| author | traytel | 
| Thu, 12 Sep 2013 16:58:22 +0200 | |
| changeset 53567 | 7f84e5e7a49b | 
| parent 52046 | bc01725d7918 | 
| child 55601 | b7f4da504b75 | 
| permissions | -rw-r--r-- | 
| 44656 | 1  | 
(* Author: Tobias Nipkow *)  | 
2  | 
||
| 
45110
 
305f83b6da54
moved IMP/AbsInt stuff into subdirectory Abs_Int_Den
 
nipkow 
parents: 
45015 
diff
changeset
 | 
3  | 
header "Denotational Abstract Interpretation"  | 
| 44656 | 4  | 
|
| 45111 | 5  | 
theory Abs_Int_den0_fun  | 
| 48480 | 6  | 
imports "~~/src/HOL/ex/Interpretation_with_Defs" "../Big_Step"  | 
| 44656 | 7  | 
begin  | 
8  | 
||
9  | 
subsection "Orderings"  | 
|
10  | 
||
11  | 
class preord =  | 
|
12  | 
fixes le :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<sqsubseteq>" 50)  | 
|
13  | 
assumes le_refl[simp]: "x \<sqsubseteq> x"  | 
|
14  | 
and le_trans: "x \<sqsubseteq> y \<Longrightarrow> y \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> z"  | 
|
15  | 
||
16  | 
text{* Note: no antisymmetry. Allows implementations where some abstract
 | 
|
17  | 
element is implemented by two different values @{prop "x \<noteq> y"}
 | 
|
18  | 
such that @{prop"x \<sqsubseteq> y"} and @{prop"y \<sqsubseteq> x"}. Antisymmetry is not
 | 
|
19  | 
needed because we never compare elements for equality but only for @{text"\<sqsubseteq>"}.
 | 
|
20  | 
*}  | 
|
21  | 
||
22  | 
class SL_top = preord +  | 
|
23  | 
fixes join :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "\<squnion>" 65)  | 
|
24  | 
fixes Top :: "'a"  | 
|
25  | 
assumes join_ge1 [simp]: "x \<sqsubseteq> x \<squnion> y"  | 
|
26  | 
and join_ge2 [simp]: "y \<sqsubseteq> x \<squnion> y"  | 
|
27  | 
and join_least: "x \<sqsubseteq> z \<Longrightarrow> y \<sqsubseteq> z \<Longrightarrow> x \<squnion> y \<sqsubseteq> z"  | 
|
28  | 
and top[simp]: "x \<sqsubseteq> Top"  | 
|
29  | 
begin  | 
|
30  | 
||
31  | 
lemma join_le_iff[simp]: "x \<squnion> y \<sqsubseteq> z \<longleftrightarrow> x \<sqsubseteq> z \<and> y \<sqsubseteq> z"  | 
|
32  | 
by (metis join_ge1 join_ge2 join_least le_trans)  | 
|
33  | 
||
| 44932 | 34  | 
fun iter :: "nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a" where
 | 
35  | 
"iter 0 f _ = Top" |  | 
|
36  | 
"iter (Suc n) f x = (if f x \<sqsubseteq> x then x else iter n f (f x))"  | 
|
| 44656 | 37  | 
|
| 44932 | 38  | 
lemma iter_pfp: "f(iter n f x) \<sqsubseteq> iter n f x"  | 
| 45015 | 39  | 
apply (induction n arbitrary: x)  | 
| 44656 | 40  | 
apply (simp)  | 
41  | 
apply (simp)  | 
|
42  | 
done  | 
|
43  | 
||
| 44944 | 44  | 
abbreviation iter' :: "nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a" where
 | 
45  | 
"iter' n f x0 == iter n (\<lambda>x. x0 \<squnion> f x) x0"  | 
|
| 44923 | 46  | 
|
| 44944 | 47  | 
lemma iter'_pfp_above:  | 
48  | 
"f(iter' n f x0) \<sqsubseteq> iter' n f x0" "x0 \<sqsubseteq> iter' n f x0"  | 
|
49  | 
using iter_pfp[of "\<lambda>x. x0 \<squnion> f x"] by auto  | 
|
| 44923 | 50  | 
|
51  | 
text{* So much for soundness. But how good an approximation of the post-fixed
 | 
|
| 44944 | 52  | 
point does @{const iter} yield? *}
 | 
| 44923 | 53  | 
|
| 44932 | 54  | 
lemma iter_funpow: "iter n f x \<noteq> Top \<Longrightarrow> \<exists>k. iter n f x = (f^^k) x"  | 
| 45015 | 55  | 
apply(induction n arbitrary: x)  | 
| 44923 | 56  | 
apply simp  | 
| 44656 | 57  | 
apply (auto)  | 
| 44932 | 58  | 
apply(metis funpow.simps(1) id_def)  | 
| 44656 | 59  | 
by (metis funpow.simps(2) funpow_swap1 o_apply)  | 
60  | 
||
| 44944 | 61  | 
text{* For monotone @{text f}, @{term "iter f n x0"} yields the least
 | 
| 44923 | 62  | 
post-fixed point above @{text x0}, unless it yields @{text Top}. *}
 | 
| 44656 | 63  | 
|
| 44923 | 64  | 
lemma iter_least_pfp:  | 
| 44944 | 65  | 
assumes mono: "\<And>x y. x \<sqsubseteq> y \<Longrightarrow> f x \<sqsubseteq> f y" and "iter n f x0 \<noteq> Top"  | 
66  | 
and "f p \<sqsubseteq> p" and "x0 \<sqsubseteq> p" shows "iter n f x0 \<sqsubseteq> p"  | 
|
| 44656 | 67  | 
proof-  | 
| 44944 | 68  | 
obtain k where "iter n f x0 = (f^^k) x0"  | 
69  | 
using iter_funpow[OF `iter n f x0 \<noteq> Top`] by blast  | 
|
| 44656 | 70  | 
moreover  | 
| 44944 | 71  | 
  { fix n have "(f^^n) x0 \<sqsubseteq> p"
 | 
| 45015 | 72  | 
proof(induction n)  | 
| 44656 | 73  | 
case 0 show ?case by(simp add: `x0 \<sqsubseteq> p`)  | 
74  | 
next  | 
|
75  | 
case (Suc n) thus ?case  | 
|
76  | 
by (simp add: `x0 \<sqsubseteq> p`)(metis Suc assms(3) le_trans mono)  | 
|
77  | 
qed  | 
|
78  | 
} ultimately show ?thesis by simp  | 
|
79  | 
qed  | 
|
80  | 
||
81  | 
end  | 
|
82  | 
||
83  | 
text{* The interface of abstract values: *}
 | 
|
84  | 
||
85  | 
locale Rep =  | 
|
86  | 
fixes rep :: "'a::SL_top \<Rightarrow> 'b set"  | 
|
87  | 
assumes le_rep: "a \<sqsubseteq> b \<Longrightarrow> rep a \<subseteq> rep b"  | 
|
88  | 
begin  | 
|
89  | 
||
90  | 
abbreviation in_rep (infix "<:" 50) where "x <: a == x : rep a"  | 
|
91  | 
||
92  | 
lemma in_rep_join: "x <: a1 \<or> x <: a2 \<Longrightarrow> x <: a1 \<squnion> a2"  | 
|
93  | 
by (metis SL_top_class.join_ge1 SL_top_class.join_ge2 le_rep subsetD)  | 
|
94  | 
||
95  | 
end  | 
|
96  | 
||
97  | 
locale Val_abs = Rep rep  | 
|
98  | 
for rep :: "'a::SL_top \<Rightarrow> val set" +  | 
|
| 44932 | 99  | 
fixes num' :: "val \<Rightarrow> 'a"  | 
100  | 
and plus' :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"  | 
|
| 44656 | 101  | 
assumes rep_num': "rep(num' n) = {n}"
 | 
102  | 
and rep_plus': "n1 <: a1 \<Longrightarrow> n2 <: a2 \<Longrightarrow> n1+n2 <: plus' a1 a2"  | 
|
103  | 
||
104  | 
||
105  | 
instantiation "fun" :: (type, SL_top) SL_top  | 
|
106  | 
begin  | 
|
107  | 
||
108  | 
definition "f \<sqsubseteq> g = (ALL x. f x \<sqsubseteq> g x)"  | 
|
109  | 
definition "f \<squnion> g = (\<lambda>x. f x \<squnion> g x)"  | 
|
110  | 
definition "Top = (\<lambda>x. Top)"  | 
|
111  | 
||
112  | 
lemma join_apply[simp]:  | 
|
113  | 
"(f \<squnion> g) x = f x \<squnion> g x"  | 
|
114  | 
by (simp add: join_fun_def)  | 
|
115  | 
||
116  | 
instance  | 
|
117  | 
proof  | 
|
118  | 
case goal2 thus ?case by (metis le_fun_def preord_class.le_trans)  | 
|
119  | 
qed (simp_all add: le_fun_def Top_fun_def)  | 
|
120  | 
||
121  | 
end  | 
|
122  | 
||
123  | 
subsection "Abstract Interpretation Abstractly"  | 
|
124  | 
||
| 44932 | 125  | 
text{* Abstract interpretation over abstract values. Abstract states are
 | 
126  | 
simply functions. The post-fixed point finder is parameterized over. *}  | 
|
127  | 
||
| 45212 | 128  | 
type_synonym 'a st = "vname \<Rightarrow> 'a"  | 
| 44656 | 129  | 
|
| 44932 | 130  | 
locale Abs_Int_Fun = Val_abs +  | 
| 44944 | 131  | 
fixes pfp :: "('a st \<Rightarrow> 'a st) \<Rightarrow> 'a st \<Rightarrow> 'a st"
 | 
132  | 
assumes pfp: "f(pfp f x) \<sqsubseteq> pfp f x"  | 
|
133  | 
assumes above: "x \<sqsubseteq> pfp f x"  | 
|
| 44656 | 134  | 
begin  | 
135  | 
||
| 45212 | 136  | 
fun aval' :: "aexp \<Rightarrow> 'a st \<Rightarrow> 'a" where  | 
| 44656 | 137  | 
"aval' (N n) _ = num' n" |  | 
138  | 
"aval' (V x) S = S x" |  | 
|
139  | 
"aval' (Plus a1 a2) S = plus' (aval' a1 S) (aval' a2 S)"  | 
|
140  | 
||
141  | 
abbreviation fun_in_rep (infix "<:" 50) where  | 
|
| 44923 | 142  | 
"f <: F == \<forall>x. f x <: F x"  | 
| 44656 | 143  | 
|
144  | 
lemma fun_in_rep_le: "(s::state) <: S \<Longrightarrow> S \<sqsubseteq> T \<Longrightarrow> s <: T"  | 
|
145  | 
by (metis le_fun_def le_rep subsetD)  | 
|
146  | 
||
147  | 
lemma aval'_sound: "s <: S \<Longrightarrow> aval a s <: aval' a S"  | 
|
148  | 
by (induct a) (auto simp: rep_num' rep_plus')  | 
|
149  | 
||
| 45212 | 150  | 
fun AI :: "com \<Rightarrow> 'a st \<Rightarrow> 'a st" where  | 
| 44656 | 151  | 
"AI SKIP S = S" |  | 
152  | 
"AI (x ::= a) S = S(x := aval' a S)" |  | 
|
| 
52046
 
bc01725d7918
replaced `;' by `;;' to disambiguate syntax; unexpected slight increase in build time
 
nipkow 
parents: 
48480 
diff
changeset
 | 
153  | 
"AI (c1;;c2) S = AI c2 (AI c1 S)" |  | 
| 44656 | 154  | 
"AI (IF b THEN c1 ELSE c2) S = (AI c1 S) \<squnion> (AI c2 S)" |  | 
| 44944 | 155  | 
"AI (WHILE b DO c) S = pfp (AI c) S"  | 
| 44656 | 156  | 
|
157  | 
lemma AI_sound: "(c,s) \<Rightarrow> t \<Longrightarrow> s <: S0 \<Longrightarrow> t <: AI c S0"  | 
|
| 45015 | 158  | 
proof(induction c arbitrary: s t S0)  | 
| 
44890
 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 
nipkow 
parents: 
44656 
diff
changeset
 | 
159  | 
case SKIP thus ?case by fastforce  | 
| 44656 | 160  | 
next  | 
161  | 
case Assign thus ?case by (auto simp: aval'_sound)  | 
|
162  | 
next  | 
|
| 47818 | 163  | 
case Seq thus ?case by auto  | 
| 44656 | 164  | 
next  | 
165  | 
case If thus ?case by(auto simp: in_rep_join)  | 
|
166  | 
next  | 
|
167  | 
case (While b c)  | 
|
| 44944 | 168  | 
let ?P = "pfp (AI c) S0"  | 
| 44656 | 169  | 
  { fix s t have "(WHILE b DO c,s) \<Rightarrow> t \<Longrightarrow> s <: ?P \<Longrightarrow> t <: ?P"
 | 
| 45015 | 170  | 
proof(induction "WHILE b DO c" s t rule: big_step_induct)  | 
| 44656 | 171  | 
case WhileFalse thus ?case by simp  | 
172  | 
next  | 
|
| 45015 | 173  | 
case WhileTrue thus ?case by(metis While.IH pfp fun_in_rep_le)  | 
| 44656 | 174  | 
qed  | 
175  | 
}  | 
|
| 44932 | 176  | 
with fun_in_rep_le[OF `s <: S0` above]  | 
| 44656 | 177  | 
show ?case by (metis While(2) AI.simps(5))  | 
178  | 
qed  | 
|
179  | 
||
180  | 
end  | 
|
181  | 
||
182  | 
||
183  | 
text{* Problem: not executable because of the comparison of abstract states,
 | 
|
184  | 
i.e. functions, in the post-fixedpoint computation. Need to implement  | 
|
185  | 
abstract states concretely. *}  | 
|
186  | 
||
187  | 
end  |