \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a poly \<Rightarrow> 'b \<Rightarrow> 'b"
 | |
| 511 | where | |
| 512 | "fold_coeffs f p = foldr f (coeffs p)" | |
| 513 | ||
| 514 | lemma fold_coeffs_0_eq [simp]: | |
| 515 | "fold_coeffs f 0 = id" | |
| 516 | by (simp add: fold_coeffs_def) | |
| 517 | ||
| 518 | lemma fold_coeffs_pCons_eq [simp]: | |
| 519 | "f 0 = id \<Longrightarrow> fold_coeffs f (pCons a p) = f a \<circ> fold_coeffs f p" | |
| 520 | by (simp add: fold_coeffs_def cCons_def fun_eq_iff) | |
| 29454 
b0f586f38dd7
add recursion combinator poly_rec; define poly function using poly_rec
 huffman parents: 
29453diff
changeset | 521 | |
| 52380 | 522 | lemma fold_coeffs_pCons_0_0_eq [simp]: | 
| 523 | "fold_coeffs f (pCons 0 0) = id" | |
| 524 | by (simp add: fold_coeffs_def) | |
| 525 | ||
| 526 | lemma fold_coeffs_pCons_coeff_not_0_eq [simp]: | |
| 527 | "a \<noteq> 0 \<Longrightarrow> fold_coeffs f (pCons a p) = f a \<circ> fold_coeffs f p" | |
| 528 | by (simp add: fold_coeffs_def) | |
| 529 | ||
| 530 | lemma fold_coeffs_pCons_not_0_0_eq [simp]: | |
| 531 | "p \<noteq> 0 \<Longrightarrow> fold_coeffs f (pCons a p) = f a \<circ> fold_coeffs f p" | |
| 532 | by (simp add: fold_coeffs_def) | |
| 533 | ||
| 534 | ||
| 535 | subsection {* Canonical morphism on polynomials -- evaluation *}
 | |
| 536 | ||
| 537 | definition poly :: "'a::comm_semiring_0 poly \<Rightarrow> 'a \<Rightarrow> 'a" | |
| 538 | where | |
| 539 |   "poly p = fold_coeffs (\<lambda>a f x. a + x * f x) p (\<lambda>x. 0)" -- {* The Horner Schema *}
 | |
| 540 | ||
| 541 | lemma poly_0 [simp]: | |
| 542 | "poly 0 x = 0" | |
| 543 | by (simp add: poly_def) | |
| 544 | ||
| 545 | lemma poly_pCons [simp]: | |
| 546 | "poly (pCons a p) x = a + x * poly p x" | |
| 547 | by (cases "p = 0 \<and> a = 0") (auto simp add: poly_def) | |
| 29454 
b0f586f38dd7
add recursion combinator poly_rec; define poly function using poly_rec
 huffman parents: 
29453diff
changeset | 548 | |
| 
b0f586f38dd7
add recursion combinator poly_rec; define poly function using poly_rec
 huffman parents: 
29453diff
changeset | 549 | |
| 29451 | 550 | subsection {* Monomials *}
 | 
| 551 | ||
| 52380 | 552 | lift_definition monom :: "'a \<Rightarrow> nat \<Rightarrow> 'a::zero poly" | 
| 553 | is "\<lambda>a m n. if m = n then a else 0" | |
| 554 | by (auto intro!: almost_everywhere_zeroI) | |
| 555 | ||
| 556 | lemma coeff_monom [simp]: | |
| 557 | "coeff (monom a m) n = (if m = n then a else 0)" | |
| 558 | by transfer rule | |
| 29451 | 559 | |
| 52380 | 560 | lemma monom_0: | 
| 561 | "monom a 0 = pCons a 0" | |
| 562 | by (rule poly_eqI) (simp add: coeff_pCons split: nat.split) | |
| 29451 | 563 | |
| 52380 | 564 | lemma monom_Suc: | 
| 565 | "monom a (Suc n) = pCons 0 (monom a n)" | |
| 566 | by (rule poly_eqI) (simp add: coeff_pCons split: nat.split) | |
| 29451 | 567 | |
| 568 | lemma monom_eq_0 [simp]: "monom 0 n = 0" | |
| 52380 | 569 | by (rule poly_eqI) simp | 
| 29451 | 570 | |
| 571 | lemma monom_eq_0_iff [simp]: "monom a n = 0 \<longleftrightarrow> a = 0" | |
| 52380 | 572 | by (simp add: poly_eq_iff) | 
| 29451 | 573 | |
| 574 | lemma monom_eq_iff [simp]: "monom a n = monom b n \<longleftrightarrow> a = b" | |
| 52380 | 575 | by (simp add: poly_eq_iff) | 
| 29451 | 576 | |
| 577 | lemma degree_monom_le: "degree (monom a n) \<le> n" | |
| 578 | by (rule degree_le, simp) | |
| 579 | ||
| 580 | lemma degree_monom_eq: "a \<noteq> 0 \<Longrightarrow> degree (monom a n) = n" | |
| 581 | apply (rule order_antisym [OF degree_monom_le]) | |
| 582 | apply (rule le_degree, simp) | |
| 583 | done | |
| 584 | ||
| 52380 | 585 | lemma coeffs_monom [code abstract]: | 
| 586 | "coeffs (monom a n) = (if a = 0 then [] else replicate n 0 @ [a])" | |
| 587 | by (induct n) (simp_all add: monom_0 monom_Suc) | |
| 588 | ||
| 589 | lemma fold_coeffs_monom [simp]: | |
| 590 | "a \<noteq> 0 \<Longrightarrow> fold_coeffs f (monom a n) = f 0 ^^ n \<circ> f a" | |
| 591 | by (simp add: fold_coeffs_def coeffs_monom fun_eq_iff) | |
| 592 | ||
| 593 | lemma poly_monom: | |
| 594 |   fixes a x :: "'a::{comm_semiring_1}"
 | |
| 595 | shows "poly (monom a n) x = a * x ^ n" | |
| 596 | by (cases "a = 0", simp_all) | |
| 597 | (induct n, simp_all add: mult.left_commute poly_def) | |
| 598 | ||
| 29451 | 599 | |
| 600 | subsection {* Addition and subtraction *}
 | |
| 601 | ||
| 602 | instantiation poly :: (comm_monoid_add) comm_monoid_add | |
| 603 | begin | |
| 604 | ||
| 52380 | 605 | lift_definition plus_poly :: "'a poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly" | 
| 606 | is "\<lambda>p q n. coeff p n + coeff q n" | |
| 607 | proof (rule almost_everywhere_zeroI) | |
| 608 | fix q p :: "'a poly" and i | |
| 609 | assume "max (degree q) (degree p) < i" | |
| 610 | then show "coeff p i + coeff q i = 0" | |
| 611 | by (simp add: coeff_eq_0) | |
| 612 | qed | |
| 29451 | 613 | |
| 614 | lemma coeff_add [simp]: | |
| 615 | "coeff (p + q) n = coeff p n + coeff q n" | |
| 52380 | 616 | by (simp add: plus_poly.rep_eq) | 
| 29451 | 617 | |
| 618 | instance proof | |
| 619 | fix p q r :: "'a poly" | |
| 620 | show "(p + q) + r = p + (q + r)" | |
| 52380 | 621 | by (simp add: poly_eq_iff add_assoc) | 
| 29451 | 622 | show "p + q = q + p" | 
| 52380 | 623 | by (simp add: poly_eq_iff add_commute) | 
| 29451 | 624 | show "0 + p = p" | 
| 52380 | 625 | by (simp add: poly_eq_iff) | 
| 29451 | 626 | qed | 
| 627 | ||
| 628 | end | |
| 629 | ||
| 29904 | 630 | instance poly :: (cancel_comm_monoid_add) cancel_comm_monoid_add | 
| 29540 | 631 | proof | 
| 632 | fix p q r :: "'a poly" | |
| 633 | assume "p + q = p + r" thus "q = r" | |
| 52380 | 634 | by (simp add: poly_eq_iff) | 
| 29540 | 635 | qed | 
| 636 | ||
| 29451 | 637 | instantiation poly :: (ab_group_add) ab_group_add | 
| 638 | begin | |
| 639 | ||
| 52380 | 640 | lift_definition uminus_poly :: "'a poly \<Rightarrow> 'a poly" | 
| 641 | is "\<lambda>p n. - coeff p n" | |
| 642 | proof (rule almost_everywhere_zeroI) | |
| 643 | fix p :: "'a poly" and i | |
| 644 | assume "degree p < i" | |
| 645 | then show "- coeff p i = 0" | |
| 646 | by (simp add: coeff_eq_0) | |
| 647 | qed | |
| 29451 | 648 | |
| 52380 | 649 | lift_definition minus_poly :: "'a poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly" | 
| 650 | is "\<lambda>p q n. coeff p n - coeff q n" | |
| 651 | proof (rule almost_everywhere_zeroI) | |
| 652 | fix q p :: "'a poly" and i | |
| 653 | assume "max (degree q) (degree p) < i" | |
| 654 | then show "coeff p i - coeff q i = 0" | |
| 655 | by (simp add: coeff_eq_0) | |
| 656 | qed | |
| 29451 | 657 | |
| 658 | lemma coeff_minus [simp]: "coeff (- p) n = - coeff p n" | |
| 52380 | 659 | by (simp add: uminus_poly.rep_eq) | 
| 29451 | 660 | |
| 661 | lemma coeff_diff [simp]: | |
| 662 | "coeff (p - q) n = coeff p n - coeff q n" | |
| 52380 | 663 | by (simp add: minus_poly.rep_eq) | 
| 29451 | 664 | |
| 665 | instance proof | |
| 666 | fix p q :: "'a poly" | |
| 667 | show "- p + p = 0" | |
| 52380 | 668 | by (simp add: poly_eq_iff) | 
| 29451 | 669 | show "p - q = p + - q" | 
| 52380 | 670 | by (simp add: poly_eq_iff diff_minus) | 
| 29451 | 671 | qed | 
| 672 | ||
| 673 | end | |
| 674 | ||
| 675 | lemma add_pCons [simp]: | |
| 676 | "pCons a p + pCons b q = pCons (a + b) (p + q)" | |
| 52380 | 677 | by (rule poly_eqI, simp add: coeff_pCons split: nat.split) | 
| 29451 | 678 | |
| 679 | lemma minus_pCons [simp]: | |
| 680 | "- pCons a p = pCons (- a) (- p)" | |
| 52380 | 681 | by (rule poly_eqI, simp add: coeff_pCons split: nat.split) | 
| 29451 | 682 | |
| 683 | lemma diff_pCons [simp]: | |
| 684 | "pCons a p - pCons b q = pCons (a - b) (p - q)" | |
| 52380 | 685 | by (rule poly_eqI, simp add: coeff_pCons split: nat.split) | 
| 29451 | 686 | |
| 29539 | 687 | lemma degree_add_le_max: "degree (p + q) \<le> max (degree p) (degree q)" | 
| 29451 | 688 | by (rule degree_le, auto simp add: coeff_eq_0) | 
| 689 | ||
| 29539 | 690 | lemma degree_add_le: | 
| 691 | "\<lbrakk>degree p \<le> n; degree q \<le> n\<rbrakk> \<Longrightarrow> degree (p + q) \<le> n" | |
| 692 | by (auto intro: order_trans degree_add_le_max) | |
| 693 | ||
| 29453 | 694 | lemma degree_add_less: | 
| 695 | "\<lbrakk>degree p < n; degree q < n\<rbrakk> \<Longrightarrow> degree (p + q) < n" | |
| 29539 | 696 | by (auto intro: le_less_trans degree_add_le_max) | 
| 29453 | 697 | |
| 29451 | 698 | lemma degree_add_eq_right: | 
| 699 | "degree p < degree q \<Longrightarrow> degree (p + q) = degree q" | |
| 700 | apply (cases "q = 0", simp) | |
| 701 | apply (rule order_antisym) | |
| 29539 | 702 | apply (simp add: degree_add_le) | 
| 29451 | 703 | apply (rule le_degree) | 
| 704 | apply (simp add: coeff_eq_0) | |
| 705 | done | |
| 706 | ||
| 707 | lemma degree_add_eq_left: | |
| 708 | "degree q < degree p \<Longrightarrow> degree (p + q) = degree p" | |
| 709 | using degree_add_eq_right [of q p] | |
| 710 | by (simp add: add_commute) | |
| 711 | ||
| 712 | lemma degree_minus [simp]: "degree (- p) = degree p" | |
| 713 | unfolding degree_def by simp | |
| 714 | ||
| 29539 | 715 | lemma degree_diff_le_max: "degree (p - q) \<le> max (degree p) (degree q)" | 
| 29451 | 716 | using degree_add_le [where p=p and q="-q"] | 
| 717 | by (simp add: diff_minus) | |
| 718 | ||
| 29539 | 719 | lemma degree_diff_le: | 
| 720 | "\<lbrakk>degree p \<le> n; degree q \<le> n\<rbrakk> \<Longrightarrow> degree (p - q) \<le> n" | |
| 721 | by (simp add: diff_minus degree_add_le) | |
| 722 | ||
| 29453 | 723 | lemma degree_diff_less: | 
| 724 | "\<lbrakk>degree p < n; degree q < n\<rbrakk> \<Longrightarrow> degree (p - q) < n" | |
| 29539 | 725 | by (simp add: diff_minus degree_add_less) | 
| 29453 | 726 | |
| 29451 | 727 | lemma add_monom: "monom a n + monom b n = monom (a + b) n" | 
| 52380 | 728 | by (rule poly_eqI) simp | 
| 29451 | 729 | |
| 730 | lemma diff_monom: "monom a n - monom b n = monom (a - b) n" | |
| 52380 | 731 | by (rule poly_eqI) simp | 
| 29451 | 732 | |
| 733 | lemma minus_monom: "- monom a n = monom (-a) n" | |
| 52380 | 734 | by (rule poly_eqI) simp | 
| 29451 | 735 | |
| 736 | lemma coeff_setsum: "coeff (\<Sum>x\<in>A. p x) i = (\<Sum>x\<in>A. coeff (p x) i)" | |
| 737 | by (cases "finite A", induct set: finite, simp_all) | |
| 738 | ||
| 739 | lemma monom_setsum: "monom (\<Sum>x\<in>A. a x) n = (\<Sum>x\<in>A. monom (a x) n)" | |
| 52380 | 740 | by (rule poly_eqI) (simp add: coeff_setsum) | 
| 741 | ||
| 742 | fun plus_coeffs :: "'a::comm_monoid_add list \<Rightarrow> 'a list \<Rightarrow> 'a list" | |
| 743 | where | |
| 744 | "plus_coeffs xs [] = xs" | |
| 745 | | "plus_coeffs [] ys = ys" | |
| 746 | | "plus_coeffs (x # xs) (y # ys) = (x + y) ## plus_coeffs xs ys" | |
| 747 | ||
| 748 | lemma coeffs_plus_eq_plus_coeffs [code abstract]: | |
| 749 | "coeffs (p + q) = plus_coeffs (coeffs p) (coeffs q)" | |
| 750 | proof - | |
| 751 |   { fix xs ys :: "'a list" and n
 | |
| 752 | have "nth_default 0 (plus_coeffs xs ys) n = nth_default 0 xs n + nth_default 0 ys n" | |
| 753 | proof (induct xs ys arbitrary: n rule: plus_coeffs.induct) | |
| 754 | case (3 x xs y ys n) then show ?case by (cases n) (auto simp add: cCons_def) | |
| 755 | qed simp_all } | |
| 756 | note * = this | |
| 757 |   { fix xs ys :: "'a list"
 | |
| 758 | assume "xs \<noteq> [] \<Longrightarrow> last xs \<noteq> 0" and "ys \<noteq> [] \<Longrightarrow> last ys \<noteq> 0" | |
| 759 | moreover assume "plus_coeffs xs ys \<noteq> []" | |
| 760 | ultimately have "last (plus_coeffs xs ys) \<noteq> 0" | |
| 761 | proof (induct xs ys rule: plus_coeffs.induct) | |
| 762 | case (3 x xs y ys) then show ?case by (auto simp add: cCons_def) metis | |
| 763 | qed simp_all } | |
| 764 | note ** = this | |
| 765 | show ?thesis | |
| 766 | apply (rule coeffs_eqI) | |
| 767 | apply (simp add: * nth_default_coeffs_eq) | |
| 768 | apply (rule **) | |
| 769 | apply (auto dest: last_coeffs_not_0) | |
| 770 | done | |
| 771 | qed | |
| 772 | ||
| 773 | lemma coeffs_uminus [code abstract]: | |
| 774 | "coeffs (- p) = map (\<lambda>a. - a) (coeffs p)" | |
| 775 | by (rule coeffs_eqI) | |
| 776 | (simp_all add: not_0_coeffs_not_Nil last_map last_coeffs_not_0 nth_default_map_eq nth_default_coeffs_eq) | |
| 777 | ||
| 778 | lemma [code]: | |
| 779 | fixes p q :: "'a::ab_group_add poly" | |
| 780 | shows "p - q = p + - q" | |
| 781 | by simp | |
| 782 | ||
| 783 | lemma poly_add [simp]: "poly (p + q) x = poly p x + poly q x" | |
| 784 | apply (induct p arbitrary: q, simp) | |
| 785 | apply (case_tac q, simp, simp add: algebra_simps) | |
| 786 | done | |
| 787 | ||
| 788 | lemma poly_minus [simp]: | |
| 789 | fixes x :: "'a::comm_ring" | |
| 790 | shows "poly (- p) x = - poly p x" | |
| 791 | by (induct p) simp_all | |
| 792 | ||
| 793 | lemma poly_diff [simp]: | |
| 794 | fixes x :: "'a::comm_ring" | |
| 795 | shows "poly (p - q) x = poly p x - poly q x" | |
| 796 | by (simp add: diff_minus) | |
| 797 | ||
| 798 | lemma poly_setsum: "poly (\<Sum>k\<in>A. p k) x = (\<Sum>k\<in>A. poly (p k) x)" | |
| 799 | by (induct A rule: infinite_finite_induct) simp_all | |
| 29451 | 800 | |
| 801 | ||
| 52380 | 802 | subsection {* Multiplication by a constant, polynomial multiplication and the unit polynomial *}
 | 
| 29451 | 803 | |
| 52380 | 804 | lift_definition smult :: "'a::comm_semiring_0 \<Rightarrow> 'a poly \<Rightarrow> 'a poly" | 
| 805 | is "\<lambda>a p n. a * coeff p n" | |
| 806 | proof (rule almost_everywhere_zeroI) | |
| 807 | fix a :: 'a and p :: "'a poly" and i | |
| 808 | assume "degree p < i" | |
| 809 | then show "a * coeff p i = 0" | |
| 810 | by (simp add: coeff_eq_0) | |
| 811 | qed | |
| 29451 | 812 | |
| 52380 | 813 | lemma coeff_smult [simp]: | 
| 814 | "coeff (smult a p) n = a * coeff p n" | |
| 815 | by (simp add: smult.rep_eq) | |
| 29451 | 816 | |
| 817 | lemma degree_smult_le: "degree (smult a p) \<le> degree p" | |
| 818 | by (rule degree_le, simp add: coeff_eq_0) | |
| 819 | ||
| 29472 | 820 | lemma smult_smult [simp]: "smult a (smult b p) = smult (a * b) p" | 
| 52380 | 821 | by (rule poly_eqI, simp add: mult_assoc) | 
| 29451 | 822 | |
| 823 | lemma smult_0_right [simp]: "smult a 0 = 0" | |
| 52380 | 824 | by (rule poly_eqI, simp) | 
| 29451 | 825 | |
| 826 | lemma smult_0_left [simp]: "smult 0 p = 0" | |
| 52380 | 827 | by (rule poly_eqI, simp) | 
| 29451 | 828 | |
| 829 | lemma smult_1_left [simp]: "smult (1::'a::comm_semiring_1) p = p" | |
| 52380 | 830 | by (rule poly_eqI, simp) | 
| 29451 | 831 | |
| 832 | lemma smult_add_right: | |
| 833 | "smult a (p + q) = smult a p + smult a q" | |
| 52380 | 834 | by (rule poly_eqI, simp add: algebra_simps) | 
| 29451 | 835 | |
| 836 | lemma smult_add_left: | |
| 837 | "smult (a + b) p = smult a p + smult b p" | |
| 52380 | 838 | by (rule poly_eqI, simp add: algebra_simps) | 
| 29451 | 839 | |
| 29457 | 840 | lemma smult_minus_right [simp]: | 
| 29451 | 841 | "smult (a::'a::comm_ring) (- p) = - smult a p" | 
| 52380 | 842 | by (rule poly_eqI, simp) | 
| 29451 | 843 | |
| 29457 | 844 | lemma smult_minus_left [simp]: | 
| 29451 | 845 | "smult (- a::'a::comm_ring) p = - smult a p" | 
| 52380 | 846 | by (rule poly_eqI, simp) | 
| 29451 | 847 | |
| 848 | lemma smult_diff_right: | |
| 849 | "smult (a::'a::comm_ring) (p - q) = smult a p - smult a q" | |
| 52380 | 850 | by (rule poly_eqI, simp add: algebra_simps) | 
| 29451 | 851 | |
| 852 | lemma smult_diff_left: | |
| 853 | "smult (a - b::'a::comm_ring) p = smult a p - smult b p" | |
| 52380 | 854 | by (rule poly_eqI, simp add: algebra_simps) | 
| 29451 | 855 | |
| 29472 | 856 | lemmas smult_distribs = | 
| 857 | smult_add_left smult_add_right | |
| 858 | smult_diff_left smult_diff_right | |
| 859 | ||
| 29451 | 860 | lemma smult_pCons [simp]: | 
| 861 | "smult a (pCons b p) = pCons (a * b) (smult a p)" | |
| 52380 | 862 | by (rule poly_eqI, simp add: coeff_pCons split: nat.split) | 
| 29451 | 863 | |
| 864 | lemma smult_monom: "smult a (monom b n) = monom (a * b) n" | |
| 865 | by (induct n, simp add: monom_0, simp add: monom_Suc) | |
| 866 | ||
| 29659 | 867 | lemma degree_smult_eq [simp]: | 
| 868 | fixes a :: "'a::idom" | |
| 869 | shows "degree (smult a p) = (if a = 0 then 0 else degree p)" | |
| 870 | by (cases "a = 0", simp, simp add: degree_def) | |
| 871 | ||
| 872 | lemma smult_eq_0_iff [simp]: | |
| 873 | fixes a :: "'a::idom" | |
| 874 | shows "smult a p = 0 \<longleftrightarrow> a = 0 \<or> p = 0" | |
| 52380 | 875 | by (simp add: poly_eq_iff) | 
| 29451 | 876 | |
| 52380 | 877 | lemma coeffs_smult [code abstract]: | 
| 878 | fixes p :: "'a::idom poly" | |
| 879 | shows "coeffs (smult a p) = (if a = 0 then [] else map (Groups.times a) (coeffs p))" | |
| 880 | by (rule coeffs_eqI) | |
| 881 | (auto simp add: not_0_coeffs_not_Nil last_map last_coeffs_not_0 nth_default_map_eq nth_default_coeffs_eq) | |
| 29451 | 882 | |
| 883 | instantiation poly :: (comm_semiring_0) comm_semiring_0 | |
| 884 | begin | |
| 885 | ||
| 886 | definition | |
| 52380 | 887 | "p * q = fold_coeffs (\<lambda>a p. smult a q + pCons 0 p) p 0" | 
| 29474 | 888 | |
| 889 | lemma mult_poly_0_left: "(0::'a poly) * q = 0" | |
| 52380 | 890 | by (simp add: times_poly_def) | 
| 29474 | 891 | |
| 892 | lemma mult_pCons_left [simp]: | |
| 893 | "pCons a p * q = smult a q + pCons 0 (p * q)" | |
| 52380 | 894 | by (cases "p = 0 \<and> a = 0") (auto simp add: times_poly_def) | 
| 29474 | 895 | |
| 896 | lemma mult_poly_0_right: "p * (0::'a poly) = 0" | |
| 52380 | 897 | by (induct p) (simp add: mult_poly_0_left, simp) | 
| 29451 | 898 | |
| 29474 | 899 | lemma mult_pCons_right [simp]: | 
| 900 | "p * pCons a q = smult a p + pCons 0 (p * q)" | |
| 52380 | 901 | by (induct p) (simp add: mult_poly_0_left, simp add: algebra_simps) | 
| 29474 | 902 | |
| 903 | lemmas mult_poly_0 = mult_poly_0_left mult_poly_0_right | |
| 904 | ||
| 52380 | 905 | lemma mult_smult_left [simp]: | 
| 906 | "smult a p * q = smult a (p * q)" | |
| 907 | by (induct p) (simp add: mult_poly_0, simp add: smult_add_right) | |
| 29474 | 908 | |
| 52380 | 909 | lemma mult_smult_right [simp]: | 
| 910 | "p * smult a q = smult a (p * q)" | |
| 911 | by (induct q) (simp add: mult_poly_0, simp add: smult_add_right) | |
| 29474 | 912 | |
| 913 | lemma mult_poly_add_left: | |
| 914 | fixes p q r :: "'a poly" | |
| 915 | shows "(p + q) * r = p * r + q * r" | |
| 52380 | 916 | by (induct r) (simp add: mult_poly_0, simp add: smult_distribs algebra_simps) | 
| 29451 | 917 | |
| 918 | instance proof | |
| 919 | fix p q r :: "'a poly" | |
| 920 | show 0: "0 * p = 0" | |
| 29474 | 921 | by (rule mult_poly_0_left) | 
| 29451 | 922 | show "p * 0 = 0" | 
| 29474 | 923 | by (rule mult_poly_0_right) | 
| 29451 | 924 | show "(p + q) * r = p * r + q * r" | 
| 29474 | 925 | by (rule mult_poly_add_left) | 
| 29451 | 926 | show "(p * q) * r = p * (q * r)" | 
| 29474 | 927 | by (induct p, simp add: mult_poly_0, simp add: mult_poly_add_left) | 
| 29451 | 928 | show "p * q = q * p" | 
| 29474 | 929 | by (induct p, simp add: mult_poly_0, simp) | 
| 29451 | 930 | qed | 
| 931 | ||
| 932 | end | |
| 933 | ||
| 29540 | 934 | instance poly :: (comm_semiring_0_cancel) comm_semiring_0_cancel .. | 
| 935 | ||
| 29474 | 936 | lemma coeff_mult: | 
| 937 | "coeff (p * q) n = (\<Sum>i\<le>n. coeff p i * coeff q (n-i))" | |
| 938 | proof (induct p arbitrary: n) | |
| 939 | case 0 show ?case by simp | |
| 940 | next | |
| 941 | case (pCons a p n) thus ?case | |
| 942 | by (cases n, simp, simp add: setsum_atMost_Suc_shift | |
| 943 | del: setsum_atMost_Suc) | |
| 944 | qed | |
| 29451 | 945 | |
| 29474 | 946 | lemma degree_mult_le: "degree (p * q) \<le> degree p + degree q" | 
| 947 | apply (rule degree_le) | |
| 948 | apply (induct p) | |
| 949 | apply simp | |
| 950 | apply (simp add: coeff_eq_0 coeff_pCons split: nat.split) | |
| 29451 | 951 | done | 
| 952 | ||
| 953 | lemma mult_monom: "monom a m * monom b n = monom (a * b) (m + n)" | |
| 954 | by (induct m, simp add: monom_0 smult_monom, simp add: monom_Suc) | |
| 955 | ||
| 956 | instantiation poly :: (comm_semiring_1) comm_semiring_1 | |
| 957 | begin | |
| 958 | ||
| 52380 | 959 | definition one_poly_def: | 
| 960 | "1 = pCons 1 0" | |
| 29451 | 961 | |
| 962 | instance proof | |
| 963 | fix p :: "'a poly" show "1 * p = p" | |
| 52380 | 964 | unfolding one_poly_def by simp | 
| 29451 | 965 | next | 
| 966 | show "0 \<noteq> (1::'a poly)" | |
| 967 | unfolding one_poly_def by simp | |
| 968 | qed | |
| 969 | ||
| 970 | end | |
| 971 | ||
| 29540 | 972 | instance poly :: (comm_semiring_1_cancel) comm_semiring_1_cancel .. | 
| 973 | ||
| 52380 | 974 | instance poly :: (comm_ring) comm_ring .. | 
| 975 | ||
| 976 | instance poly :: (comm_ring_1) comm_ring_1 .. | |
| 977 | ||
| 29451 | 978 | lemma coeff_1 [simp]: "coeff 1 n = (if n = 0 then 1 else 0)" | 
| 979 | unfolding one_poly_def | |
| 980 | by (simp add: coeff_pCons split: nat.split) | |
| 981 | ||
| 982 | lemma degree_1 [simp]: "degree 1 = 0" | |
| 983 | unfolding one_poly_def | |
| 984 | by (rule degree_pCons_0) | |
| 985 | ||
| 52380 | 986 | lemma coeffs_1_eq [simp, code abstract]: | 
| 987 | "coeffs 1 = [1]" | |
| 988 | by (simp add: one_poly_def) | |
| 989 | ||
| 990 | lemma degree_power_le: | |
| 991 | "degree (p ^ n) \<le> degree p * n" | |
| 992 | by (induct n) (auto intro: order_trans degree_mult_le) | |
| 993 | ||
| 994 | lemma poly_smult [simp]: | |
| 995 | "poly (smult a p) x = a * poly p x" | |
| 996 | by (induct p, simp, simp add: algebra_simps) | |
| 997 | ||
| 998 | lemma poly_mult [simp]: | |
| 999 | "poly (p * q) x = poly p x * poly q x" | |
| 1000 | by (induct p, simp_all, simp add: algebra_simps) | |
| 1001 | ||
| 1002 | lemma poly_1 [simp]: | |
| 1003 | "poly 1 x = 1" | |
| 1004 | by (simp add: one_poly_def) | |
| 1005 | ||
| 1006 | lemma poly_power [simp]: | |
| 1007 |   fixes p :: "'a::{comm_semiring_1} poly"
 | |
| 1008 | shows "poly (p ^ n) x = poly p x ^ n" | |
| 1009 | by (induct n) simp_all | |
| 1010 | ||
| 1011 | ||
| 1012 | subsection {* Lemmas about divisibility *}
 | |
| 29979 | 1013 | |
| 1014 | lemma dvd_smult: "p dvd q \<Longrightarrow> p dvd smult a q" | |
| 1015 | proof - | |
| 1016 | assume "p dvd q" | |
| 1017 | then obtain k where "q = p * k" .. | |
| 1018 | then have "smult a q = p * smult a k" by simp | |
| 1019 | then show "p dvd smult a q" .. | |
| 1020 | qed | |
| 1021 | ||
| 1022 | lemma dvd_smult_cancel: | |
| 1023 | fixes a :: "'a::field" | |
| 1024 | shows "p dvd smult a q \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> p dvd q" | |
| 1025 | by (drule dvd_smult [where a="inverse a"]) simp | |
| 1026 | ||
| 1027 | lemma dvd_smult_iff: | |
| 1028 | fixes a :: "'a::field" | |
| 1029 | shows "a \<noteq> 0 \<Longrightarrow> p dvd smult a q \<longleftrightarrow> p dvd q" | |
| 1030 | by (safe elim!: dvd_smult dvd_smult_cancel) | |
| 1031 | ||
| 31663 | 1032 | lemma smult_dvd_cancel: | 
| 1033 | "smult a p dvd q \<Longrightarrow> p dvd q" | |
| 1034 | proof - | |
| 1035 | assume "smult a p dvd q" | |
| 1036 | then obtain k where "q = smult a p * k" .. | |
| 1037 | then have "q = p * smult a k" by simp | |
| 1038 | then show "p dvd q" .. | |
| 1039 | qed | |
| 1040 | ||
| 1041 | lemma smult_dvd: | |
| 1042 | fixes a :: "'a::field" | |
| 1043 | shows "p dvd q \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> smult a p dvd q" | |
| 1044 | by (rule smult_dvd_cancel [where a="inverse a"]) simp | |
| 1045 | ||
| 1046 | lemma smult_dvd_iff: | |
| 1047 | fixes a :: "'a::field" | |
| 1048 | shows "smult a p dvd q \<longleftrightarrow> (if a = 0 then q = 0 else p dvd q)" | |
| 1049 | by (auto elim: smult_dvd smult_dvd_cancel) | |
| 1050 | ||
| 29451 | 1051 | |
| 1052 | subsection {* Polynomials form an integral domain *}
 | |
| 1053 | ||
| 1054 | lemma coeff_mult_degree_sum: | |
| 1055 | "coeff (p * q) (degree p + degree q) = | |
| 1056 | coeff p (degree p) * coeff q (degree q)" | |
| 29471 | 1057 | by (induct p, simp, simp add: coeff_eq_0) | 
| 29451 | 1058 | |
| 1059 | instance poly :: (idom) idom | |
| 1060 | proof | |
| 1061 | fix p q :: "'a poly" | |
| 1062 | assume "p \<noteq> 0" and "q \<noteq> 0" | |
| 1063 | have "coeff (p * q) (degree p + degree q) = | |
| 1064 | coeff p (degree p) * coeff q (degree q)" | |
| 1065 | by (rule coeff_mult_degree_sum) | |
| 1066 | also have "coeff p (degree p) * coeff q (degree q) \<noteq> 0" | |
| 1067 | using `p \<noteq> 0` and `q \<noteq> 0` by simp | |
| 1068 | finally have "\<exists>n. coeff (p * q) n \<noteq> 0" .. | |
| 52380 | 1069 | thus "p * q \<noteq> 0" by (simp add: poly_eq_iff) | 
| 29451 | 1070 | qed | 
| 1071 | ||
| 1072 | lemma degree_mult_eq: | |
| 1073 | fixes p q :: "'a::idom poly" | |
| 1074 | shows "\<lbrakk>p \<noteq> 0; q \<noteq> 0\<rbrakk> \<Longrightarrow> degree (p * q) = degree p + degree q" | |
| 1075 | apply (rule order_antisym [OF degree_mult_le le_degree]) | |
| 1076 | apply (simp add: coeff_mult_degree_sum) | |
| 1077 | done | |
| 1078 | ||
| 1079 | lemma dvd_imp_degree_le: | |
| 1080 | fixes p q :: "'a::idom poly" | |
| 1081 | shows "\<lbrakk>p dvd q; q \<noteq> 0\<rbrakk> \<Longrightarrow> degree p \<le> degree q" | |
| 1082 | by (erule dvdE, simp add: degree_mult_eq) | |
| 1083 | ||
| 1084 | ||
| 29878 | 1085 | subsection {* Polynomials form an ordered integral domain *}
 | 
| 1086 | ||
| 52380 | 1087 | definition pos_poly :: "'a::linordered_idom poly \<Rightarrow> bool" | 
| 29878 | 1088 | where | 
| 1089 | "pos_poly p \<longleftrightarrow> 0 < coeff p (degree p)" | |
| 1090 | ||
| 1091 | lemma pos_poly_pCons: | |
| 1092 | "pos_poly (pCons a p) \<longleftrightarrow> pos_poly p \<or> (p = 0 \<and> 0 < a)" | |
| 1093 | unfolding pos_poly_def by simp | |
| 1094 | ||
| 1095 | lemma not_pos_poly_0 [simp]: "\<not> pos_poly 0" | |
| 1096 | unfolding pos_poly_def by simp | |
| 1097 | ||
| 1098 | lemma pos_poly_add: "\<lbrakk>pos_poly p; pos_poly q\<rbrakk> \<Longrightarrow> pos_poly (p + q)" | |
| 1099 | apply (induct p arbitrary: q, simp) | |
| 1100 | apply (case_tac q, force simp add: pos_poly_pCons add_pos_pos) | |
| 1101 | done | |
| 1102 | ||
| 1103 | lemma pos_poly_mult: "\<lbrakk>pos_poly p; pos_poly q\<rbrakk> \<Longrightarrow> pos_poly (p * q)" | |
| 1104 | unfolding pos_poly_def | |
| 1105 | apply (subgoal_tac "p \<noteq> 0 \<and> q \<noteq> 0") | |
| 1106 | apply (simp add: degree_mult_eq coeff_mult_degree_sum mult_pos_pos) | |
| 1107 | apply auto | |
| 1108 | done | |
| 1109 | ||
| 1110 | lemma pos_poly_total: "p = 0 \<or> pos_poly p \<or> pos_poly (- p)" | |
| 1111 | by (induct p) (auto simp add: pos_poly_pCons) | |
| 1112 | ||
| 52380 | 1113 | lemma last_coeffs_eq_coeff_degree: | 
| 1114 | "p \<noteq> 0 \<Longrightarrow> last (coeffs p) = coeff p (degree p)" | |
| 1115 | by (simp add: coeffs_def) | |
| 1116 | ||
| 1117 | lemma pos_poly_coeffs [code]: | |
| 1118 | "pos_poly p \<longleftrightarrow> (let as = coeffs p in as \<noteq> [] \<and> last as > 0)" (is "?P \<longleftrightarrow> ?Q") | |
| 1119 | proof | |
| 1120 | assume ?Q then show ?P by (auto simp add: pos_poly_def last_coeffs_eq_coeff_degree) | |
| 1121 | next | |
| 1122 | assume ?P then have *: "0 < coeff p (degree p)" by (simp add: pos_poly_def) | |
| 1123 | then have "p \<noteq> 0" by auto | |
| 1124 | with * show ?Q by (simp add: last_coeffs_eq_coeff_degree) | |
| 1125 | qed | |
| 1126 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 1127 | instantiation poly :: (linordered_idom) linordered_idom | 
| 29878 | 1128 | begin | 
| 1129 | ||
| 1130 | definition | |
| 37765 | 1131 | "x < y \<longleftrightarrow> pos_poly (y - x)" | 
| 29878 | 1132 | |
| 1133 | definition | |
| 37765 | 1134 | "x \<le> y \<longleftrightarrow> x = y \<or> pos_poly (y - x)" | 
| 29878 | 1135 | |
| 1136 | definition | |
| 37765 | 1137 | "abs (x::'a poly) = (if x < 0 then - x else x)" | 
| 29878 | 1138 | |
| 1139 | definition | |
| 37765 | 1140 | "sgn (x::'a poly) = (if x = 0 then 0 else if 0 < x then 1 else - 1)" | 
| 29878 | 1141 | |
| 1142 | instance proof | |
| 1143 | fix x y :: "'a poly" | |
| 1144 | show "x < y \<longleftrightarrow> x \<le> y \<and> \<not> y \<le> x" | |
| 1145 | unfolding less_eq_poly_def less_poly_def | |
| 1146 | apply safe | |
| 1147 | apply simp | |
| 1148 | apply (drule (1) pos_poly_add) | |
| 1149 | apply simp | |
| 1150 | done | |
| 1151 | next | |
| 1152 | fix x :: "'a poly" show "x \<le> x" | |
| 1153 | unfolding less_eq_poly_def by simp | |
| 1154 | next | |
| 1155 | fix x y z :: "'a poly" | |
| 1156 | assume "x \<le> y" and "y \<le> z" thus "x \<le> z" | |
| 1157 | unfolding less_eq_poly_def | |
| 1158 | apply safe | |
| 1159 | apply (drule (1) pos_poly_add) | |
| 1160 | apply (simp add: algebra_simps) | |
| 1161 | done | |
| 1162 | next | |
| 1163 | fix x y :: "'a poly" | |
| 1164 | assume "x \<le> y" and "y \<le> x" thus "x = y" | |
| 1165 | unfolding less_eq_poly_def | |
| 1166 | apply safe | |
| 1167 | apply (drule (1) pos_poly_add) | |
| 1168 | apply simp | |
| 1169 | done | |
| 1170 | next | |
| 1171 | fix x y z :: "'a poly" | |
| 1172 | assume "x \<le> y" thus "z + x \<le> z + y" | |
| 1173 | unfolding less_eq_poly_def | |
| 1174 | apply safe | |
| 1175 | apply (simp add: algebra_simps) | |
| 1176 | done | |
| 1177 | next | |
| 1178 | fix x y :: "'a poly" | |
| 1179 | show "x \<le> y \<or> y \<le> x" | |
| 1180 | unfolding less_eq_poly_def | |
| 1181 | using pos_poly_total [of "x - y"] | |
| 1182 | by auto | |
| 1183 | next | |
| 1184 | fix x y z :: "'a poly" | |
| 1185 | assume "x < y" and "0 < z" | |
| 1186 | thus "z * x < z * y" | |
| 1187 | unfolding less_poly_def | |
| 1188 | by (simp add: right_diff_distrib [symmetric] pos_poly_mult) | |
| 1189 | next | |
| 1190 | fix x :: "'a poly" | |
| 1191 | show "\<bar>x\<bar> = (if x < 0 then - x else x)" | |
| 1192 | by (rule abs_poly_def) | |
| 1193 | next | |
| 1194 | fix x :: "'a poly" | |
| 1195 | show "sgn x = (if x = 0 then 0 else if 0 < x then 1 else - 1)" | |
| 1196 | by (rule sgn_poly_def) | |
| 1197 | qed | |
| 1198 | ||
| 1199 | end | |
| 1200 | ||
| 1201 | text {* TODO: Simplification rules for comparisons *}
 | |
| 1202 | ||
| 1203 | ||
| 52380 | 1204 | subsection {* Synthetic division and polynomial roots *}
 | 
| 1205 | ||
| 1206 | text {*
 | |
| 1207 |   Synthetic division is simply division by the linear polynomial @{term "x - c"}.
 | |
| 1208 | *} | |
| 1209 | ||
| 1210 | definition synthetic_divmod :: "'a::comm_semiring_0 poly \<Rightarrow> 'a \<Rightarrow> 'a poly \<times> 'a" | |
| 1211 | where | |
| 1212 | "synthetic_divmod p c = fold_coeffs (\<lambda>a (q, r). (pCons r q, a + c * r)) p (0, 0)" | |
| 1213 | ||
| 1214 | definition synthetic_div :: "'a::comm_semiring_0 poly \<Rightarrow> 'a \<Rightarrow> 'a poly" | |
| 1215 | where | |
| 1216 | "synthetic_div p c = fst (synthetic_divmod p c)" | |
| 1217 | ||
| 1218 | lemma synthetic_divmod_0 [simp]: | |
| 1219 | "synthetic_divmod 0 c = (0, 0)" | |
| 1220 | by (simp add: synthetic_divmod_def) | |
| 1221 | ||
| 1222 | lemma synthetic_divmod_pCons [simp]: | |
| 1223 | "synthetic_divmod (pCons a p) c = (\<lambda>(q, r). (pCons r q, a + c * r)) (synthetic_divmod p c)" | |
| 1224 | by (cases "p = 0 \<and> a = 0") (auto simp add: synthetic_divmod_def) | |
| 1225 | ||
| 1226 | lemma synthetic_div_0 [simp]: | |
| 1227 | "synthetic_div 0 c = 0" | |
| 1228 | unfolding synthetic_div_def by simp | |
| 1229 | ||
| 1230 | lemma synthetic_div_unique_lemma: "smult c p = pCons a p \<Longrightarrow> p = 0" | |
| 1231 | by (induct p arbitrary: a) simp_all | |
| 1232 | ||
| 1233 | lemma snd_synthetic_divmod: | |
| 1234 | "snd (synthetic_divmod p c) = poly p c" | |
| 1235 | by (induct p, simp, simp add: split_def) | |
| 1236 | ||
| 1237 | lemma synthetic_div_pCons [simp]: | |
| 1238 | "synthetic_div (pCons a p) c = pCons (poly p c) (synthetic_div p c)" | |
| 1239 | unfolding synthetic_div_def | |
| 1240 | by (simp add: split_def snd_synthetic_divmod) | |
| 1241 | ||
| 1242 | lemma synthetic_div_eq_0_iff: | |
| 1243 | "synthetic_div p c = 0 \<longleftrightarrow> degree p = 0" | |
| 1244 | by (induct p, simp, case_tac p, simp) | |
| 1245 | ||
| 1246 | lemma degree_synthetic_div: | |
| 1247 | "degree (synthetic_div p c) = degree p - 1" | |
| 1248 | by (induct p, simp, simp add: synthetic_div_eq_0_iff) | |
| 1249 | ||
| 1250 | lemma synthetic_div_correct: | |
| 1251 | "p + smult c (synthetic_div p c) = pCons (poly p c) (synthetic_div p c)" | |
| 1252 | by (induct p) simp_all | |
| 1253 | ||
| 1254 | lemma synthetic_div_unique: | |
| 1255 | "p + smult c q = pCons r q \<Longrightarrow> r = poly p c \<and> q = synthetic_div p c" | |
| 1256 | apply (induct p arbitrary: q r) | |
| 1257 | apply (simp, frule synthetic_div_unique_lemma, simp) | |
| 1258 | apply (case_tac q, force) | |
| 1259 | done | |
| 1260 | ||
| 1261 | lemma synthetic_div_correct': | |
| 1262 | fixes c :: "'a::comm_ring_1" | |
| 1263 | shows "[:-c, 1:] * synthetic_div p c + [:poly p c:] = p" | |
| 1264 | using synthetic_div_correct [of p c] | |
| 1265 | by (simp add: algebra_simps) | |
| 1266 | ||
| 1267 | lemma poly_eq_0_iff_dvd: | |
| 1268 | fixes c :: "'a::idom" | |
| 1269 | shows "poly p c = 0 \<longleftrightarrow> [:-c, 1:] dvd p" | |
| 1270 | proof | |
| 1271 | assume "poly p c = 0" | |
| 1272 | with synthetic_div_correct' [of c p] | |
| 1273 | have "p = [:-c, 1:] * synthetic_div p c" by simp | |
| 1274 | then show "[:-c, 1:] dvd p" .. | |
| 1275 | next | |
| 1276 | assume "[:-c, 1:] dvd p" | |
| 1277 | then obtain k where "p = [:-c, 1:] * k" by (rule dvdE) | |
| 1278 | then show "poly p c = 0" by simp | |
| 1279 | qed | |
| 1280 | ||
| 1281 | lemma dvd_iff_poly_eq_0: | |
| 1282 | fixes c :: "'a::idom" | |
| 1283 | shows "[:c, 1:] dvd p \<longleftrightarrow> poly p (-c) = 0" | |
| 1284 | by (simp add: poly_eq_0_iff_dvd) | |
| 1285 | ||
| 1286 | lemma poly_roots_finite: | |
| 1287 | fixes p :: "'a::idom poly" | |
| 1288 |   shows "p \<noteq> 0 \<Longrightarrow> finite {x. poly p x = 0}"
 | |
| 1289 | proof (induct n \<equiv> "degree p" arbitrary: p) | |
| 1290 | case (0 p) | |
| 1291 | then obtain a where "a \<noteq> 0" and "p = [:a:]" | |
| 1292 | by (cases p, simp split: if_splits) | |
| 1293 |   then show "finite {x. poly p x = 0}" by simp
 | |
| 1294 | next | |
| 1295 | case (Suc n p) | |
| 1296 |   show "finite {x. poly p x = 0}"
 | |
| 1297 | proof (cases "\<exists>x. poly p x = 0") | |
| 1298 | case False | |
| 1299 |     then show "finite {x. poly p x = 0}" by simp
 | |
| 1300 | next | |
| 1301 | case True | |
| 1302 | then obtain a where "poly p a = 0" .. | |
| 1303 | then have "[:-a, 1:] dvd p" by (simp only: poly_eq_0_iff_dvd) | |
| 1304 | then obtain k where k: "p = [:-a, 1:] * k" .. | |
| 1305 | with `p \<noteq> 0` have "k \<noteq> 0" by auto | |
| 1306 | with k have "degree p = Suc (degree k)" | |
| 1307 | by (simp add: degree_mult_eq del: mult_pCons_left) | |
| 1308 | with `Suc n = degree p` have "n = degree k" by simp | |
| 1309 |     then have "finite {x. poly k x = 0}" using `k \<noteq> 0` by (rule Suc.hyps)
 | |
| 1310 |     then have "finite (insert a {x. poly k x = 0})" by simp
 | |
| 1311 |     then show "finite {x. poly p x = 0}"
 | |
| 1312 | by (simp add: k uminus_add_conv_diff Collect_disj_eq | |
| 1313 | del: mult_pCons_left) | |
| 1314 | qed | |
| 1315 | qed | |
| 1316 | ||
| 1317 | lemma poly_eq_poly_eq_iff: | |
| 1318 |   fixes p q :: "'a::{idom,ring_char_0} poly"
 | |
| 1319 | shows "poly p = poly q \<longleftrightarrow> p = q" (is "?P \<longleftrightarrow> ?Q") | |
| 1320 | proof | |
| 1321 | assume ?Q then show ?P by simp | |
| 1322 | next | |
| 1323 |   { fix p :: "'a::{idom,ring_char_0} poly"
 | |
| 1324 | have "poly p = poly 0 \<longleftrightarrow> p = 0" | |
| 1325 | apply (cases "p = 0", simp_all) | |
| 1326 | apply (drule poly_roots_finite) | |
| 1327 | apply (auto simp add: infinite_UNIV_char_0) | |
| 1328 | done | |
| 1329 | } note this [of "p - q"] | |
| 1330 | moreover assume ?P | |
| 1331 | ultimately show ?Q by auto | |
| 1332 | qed | |
| 1333 | ||
| 1334 | lemma poly_all_0_iff_0: | |
| 1335 |   fixes p :: "'a::{ring_char_0, idom} poly"
 | |
| 1336 | shows "(\<forall>x. poly p x = 0) \<longleftrightarrow> p = 0" | |
| 1337 | by (auto simp add: poly_eq_poly_eq_iff [symmetric]) | |
| 1338 | ||
| 1339 | ||
| 29451 | 1340 | subsection {* Long division of polynomials *}
 | 
| 1341 | ||
| 52380 | 1342 | definition pdivmod_rel :: "'a::field poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly \<Rightarrow> bool" | 
| 29451 | 1343 | where | 
| 29537 | 1344 | "pdivmod_rel x y q r \<longleftrightarrow> | 
| 29451 | 1345 | x = q * y + r \<and> (if y = 0 then q = 0 else r = 0 \<or> degree r < degree y)" | 
| 1346 | ||
| 29537 | 1347 | lemma pdivmod_rel_0: | 
| 1348 | "pdivmod_rel 0 y 0 0" | |
| 1349 | unfolding pdivmod_rel_def by simp | |
| 29451 | 1350 | |
| 29537 | 1351 | lemma pdivmod_rel_by_0: | 
| 1352 | "pdivmod_rel x 0 0 x" | |
| 1353 | unfolding pdivmod_rel_def by simp | |
| 29451 | 1354 | |
| 1355 | lemma eq_zero_or_degree_less: | |
| 1356 | assumes "degree p \<le> n" and "coeff p n = 0" | |
| 1357 | shows "p = 0 \<or> degree p < n" | |
| 1358 | proof (cases n) | |
| 1359 | case 0 | |
| 1360 | with `degree p \<le> n` and `coeff p n = 0` | |
| 1361 | have "coeff p (degree p) = 0" by simp | |
| 1362 | then have "p = 0" by simp | |
| 1363 | then show ?thesis .. | |
| 1364 | next | |
| 1365 | case (Suc m) | |
| 1366 | have "\<forall>i>n. coeff p i = 0" | |
| 1367 | using `degree p \<le> n` by (simp add: coeff_eq_0) | |
| 1368 | then have "\<forall>i\<ge>n. coeff p i = 0" | |
| 1369 | using `coeff p n = 0` by (simp add: le_less) | |
| 1370 | then have "\<forall>i>m. coeff p i = 0" | |
| 1371 | using `n = Suc m` by (simp add: less_eq_Suc_le) | |
| 1372 | then have "degree p \<le> m" | |
| 1373 | by (rule degree_le) | |
| 1374 | then have "degree p < n" | |
| 1375 | using `n = Suc m` by (simp add: less_Suc_eq_le) | |
| 1376 | then show ?thesis .. | |
| 1377 | qed | |
| 1378 | ||
| 29537 | 1379 | lemma pdivmod_rel_pCons: | 
| 1380 | assumes rel: "pdivmod_rel x y q r" | |
| 29451 | 1381 | assumes y: "y \<noteq> 0" | 
| 1382 | assumes b: "b = coeff (pCons a r) (degree y) / coeff y (degree y)" | |
| 29537 | 1383 | shows "pdivmod_rel (pCons a x) y (pCons b q) (pCons a r - smult b y)" | 
| 1384 | (is "pdivmod_rel ?x y ?q ?r") | |
| 29451 | 1385 | proof - | 
| 1386 | have x: "x = q * y + r" and r: "r = 0 \<or> degree r < degree y" | |
| 29537 | 1387 | using assms unfolding pdivmod_rel_def by simp_all | 
| 29451 | 1388 | |
| 1389 | have 1: "?x = ?q * y + ?r" | |
| 1390 | using b x by simp | |
| 1391 | ||
| 1392 | have 2: "?r = 0 \<or> degree ?r < degree y" | |
| 1393 | proof (rule eq_zero_or_degree_less) | |
| 29539 | 1394 | show "degree ?r \<le> degree y" | 
| 1395 | proof (rule degree_diff_le) | |
| 29451 | 1396 | show "degree (pCons a r) \<le> degree y" | 
| 29460 
ad87e5d1488b
new lemmas about synthetic_div; declare degree_pCons_eq_if [simp]
 huffman parents: 
29457diff
changeset | 1397 | using r by auto | 
| 29451 | 1398 | show "degree (smult b y) \<le> degree y" | 
| 1399 | by (rule degree_smult_le) | |
| 1400 | qed | |
| 1401 | next | |
| 1402 | show "coeff ?r (degree y) = 0" | |
| 1403 | using `y \<noteq> 0` unfolding b by simp | |
| 1404 | qed | |
| 1405 | ||
| 1406 | from 1 2 show ?thesis | |
| 29537 | 1407 | unfolding pdivmod_rel_def | 
| 29451 | 1408 | using `y \<noteq> 0` by simp | 
| 1409 | qed | |
| 1410 | ||
| 29537 | 1411 | lemma pdivmod_rel_exists: "\<exists>q r. pdivmod_rel x y q r" | 
| 29451 | 1412 | apply (cases "y = 0") | 
| 29537 | 1413 | apply (fast intro!: pdivmod_rel_by_0) | 
| 29451 | 1414 | apply (induct x) | 
| 29537 | 1415 | apply (fast intro!: pdivmod_rel_0) | 
| 1416 | apply (fast intro!: pdivmod_rel_pCons) | |
| 29451 | 1417 | done | 
| 1418 | ||
| 29537 | 1419 | lemma pdivmod_rel_unique: | 
| 1420 | assumes 1: "pdivmod_rel x y q1 r1" | |
| 1421 | assumes 2: "pdivmod_rel x y q2 r2" | |
| 29451 | 1422 | shows "q1 = q2 \<and> r1 = r2" | 
| 1423 | proof (cases "y = 0") | |
| 1424 | assume "y = 0" with assms show ?thesis | |
| 29537 | 1425 | by (simp add: pdivmod_rel_def) | 
| 29451 | 1426 | next | 
| 1427 | assume [simp]: "y \<noteq> 0" | |
| 1428 | from 1 have q1: "x = q1 * y + r1" and r1: "r1 = 0 \<or> degree r1 < degree y" | |
| 29537 | 1429 | unfolding pdivmod_rel_def by simp_all | 
| 29451 | 1430 | from 2 have q2: "x = q2 * y + r2" and r2: "r2 = 0 \<or> degree r2 < degree y" | 
| 29537 | 1431 | unfolding pdivmod_rel_def by simp_all | 
| 29451 | 1432 | from q1 q2 have q3: "(q1 - q2) * y = r2 - r1" | 
| 29667 | 1433 | by (simp add: algebra_simps) | 
| 29451 | 1434 | from r1 r2 have r3: "(r2 - r1) = 0 \<or> degree (r2 - r1) < degree y" | 
| 29453 | 1435 | by (auto intro: degree_diff_less) | 
| 29451 | 1436 | |
| 1437 | show "q1 = q2 \<and> r1 = r2" | |
| 1438 | proof (rule ccontr) | |
| 1439 | assume "\<not> (q1 = q2 \<and> r1 = r2)" | |
| 1440 | with q3 have "q1 \<noteq> q2" and "r1 \<noteq> r2" by auto | |
| 1441 | with r3 have "degree (r2 - r1) < degree y" by simp | |
| 1442 | also have "degree y \<le> degree (q1 - q2) + degree y" by simp | |
| 1443 | also have "\<dots> = degree ((q1 - q2) * y)" | |
| 1444 | using `q1 \<noteq> q2` by (simp add: degree_mult_eq) | |
| 1445 | also have "\<dots> = degree (r2 - r1)" | |
| 1446 | using q3 by simp | |
| 1447 | finally have "degree (r2 - r1) < degree (r2 - r1)" . | |
| 1448 | then show "False" by simp | |
| 1449 | qed | |
| 1450 | qed | |
| 1451 | ||
| 29660 | 1452 | lemma pdivmod_rel_0_iff: "pdivmod_rel 0 y q r \<longleftrightarrow> q = 0 \<and> r = 0" | 
| 1453 | by (auto dest: pdivmod_rel_unique intro: pdivmod_rel_0) | |
| 1454 | ||
| 1455 | lemma pdivmod_rel_by_0_iff: "pdivmod_rel x 0 q r \<longleftrightarrow> q = 0 \<and> r = x" | |
| 1456 | by (auto dest: pdivmod_rel_unique intro: pdivmod_rel_by_0) | |
| 1457 | ||
| 45605 | 1458 | lemmas pdivmod_rel_unique_div = pdivmod_rel_unique [THEN conjunct1] | 
| 29451 | 1459 | |
| 45605 | 1460 | lemmas pdivmod_rel_unique_mod = pdivmod_rel_unique [THEN conjunct2] | 
| 29451 | 1461 | |
| 1462 | instantiation poly :: (field) ring_div | |
| 1463 | begin | |
| 1464 | ||
| 1465 | definition div_poly where | |
| 37765 | 1466 | "x div y = (THE q. \<exists>r. pdivmod_rel x y q r)" | 
| 29451 | 1467 | |
| 1468 | definition mod_poly where | |
| 37765 | 1469 | "x mod y = (THE r. \<exists>q. pdivmod_rel x y q r)" | 
| 29451 | 1470 | |
| 1471 | lemma div_poly_eq: | |
| 29537 | 1472 | "pdivmod_rel x y q r \<Longrightarrow> x div y = q" | 
| 29451 | 1473 | unfolding div_poly_def | 
| 29537 | 1474 | by (fast elim: pdivmod_rel_unique_div) | 
| 29451 | 1475 | |
| 1476 | lemma mod_poly_eq: | |
| 29537 | 1477 | "pdivmod_rel x y q r \<Longrightarrow> x mod y = r" | 
| 29451 | 1478 | unfolding mod_poly_def | 
| 29537 | 1479 | by (fast elim: pdivmod_rel_unique_mod) | 
| 29451 | 1480 | |
| 29537 | 1481 | lemma pdivmod_rel: | 
| 1482 | "pdivmod_rel x y (x div y) (x mod y)" | |
| 29451 | 1483 | proof - | 
| 29537 | 1484 | from pdivmod_rel_exists | 
| 1485 | obtain q r where "pdivmod_rel x y q r" by fast | |
| 29451 | 1486 | thus ?thesis | 
| 1487 | by (simp add: div_poly_eq mod_poly_eq) | |
| 1488 | qed | |
| 1489 | ||
| 1490 | instance proof | |
| 1491 | fix x y :: "'a poly" | |
| 1492 | show "x div y * y + x mod y = x" | |
| 29537 | 1493 | using pdivmod_rel [of x y] | 
| 1494 | by (simp add: pdivmod_rel_def) | |
| 29451 | 1495 | next | 
| 1496 | fix x :: "'a poly" | |
| 29537 | 1497 | have "pdivmod_rel x 0 0 x" | 
| 1498 | by (rule pdivmod_rel_by_0) | |
| 29451 | 1499 | thus "x div 0 = 0" | 
| 1500 | by (rule div_poly_eq) | |
| 1501 | next | |
| 1502 | fix y :: "'a poly" | |
| 29537 | 1503 | have "pdivmod_rel 0 y 0 0" | 
| 1504 | by (rule pdivmod_rel_0) | |
| 29451 | 1505 | thus "0 div y = 0" | 
| 1506 | by (rule div_poly_eq) | |
| 1507 | next | |
| 1508 | fix x y z :: "'a poly" | |
| 1509 | assume "y \<noteq> 0" | |
| 29537 | 1510 | hence "pdivmod_rel (x + z * y) y (z + x div y) (x mod y)" | 
| 1511 | using pdivmod_rel [of x y] | |
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
49834diff
changeset | 1512 | by (simp add: pdivmod_rel_def distrib_right) | 
| 29451 | 1513 | thus "(x + z * y) div y = z + x div y" | 
| 1514 | by (rule div_poly_eq) | |
| 30930 | 1515 | next | 
| 1516 | fix x y z :: "'a poly" | |
| 1517 | assume "x \<noteq> 0" | |
| 1518 | show "(x * y) div (x * z) = y div z" | |
| 1519 | proof (cases "y \<noteq> 0 \<and> z \<noteq> 0") | |
| 1520 | have "\<And>x::'a poly. pdivmod_rel x 0 0 x" | |
| 1521 | by (rule pdivmod_rel_by_0) | |
| 1522 | then have [simp]: "\<And>x::'a poly. x div 0 = 0" | |
| 1523 | by (rule div_poly_eq) | |
| 1524 | have "\<And>x::'a poly. pdivmod_rel 0 x 0 0" | |
| 1525 | by (rule pdivmod_rel_0) | |
| 1526 | then have [simp]: "\<And>x::'a poly. 0 div x = 0" | |
| 1527 | by (rule div_poly_eq) | |
| 1528 | case False then show ?thesis by auto | |
| 1529 | next | |
| 1530 | case True then have "y \<noteq> 0" and "z \<noteq> 0" by auto | |
| 1531 | with `x \<noteq> 0` | |
| 1532 | have "\<And>q r. pdivmod_rel y z q r \<Longrightarrow> pdivmod_rel (x * y) (x * z) q (x * r)" | |
| 1533 | by (auto simp add: pdivmod_rel_def algebra_simps) | |
| 1534 | (rule classical, simp add: degree_mult_eq) | |
| 1535 | moreover from pdivmod_rel have "pdivmod_rel y z (y div z) (y mod z)" . | |
| 1536 | ultimately have "pdivmod_rel (x * y) (x * z) (y div z) (x * (y mod z))" . | |
| 1537 | then show ?thesis by (simp add: div_poly_eq) | |
| 1538 | qed | |
| 29451 | 1539 | qed | 
| 1540 | ||
| 1541 | end | |
| 1542 | ||
| 1543 | lemma degree_mod_less: | |
| 1544 | "y \<noteq> 0 \<Longrightarrow> x mod y = 0 \<or> degree (x mod y) < degree y" | |
| 29537 | 1545 | using pdivmod_rel [of x y] | 
| 1546 | unfolding pdivmod_rel_def by simp | |
| 29451 | 1547 | |
| 1548 | lemma div_poly_less: "degree x < degree y \<Longrightarrow> x div y = 0" | |
| 1549 | proof - | |
| 1550 | assume "degree x < degree y" | |
| 29537 | 1551 | hence "pdivmod_rel x y 0 x" | 
| 1552 | by (simp add: pdivmod_rel_def) | |
| 29451 | 1553 | thus "x div y = 0" by (rule div_poly_eq) | 
| 1554 | qed | |
| 1555 | ||
| 1556 | lemma mod_poly_less: "degree x < degree y \<Longrightarrow> x mod y = x" | |
| 1557 | proof - | |
| 1558 | assume "degree x < degree y" | |
| 29537 | 1559 | hence "pdivmod_rel x y 0 x" | 
| 1560 | by (simp add: pdivmod_rel_def) | |
| 29451 | 1561 | thus "x mod y = x" by (rule mod_poly_eq) | 
| 1562 | qed | |
| 1563 | ||
| 29659 | 1564 | lemma pdivmod_rel_smult_left: | 
| 1565 | "pdivmod_rel x y q r | |
| 1566 | \<Longrightarrow> pdivmod_rel (smult a x) y (smult a q) (smult a r)" | |
| 1567 | unfolding pdivmod_rel_def by (simp add: smult_add_right) | |
| 1568 | ||
| 1569 | lemma div_smult_left: "(smult a x) div y = smult a (x div y)" | |
| 1570 | by (rule div_poly_eq, rule pdivmod_rel_smult_left, rule pdivmod_rel) | |
| 1571 | ||
| 1572 | lemma mod_smult_left: "(smult a x) mod y = smult a (x mod y)" | |
| 1573 | by (rule mod_poly_eq, rule pdivmod_rel_smult_left, rule pdivmod_rel) | |
| 1574 | ||
| 30072 | 1575 | lemma poly_div_minus_left [simp]: | 
| 1576 | fixes x y :: "'a::field poly" | |
| 1577 | shows "(- x) div y = - (x div y)" | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47002diff
changeset | 1578 | using div_smult_left [of "- 1::'a"] by (simp del: minus_one) (* FIXME *) | 
| 30072 | 1579 | |
| 1580 | lemma poly_mod_minus_left [simp]: | |
| 1581 | fixes x y :: "'a::field poly" | |
| 1582 | shows "(- x) mod y = - (x mod y)" | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47002diff
changeset | 1583 | using mod_smult_left [of "- 1::'a"] by (simp del: minus_one) (* FIXME *) | 
| 30072 | 1584 | |
| 29659 | 1585 | lemma pdivmod_rel_smult_right: | 
| 1586 | "\<lbrakk>a \<noteq> 0; pdivmod_rel x y q r\<rbrakk> | |
| 1587 | \<Longrightarrow> pdivmod_rel x (smult a y) (smult (inverse a) q) r" | |
| 1588 | unfolding pdivmod_rel_def by simp | |
| 1589 | ||
| 1590 | lemma div_smult_right: | |
| 1591 | "a \<noteq> 0 \<Longrightarrow> x div (smult a y) = smult (inverse a) (x div y)" | |
| 1592 | by (rule div_poly_eq, erule pdivmod_rel_smult_right, rule pdivmod_rel) | |
| 1593 | ||
| 1594 | lemma mod_smult_right: "a \<noteq> 0 \<Longrightarrow> x mod (smult a y) = x mod y" | |
| 1595 | by (rule mod_poly_eq, erule pdivmod_rel_smult_right, rule pdivmod_rel) | |
| 1596 | ||
| 30072 | 1597 | lemma poly_div_minus_right [simp]: | 
| 1598 | fixes x y :: "'a::field poly" | |
| 1599 | shows "x div (- y) = - (x div y)" | |
| 1600 | using div_smult_right [of "- 1::'a"] | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47002diff
changeset | 1601 | by (simp add: nonzero_inverse_minus_eq del: minus_one) (* FIXME *) | 
| 30072 | 1602 | |
| 1603 | lemma poly_mod_minus_right [simp]: | |
| 1604 | fixes x y :: "'a::field poly" | |
| 1605 | shows "x mod (- y) = x mod y" | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47002diff
changeset | 1606 | using mod_smult_right [of "- 1::'a"] by (simp del: minus_one) (* FIXME *) | 
| 30072 | 1607 | |
| 29660 | 1608 | lemma pdivmod_rel_mult: | 
| 1609 | "\<lbrakk>pdivmod_rel x y q r; pdivmod_rel q z q' r'\<rbrakk> | |
| 1610 | \<Longrightarrow> pdivmod_rel x (y * z) q' (y * r' + r)" | |
| 1611 | apply (cases "z = 0", simp add: pdivmod_rel_def) | |
| 1612 | apply (cases "y = 0", simp add: pdivmod_rel_by_0_iff pdivmod_rel_0_iff) | |
| 1613 | apply (cases "r = 0") | |
| 1614 | apply (cases "r' = 0") | |
| 1615 | apply (simp add: pdivmod_rel_def) | |
| 36350 | 1616 | apply (simp add: pdivmod_rel_def field_simps degree_mult_eq) | 
| 29660 | 1617 | apply (cases "r' = 0") | 
| 1618 | apply (simp add: pdivmod_rel_def degree_mult_eq) | |
| 36350 | 1619 | apply (simp add: pdivmod_rel_def field_simps) | 
| 29660 | 1620 | apply (simp add: degree_mult_eq degree_add_less) | 
| 1621 | done | |
| 1622 | ||
| 1623 | lemma poly_div_mult_right: | |
| 1624 | fixes x y z :: "'a::field poly" | |
| 1625 | shows "x div (y * z) = (x div y) div z" | |
| 1626 | by (rule div_poly_eq, rule pdivmod_rel_mult, (rule pdivmod_rel)+) | |
| 1627 | ||
| 1628 | lemma poly_mod_mult_right: | |
| 1629 | fixes x y z :: "'a::field poly" | |
| 1630 | shows "x mod (y * z) = y * (x div y mod z) + x mod y" | |
| 1631 | by (rule mod_poly_eq, rule pdivmod_rel_mult, (rule pdivmod_rel)+) | |
| 1632 | ||
| 29451 | 1633 | lemma mod_pCons: | 
| 1634 | fixes a and x | |
| 1635 | assumes y: "y \<noteq> 0" | |
| 1636 | defines b: "b \<equiv> coeff (pCons a (x mod y)) (degree y) / coeff y (degree y)" | |
| 1637 | shows "(pCons a x) mod y = (pCons a (x mod y) - smult b y)" | |
| 1638 | unfolding b | |
| 1639 | apply (rule mod_poly_eq) | |
| 29537 | 1640 | apply (rule pdivmod_rel_pCons [OF pdivmod_rel y refl]) | 
| 29451 | 1641 | done | 
| 1642 | ||
| 52380 | 1643 | definition pdivmod :: "'a::field poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly \<times> 'a poly" | 
| 1644 | where | |
| 1645 | "pdivmod p q = (p div q, p mod q)" | |
| 31663 | 1646 | |
| 52380 | 1647 | lemma div_poly_code [code]: | 
| 1648 | "p div q = fst (pdivmod p q)" | |
| 1649 | by (simp add: pdivmod_def) | |
| 31663 | 1650 | |
| 52380 | 1651 | lemma mod_poly_code [code]: | 
| 1652 | "p mod q = snd (pdivmod p q)" | |
| 1653 | by (simp add: pdivmod_def) | |
| 31663 | 1654 | |
| 52380 | 1655 | lemma pdivmod_0: | 
| 1656 | "pdivmod 0 q = (0, 0)" | |
| 1657 | by (simp add: pdivmod_def) | |
| 31663 | 1658 | |
| 52380 | 1659 | lemma pdivmod_pCons: | 
| 1660 | "pdivmod (pCons a p) q = | |
| 1661 | (if q = 0 then (0, pCons a p) else | |
| 1662 | (let (s, r) = pdivmod p q; | |
| 1663 | b = coeff (pCons a r) (degree q) / coeff q (degree q) | |
| 1664 | in (pCons b s, pCons a r - smult b q)))" | |
| 1665 | apply (simp add: pdivmod_def Let_def, safe) | |
| 1666 | apply (rule div_poly_eq) | |
| 1667 | apply (erule pdivmod_rel_pCons [OF pdivmod_rel _ refl]) | |
| 1668 | apply (rule mod_poly_eq) | |
| 1669 | apply (erule pdivmod_rel_pCons [OF pdivmod_rel _ refl]) | |
| 29451 | 1670 | done | 
| 1671 | ||
| 52380 | 1672 | lemma pdivmod_fold_coeffs [code]: | 
| 1673 | "pdivmod p q = (if q = 0 then (0, p) | |
| 1674 | else fold_coeffs (\<lambda>a (s, r). | |
| 1675 | let b = coeff (pCons a r) (degree q) / coeff q (degree q) | |
| 1676 | in (pCons b s, pCons a r - smult b q) | |
| 1677 | ) p (0, 0))" | |
| 1678 | apply (cases "q = 0") | |
| 1679 | apply (simp add: pdivmod_def) | |
| 1680 | apply (rule sym) | |
| 1681 | apply (induct p) | |
| 1682 | apply (simp_all add: pdivmod_0 pdivmod_pCons) | |
| 1683 | apply (case_tac "a = 0 \<and> p = 0") | |
| 1684 | apply (auto simp add: pdivmod_def) | |
| 1685 | done | |
| 29980 | 1686 | |
| 1687 | ||
| 29977 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1688 | subsection {* Order of polynomial roots *}
 | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1689 | |
| 52380 | 1690 | definition order :: "'a::idom \<Rightarrow> 'a poly \<Rightarrow> nat" | 
| 29977 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1691 | where | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1692 | "order a p = (LEAST n. \<not> [:-a, 1:] ^ Suc n dvd p)" | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1693 | |
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1694 | lemma coeff_linear_power: | 
| 29979 | 1695 | fixes a :: "'a::comm_semiring_1" | 
| 29977 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1696 | shows "coeff ([:a, 1:] ^ n) n = 1" | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1697 | apply (induct n, simp_all) | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1698 | apply (subst coeff_eq_0) | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1699 | apply (auto intro: le_less_trans degree_power_le) | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1700 | done | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1701 | |
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1702 | lemma degree_linear_power: | 
| 29979 | 1703 | fixes a :: "'a::comm_semiring_1" | 
| 29977 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1704 | shows "degree ([:a, 1:] ^ n) = n" | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1705 | apply (rule order_antisym) | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1706 | apply (rule ord_le_eq_trans [OF degree_power_le], simp) | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1707 | apply (rule le_degree, simp add: coeff_linear_power) | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1708 | done | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1709 | |
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1710 | lemma order_1: "[:-a, 1:] ^ order a p dvd p" | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1711 | apply (cases "p = 0", simp) | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1712 | apply (cases "order a p", simp) | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1713 | apply (subgoal_tac "nat < (LEAST n. \<not> [:-a, 1:] ^ Suc n dvd p)") | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1714 | apply (drule not_less_Least, simp) | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1715 | apply (fold order_def, simp) | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1716 | done | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1717 | |
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1718 | lemma order_2: "p \<noteq> 0 \<Longrightarrow> \<not> [:-a, 1:] ^ Suc (order a p) dvd p" | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1719 | unfolding order_def | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1720 | apply (rule LeastI_ex) | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1721 | apply (rule_tac x="degree p" in exI) | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1722 | apply (rule notI) | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1723 | apply (drule (1) dvd_imp_degree_le) | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1724 | apply (simp only: degree_linear_power) | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1725 | done | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1726 | |
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1727 | lemma order: | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1728 | "p \<noteq> 0 \<Longrightarrow> [:-a, 1:] ^ order a p dvd p \<and> \<not> [:-a, 1:] ^ Suc (order a p) dvd p" | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1729 | by (rule conjI [OF order_1 order_2]) | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1730 | |
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1731 | lemma order_degree: | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1732 | assumes p: "p \<noteq> 0" | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1733 | shows "order a p \<le> degree p" | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1734 | proof - | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1735 | have "order a p = degree ([:-a, 1:] ^ order a p)" | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1736 | by (simp only: degree_linear_power) | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1737 | also have "\<dots> \<le> degree p" | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1738 | using order_1 p by (rule dvd_imp_degree_le) | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1739 | finally show ?thesis . | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1740 | qed | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1741 | |
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1742 | lemma order_root: "poly p a = 0 \<longleftrightarrow> p = 0 \<or> order a p \<noteq> 0" | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1743 | apply (cases "p = 0", simp_all) | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1744 | apply (rule iffI) | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1745 | apply (rule ccontr, simp) | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1746 | apply (frule order_2 [where a=a], simp) | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1747 | apply (simp add: poly_eq_0_iff_dvd) | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1748 | apply (simp add: poly_eq_0_iff_dvd) | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1749 | apply (simp only: order_def) | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1750 | apply (drule not_less_Least, simp) | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1751 | done | 
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1752 | |
| 
d76b830366bc
move polynomial order stuff from Fundamental_Theorem_Algebra to Polynomial
 huffman parents: 
29904diff
changeset | 1753 | |
| 52380 | 1754 | subsection {* GCD of polynomials *}
 | 
| 29478 | 1755 | |
| 52380 | 1756 | instantiation poly :: (field) gcd | 
| 29478 | 1757 | begin | 
| 1758 | ||
| 52380 | 1759 | function gcd_poly :: "'a::field poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly" | 
| 1760 | where | |
| 1761 | "gcd (x::'a poly) 0 = smult (inverse (coeff x (degree x))) x" | |
| 1762 | | "y \<noteq> 0 \<Longrightarrow> gcd (x::'a poly) y = gcd y (x mod y)" | |
| 1763 | by auto | |
| 29478 | 1764 | |
| 52380 | 1765 | termination "gcd :: _ poly \<Rightarrow> _" | 
| 1766 | by (relation "measure (\<lambda>(x, y). if y = 0 then 0 else Suc (degree y))") | |
| 1767 | (auto dest: degree_mod_less) | |
| 1768 | ||
| 1769 | declare gcd_poly.simps [simp del] | |
| 1770 | ||
| 1771 | instance .. | |
| 29478 | 1772 | |
| 29451 | 1773 | end | 
| 29478 | 1774 | |
| 52380 | 1775 | lemma | 
| 1776 | fixes x y :: "_ poly" | |
| 1777 | shows poly_gcd_dvd1 [iff]: "gcd x y dvd x" | |
| 1778 | and poly_gcd_dvd2 [iff]: "gcd x y dvd y" | |
| 1779 | apply (induct x y rule: gcd_poly.induct) | |
| 1780 | apply (simp_all add: gcd_poly.simps) | |
| 1781 | apply (fastforce simp add: smult_dvd_iff dest: inverse_zero_imp_zero) | |
| 1782 | apply (blast dest: dvd_mod_imp_dvd) | |
| 1783 | done | |
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
37770diff
changeset | 1784 | |
| 52380 | 1785 | lemma poly_gcd_greatest: | 
| 1786 | fixes k x y :: "_ poly" | |
| 1787 | shows "k dvd x \<Longrightarrow> k dvd y \<Longrightarrow> k dvd gcd x y" | |
| 1788 | by (induct x y rule: gcd_poly.induct) | |
| 1789 | (simp_all add: gcd_poly.simps dvd_mod dvd_smult) | |
| 29478 | 1790 | |
| 52380 | 1791 | lemma dvd_poly_gcd_iff [iff]: | 
| 1792 | fixes k x y :: "_ poly" | |
| 1793 | shows "k dvd gcd x y \<longleftrightarrow> k dvd x \<and> k dvd y" | |
| 1794 | by (blast intro!: poly_gcd_greatest intro: dvd_trans) | |
| 29478 | 1795 | |
| 52380 | 1796 | lemma poly_gcd_monic: | 
| 1797 | fixes x y :: "_ poly" | |
| 1798 | shows "coeff (gcd x y) (degree (gcd x y)) = | |
| 1799 | (if x = 0 \<and> y = 0 then 0 else 1)" | |
| 1800 | by (induct x y rule: gcd_poly.induct) | |
| 1801 | (simp_all add: gcd_poly.simps nonzero_imp_inverse_nonzero) | |
| 29478 | 1802 | |
| 52380 | 1803 | lemma poly_gcd_zero_iff [simp]: | 
| 1804 | fixes x y :: "_ poly" | |
| 1805 | shows "gcd x y = 0 \<longleftrightarrow> x = 0 \<and> y = 0" | |
| 1806 | by (simp only: dvd_0_left_iff [symmetric] dvd_poly_gcd_iff) | |
| 29478 | 1807 | |
| 52380 | 1808 | lemma poly_gcd_0_0 [simp]: | 
| 1809 | "gcd (0::_ poly) 0 = 0" | |
| 1810 | by simp | |
| 29478 | 1811 | |
| 52380 | 1812 | lemma poly_dvd_antisym: | 
| 1813 | fixes p q :: "'a::idom poly" | |
| 1814 | assumes coeff: "coeff p (degree p) = coeff q (degree q)" | |
| 1815 | assumes dvd1: "p dvd q" and dvd2: "q dvd p" shows "p = q" | |
| 1816 | proof (cases "p = 0") | |
| 1817 | case True with coeff show "p = q" by simp | |
| 1818 | next | |
| 1819 | case False with coeff have "q \<noteq> 0" by auto | |
| 1820 | have degree: "degree p = degree q" | |
| 1821 | using `p dvd q` `q dvd p` `p \<noteq> 0` `q \<noteq> 0` | |
| 1822 | by (intro order_antisym dvd_imp_degree_le) | |
| 29478 | 1823 | |
| 52380 | 1824 | from `p dvd q` obtain a where a: "q = p * a" .. | 
| 1825 | with `q \<noteq> 0` have "a \<noteq> 0" by auto | |
| 1826 | with degree a `p \<noteq> 0` have "degree a = 0" | |
| 1827 | by (simp add: degree_mult_eq) | |
| 1828 | with coeff a show "p = q" | |
| 1829 | by (cases a, auto split: if_splits) | |
| 1830 | qed | |
| 29478 | 1831 | |
| 52380 | 1832 | lemma poly_gcd_unique: | 
| 1833 | fixes d x y :: "_ poly" | |
| 1834 | assumes dvd1: "d dvd x" and dvd2: "d dvd y" | |
| 1835 | and greatest: "\<And>k. k dvd x \<Longrightarrow> k dvd y \<Longrightarrow> k dvd d" | |
| 1836 | and monic: "coeff d (degree d) = (if x = 0 \<and> y = 0 then 0 else 1)" | |
| 1837 | shows "gcd x y = d" | |
| 1838 | proof - | |
| 1839 | have "coeff (gcd x y) (degree (gcd x y)) = coeff d (degree d)" | |
| 1840 | by (simp_all add: poly_gcd_monic monic) | |
| 1841 | moreover have "gcd x y dvd d" | |
| 1842 | using poly_gcd_dvd1 poly_gcd_dvd2 by (rule greatest) | |
| 1843 | moreover have "d dvd gcd x y" | |
| 1844 | using dvd1 dvd2 by (rule poly_gcd_greatest) | |
| 1845 | ultimately show ?thesis | |
| 1846 | by (rule poly_dvd_antisym) | |
| 1847 | qed | |
| 29478 | 1848 | |
| 52380 | 1849 | interpretation gcd_poly!: abel_semigroup "gcd :: _ poly \<Rightarrow> _" | 
| 1850 | proof | |
| 1851 | fix x y z :: "'a poly" | |
| 1852 | show "gcd (gcd x y) z = gcd x (gcd y z)" | |
| 1853 | by (rule poly_gcd_unique) (auto intro: dvd_trans simp add: poly_gcd_monic) | |
| 1854 | show "gcd x y = gcd y x" | |
| 1855 | by (rule poly_gcd_unique) (simp_all add: poly_gcd_monic) | |
| 1856 | qed | |
| 29478 | 1857 | |
| 52380 | 1858 | lemmas poly_gcd_assoc = gcd_poly.assoc | 
| 1859 | lemmas poly_gcd_commute = gcd_poly.commute | |
| 1860 | lemmas poly_gcd_left_commute = gcd_poly.left_commute | |
| 29478 | 1861 | |
| 52380 | 1862 | lemmas poly_gcd_ac = poly_gcd_assoc poly_gcd_commute poly_gcd_left_commute | 
| 1863 | ||
| 1864 | lemma poly_gcd_1_left [simp]: "gcd 1 y = (1 :: _ poly)" | |
| 1865 | by (rule poly_gcd_unique) simp_all | |
| 29478 | 1866 | |
| 52380 | 1867 | lemma poly_gcd_1_right [simp]: "gcd x 1 = (1 :: _ poly)" | 
| 1868 | by (rule poly_gcd_unique) simp_all | |
| 1869 | ||
| 1870 | lemma poly_gcd_minus_left [simp]: "gcd (- x) y = gcd x (y :: _ poly)" | |
| 1871 | by (rule poly_gcd_unique) (simp_all add: poly_gcd_monic) | |
| 29478 | 1872 | |
| 52380 | 1873 | lemma poly_gcd_minus_right [simp]: "gcd x (- y) = gcd x (y :: _ poly)" | 
| 1874 | by (rule poly_gcd_unique) (simp_all add: poly_gcd_monic) | |
| 29478 | 1875 | |
| 52380 | 1876 | lemma poly_gcd_code [code]: | 
| 1877 | "gcd x y = (if y = 0 then smult (inverse (coeff x (degree x))) x else gcd y (x mod (y :: _ poly)))" | |
| 1878 | by (simp add: gcd_poly.simps) | |
| 1879 | ||
| 1880 | ||
| 1881 | subsection {* Composition of polynomials *}
 | |
| 29478 | 1882 | |
| 52380 | 1883 | definition pcompose :: "'a::comm_semiring_0 poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly" | 
| 1884 | where | |
| 1885 | "pcompose p q = fold_coeffs (\<lambda>a c. [:a:] + q * c) p 0" | |
| 1886 | ||
| 1887 | lemma pcompose_0 [simp]: | |
| 1888 | "pcompose 0 q = 0" | |
| 1889 | by (simp add: pcompose_def) | |
| 1890 | ||
| 1891 | lemma pcompose_pCons: | |
| 1892 | "pcompose (pCons a p) q = [:a:] + q * pcompose p q" | |
| 1893 | by (cases "p = 0 \<and> a = 0") (auto simp add: pcompose_def) | |
| 1894 | ||
| 1895 | lemma poly_pcompose: | |
| 1896 | "poly (pcompose p q) x = poly p (poly q x)" | |
| 1897 | by (induct p) (simp_all add: pcompose_pCons) | |
| 1898 | ||
| 1899 | lemma degree_pcompose_le: | |
| 1900 | "degree (pcompose p q) \<le> degree p * degree q" | |
| 1901 | apply (induct p, simp) | |
| 1902 | apply (simp add: pcompose_pCons, clarify) | |
| 1903 | apply (rule degree_add_le, simp) | |
| 1904 | apply (rule order_trans [OF degree_mult_le], simp) | |
| 29478 | 1905 | done | 
| 1906 | ||
| 52380 | 1907 | |
| 1908 | no_notation cCons (infixr "##" 65) | |
| 31663 | 1909 | |
| 29478 | 1910 | end | 
| 52380 | 1911 |