doc-src/TutorialI/Misc/pairs.thy
author nipkow
Tue, 05 Sep 2000 13:53:39 +0200
changeset 9844 8016321c7de1
parent 9792 bbefb6ce5cb2
child 9933 9feb1e0c4cb3
permissions -rw-r--r--
*** empty log message ***
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
8745
13b32661dde4 I wonder which files i forgot.
nipkow
parents:
diff changeset
     1
(*<*)
13b32661dde4 I wonder which files i forgot.
nipkow
parents:
diff changeset
     2
theory pairs = Main:;
9541
d17c0b34d5c8 *** empty log message ***
nipkow
parents: 8745
diff changeset
     3
(*>*)
d17c0b34d5c8 *** empty log message ***
nipkow
parents: 8745
diff changeset
     4
text{*
d17c0b34d5c8 *** empty log message ***
nipkow
parents: 8745
diff changeset
     5
HOL also has pairs: \isa{($a@1$,$a@2$)} is of type \isa{$\tau@1$ *
d17c0b34d5c8 *** empty log message ***
nipkow
parents: 8745
diff changeset
     6
  $\tau@2$} provided each $a@i$ is of type $\tau@i$. The components of a pair
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9541
diff changeset
     7
are extracted by @{term"fst"} and @{term"snd"}: \isa{fst($x$,$y$) = $x$} and
9541
d17c0b34d5c8 *** empty log message ***
nipkow
parents: 8745
diff changeset
     8
\isa{snd($x$,$y$) = $y$}. Tuples are simulated by pairs nested to the right:
d17c0b34d5c8 *** empty log message ***
nipkow
parents: 8745
diff changeset
     9
\isa{($a@1$,$a@2$,$a@3$)} stands for \isa{($a@1$,($a@2$,$a@3$))} and
d17c0b34d5c8 *** empty log message ***
nipkow
parents: 8745
diff changeset
    10
\isa{$\tau@1$ * $\tau@2$ * $\tau@3$} for \isa{$\tau@1$ * ($\tau@2$ *
d17c0b34d5c8 *** empty log message ***
nipkow
parents: 8745
diff changeset
    11
  $\tau@3$)}. Therefore we have \isa{fst(snd($a@1$,$a@2$,$a@3$)) = $a@2$}.
d17c0b34d5c8 *** empty log message ***
nipkow
parents: 8745
diff changeset
    12
d17c0b34d5c8 *** empty log message ***
nipkow
parents: 8745
diff changeset
    13
It is possible to use (nested) tuples as patterns in abstractions, for
d17c0b34d5c8 *** empty log message ***
nipkow
parents: 8745
diff changeset
    14
example \isa{\isasymlambda(x,y,z).x+y+z} and
d17c0b34d5c8 *** empty log message ***
nipkow
parents: 8745
diff changeset
    15
\isa{\isasymlambda((x,y),z).x+y+z}.
d17c0b34d5c8 *** empty log message ***
nipkow
parents: 8745
diff changeset
    16
In addition to explicit $\lambda$-abstractions, tuple patterns can be used in
d17c0b34d5c8 *** empty log message ***
nipkow
parents: 8745
diff changeset
    17
most variable binding constructs. Typical examples are
d17c0b34d5c8 *** empty log message ***
nipkow
parents: 8745
diff changeset
    18
\begin{quote}
d17c0b34d5c8 *** empty log message ***
nipkow
parents: 8745
diff changeset
    19
@{term"let (x,y) = f z in (y,x)"}\\
d17c0b34d5c8 *** empty log message ***
nipkow
parents: 8745
diff changeset
    20
@{term"case xs of [] => 0 | (x,y)#zs => x+y"}
d17c0b34d5c8 *** empty log message ***
nipkow
parents: 8745
diff changeset
    21
\end{quote}
d17c0b34d5c8 *** empty log message ***
nipkow
parents: 8745
diff changeset
    22
Further important examples are quantifiers and sets (see~\S\ref{quant-pats}).
d17c0b34d5c8 *** empty log message ***
nipkow
parents: 8745
diff changeset
    23
*}
8745
13b32661dde4 I wonder which files i forgot.
nipkow
parents:
diff changeset
    24
(*<*)
13b32661dde4 I wonder which files i forgot.
nipkow
parents:
diff changeset
    25
end
13b32661dde4 I wonder which files i forgot.
nipkow
parents:
diff changeset
    26
(*>*)