src/ZF/ex/Group.thy
author wenzelm
Mon, 24 Oct 2016 14:47:46 +0200
changeset 64374 80d498d56116
parent 61798 27f3c10b0b50
child 65449 c82e63b11b8b
permissions -rw-r--r--
updated to cygwin-20161024: cygwin.exe from current http://isabelle.in.tum.de/cygwin_2016-1
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 29223
diff changeset
     1
(*  Title:      ZF/ex/Group.thy *)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
     2
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
     3
section \<open>Groups\<close>
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
     4
16417
9bc16273c2d4 migrated theory headers to new format
haftmann
parents: 14891
diff changeset
     5
theory Group imports Main begin
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
     6
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
     7
text\<open>Based on work by Clemens Ballarin, Florian Kammueller, L C Paulson and
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
     8
Markus Wenzel.\<close>
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
     9
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    10
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
    11
subsection \<open>Monoids\<close>
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    12
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    13
(*First, we must simulate a record declaration:
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
    14
record monoid =
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    15
  carrier :: i
14891
f2e9f7d813af fixed the groupI ambiguity
paulson
parents: 14884
diff changeset
    16
  mult :: "[i,i] => i" (infixl "\<cdot>\<index>" 70)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    17
  one :: i ("\<one>\<index>")
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    18
*)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    19
21233
5a5c8ea5f66a tuned specifications;
wenzelm
parents: 19931
diff changeset
    20
definition
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21233
diff changeset
    21
  carrier :: "i => i" where
21233
5a5c8ea5f66a tuned specifications;
wenzelm
parents: 19931
diff changeset
    22
  "carrier(M) == fst(M)"
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    23
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21233
diff changeset
    24
definition
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21233
diff changeset
    25
  mmult :: "[i, i, i] => i" (infixl "\<cdot>\<index>" 70) where
21233
5a5c8ea5f66a tuned specifications;
wenzelm
parents: 19931
diff changeset
    26
  "mmult(M,x,y) == fst(snd(M)) ` <x,y>"
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    27
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21233
diff changeset
    28
definition
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21233
diff changeset
    29
  one :: "i => i" ("\<one>\<index>") where
21233
5a5c8ea5f66a tuned specifications;
wenzelm
parents: 19931
diff changeset
    30
  "one(M) == fst(snd(snd(M)))"
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    31
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21233
diff changeset
    32
definition
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21233
diff changeset
    33
  update_carrier :: "[i,i] => i" where
21233
5a5c8ea5f66a tuned specifications;
wenzelm
parents: 19931
diff changeset
    34
  "update_carrier(M,A) == <A,snd(M)>"
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    35
21233
5a5c8ea5f66a tuned specifications;
wenzelm
parents: 19931
diff changeset
    36
definition
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21233
diff changeset
    37
  m_inv :: "i => i => i" ("inv\<index> _" [81] 80) where
21233
5a5c8ea5f66a tuned specifications;
wenzelm
parents: 19931
diff changeset
    38
  "inv\<^bsub>G\<^esub> x == (THE y. y \<in> carrier(G) & y \<cdot>\<^bsub>G\<^esub> x = \<one>\<^bsub>G\<^esub> & x \<cdot>\<^bsub>G\<^esub> y = \<one>\<^bsub>G\<^esub>)"
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    39
29223
e09c53289830 Conversion of HOL-Main and ZF to new locales.
ballarin
parents: 27618
diff changeset
    40
locale monoid = fixes G (structure)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    41
  assumes m_closed [intro, simp]:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    42
         "\<lbrakk>x \<in> carrier(G); y \<in> carrier(G)\<rbrakk> \<Longrightarrow> x \<cdot> y \<in> carrier(G)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    43
      and m_assoc:
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
    44
         "\<lbrakk>x \<in> carrier(G); y \<in> carrier(G); z \<in> carrier(G)\<rbrakk>
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    45
          \<Longrightarrow> (x \<cdot> y) \<cdot> z = x \<cdot> (y \<cdot> z)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    46
      and one_closed [intro, simp]: "\<one> \<in> carrier(G)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    47
      and l_one [simp]: "x \<in> carrier(G) \<Longrightarrow> \<one> \<cdot> x = x"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    48
      and r_one [simp]: "x \<in> carrier(G) \<Longrightarrow> x \<cdot> \<one> = x"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    49
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
    50
text\<open>Simulating the record\<close>
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    51
lemma carrier_eq [simp]: "carrier(<A,Z>) = A"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    52
  by (simp add: carrier_def)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    53
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    54
lemma mult_eq [simp]: "mmult(<A,M,Z>, x, y) = M ` <x,y>"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    55
  by (simp add: mmult_def)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    56
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    57
lemma one_eq [simp]: "one(<A,M,I,Z>) = I"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    58
  by (simp add: one_def)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    59
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    60
lemma update_carrier_eq [simp]: "update_carrier(<A,Z>,B) = <B,Z>"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    61
  by (simp add: update_carrier_def)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    62
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    63
lemma carrier_update_carrier [simp]: "carrier(update_carrier(M,B)) = B"
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
    64
  by (simp add: update_carrier_def)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    65
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    66
lemma mult_update_carrier [simp]: "mmult(update_carrier(M,B),x,y) = mmult(M,x,y)"
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
    67
  by (simp add: update_carrier_def mmult_def)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    68
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    69
lemma one_update_carrier [simp]: "one(update_carrier(M,B)) = one(M)"
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
    70
  by (simp add: update_carrier_def one_def)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    71
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    72
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    73
lemma (in monoid) inv_unique:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    74
  assumes eq: "y \<cdot> x = \<one>"  "x \<cdot> y' = \<one>"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    75
    and G: "x \<in> carrier(G)"  "y \<in> carrier(G)"  "y' \<in> carrier(G)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    76
  shows "y = y'"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    77
proof -
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    78
  from G eq have "y = y \<cdot> (x \<cdot> y')" by simp
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    79
  also from G have "... = (y \<cdot> x) \<cdot> y'" by (simp add: m_assoc)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    80
  also from G eq have "... = y'" by simp
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    81
  finally show ?thesis .
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    82
qed
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    83
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
    84
text \<open>
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    85
  A group is a monoid all of whose elements are invertible.
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
    86
\<close>
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    87
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    88
locale group = monoid +
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    89
  assumes inv_ex:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    90
     "\<And>x. x \<in> carrier(G) \<Longrightarrow> \<exists>y \<in> carrier(G). y \<cdot> x = \<one> & x \<cdot> y = \<one>"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    91
26199
04817a8802f2 explicit referencing of background facts;
wenzelm
parents: 22931
diff changeset
    92
lemma (in group) is_group [simp]: "group(G)" by (rule group_axioms)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    93
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    94
theorem groupI:
27618
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
    95
  fixes G (structure)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    96
  assumes m_closed [simp]:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    97
      "\<And>x y. \<lbrakk>x \<in> carrier(G); y \<in> carrier(G)\<rbrakk> \<Longrightarrow> x \<cdot> y \<in> carrier(G)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    98
    and one_closed [simp]: "\<one> \<in> carrier(G)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
    99
    and m_assoc:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   100
      "\<And>x y z. \<lbrakk>x \<in> carrier(G); y \<in> carrier(G); z \<in> carrier(G)\<rbrakk> \<Longrightarrow>
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   101
      (x \<cdot> y) \<cdot> z = x \<cdot> (y \<cdot> z)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   102
    and l_one [simp]: "\<And>x. x \<in> carrier(G) \<Longrightarrow> \<one> \<cdot> x = x"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   103
    and l_inv_ex: "\<And>x. x \<in> carrier(G) \<Longrightarrow> \<exists>y \<in> carrier(G). y \<cdot> x = \<one>"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   104
  shows "group(G)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   105
proof -
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   106
  have l_cancel [simp]:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   107
    "\<And>x y z. \<lbrakk>x \<in> carrier(G); y \<in> carrier(G); z \<in> carrier(G)\<rbrakk> \<Longrightarrow>
46822
95f1e700b712 mathematical symbols for Isabelle/ZF example theories
paulson
parents: 46820
diff changeset
   108
    (x \<cdot> y = x \<cdot> z) \<longleftrightarrow> (y = z)"
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   109
  proof
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   110
    fix x y z
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   111
    assume G: "x \<in> carrier(G)"  "y \<in> carrier(G)"  "z \<in> carrier(G)"
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   112
    {
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   113
      assume eq: "x \<cdot> y = x \<cdot> z"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   114
      with G l_inv_ex obtain x_inv where xG: "x_inv \<in> carrier(G)"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 29223
diff changeset
   115
        and l_inv: "x_inv \<cdot> x = \<one>" by fast
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   116
      from G eq xG have "(x_inv \<cdot> x) \<cdot> y = (x_inv \<cdot> x) \<cdot> z"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 29223
diff changeset
   117
        by (simp add: m_assoc)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   118
      with G show "y = z" by (simp add: l_inv)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   119
    next
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   120
      assume eq: "y = z"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   121
      with G show "x \<cdot> y = x \<cdot> z" by simp
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   122
    }
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   123
  qed
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   124
  have r_one:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   125
    "\<And>x. x \<in> carrier(G) \<Longrightarrow> x \<cdot> \<one> = x"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   126
  proof -
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   127
    fix x
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   128
    assume x: "x \<in> carrier(G)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   129
    with l_inv_ex obtain x_inv where xG: "x_inv \<in> carrier(G)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   130
      and l_inv: "x_inv \<cdot> x = \<one>" by fast
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   131
    from x xG have "x_inv \<cdot> (x \<cdot> \<one>) = x_inv \<cdot> x"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   132
      by (simp add: m_assoc [symmetric] l_inv)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   133
    with x xG show "x \<cdot> \<one> = x" by simp
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   134
  qed
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   135
  have inv_ex:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   136
    "!!x. x \<in> carrier(G) ==> \<exists>y \<in> carrier(G). y \<cdot> x = \<one> & x \<cdot> y = \<one>"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   137
  proof -
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   138
    fix x
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   139
    assume x: "x \<in> carrier(G)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   140
    with l_inv_ex obtain y where y: "y \<in> carrier(G)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   141
      and l_inv: "y \<cdot> x = \<one>" by fast
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   142
    from x y have "y \<cdot> (x \<cdot> y) = y \<cdot> \<one>"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   143
      by (simp add: m_assoc [symmetric] l_inv r_one)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   144
    with x y have r_inv: "x \<cdot> y = \<one>"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   145
      by simp
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   146
    from x y show "\<exists>y \<in> carrier(G). y \<cdot> x = \<one> & x \<cdot> y = \<one>"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   147
      by (fast intro: l_inv r_inv)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   148
  qed
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   149
  show ?thesis
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   150
    by (blast intro: group.intro monoid.intro group_axioms.intro
41524
4d2f9a1c24c7 eliminated global prems;
wenzelm
parents: 32960
diff changeset
   151
                     assms r_one inv_ex)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   152
qed
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   153
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   154
lemma (in group) inv [simp]:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   155
  "x \<in> carrier(G) \<Longrightarrow> inv x \<in> carrier(G) & inv x \<cdot> x = \<one> & x \<cdot> inv x = \<one>"
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   156
  apply (frule inv_ex)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   157
  apply (unfold Bex_def m_inv_def)
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   158
  apply (erule exE)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   159
  apply (rule theI)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   160
  apply (rule ex1I, assumption)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   161
   apply (blast intro: inv_unique)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   162
  done
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   163
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   164
lemma (in group) inv_closed [intro!]:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   165
  "x \<in> carrier(G) \<Longrightarrow> inv x \<in> carrier(G)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   166
  by simp
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   167
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   168
lemma (in group) l_inv:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   169
  "x \<in> carrier(G) \<Longrightarrow> inv x \<cdot> x = \<one>"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   170
  by simp
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   171
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   172
lemma (in group) r_inv:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   173
  "x \<in> carrier(G) \<Longrightarrow> x \<cdot> inv x = \<one>"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   174
  by simp
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   175
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   176
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
   177
subsection \<open>Cancellation Laws and Basic Properties\<close>
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   178
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   179
lemma (in group) l_cancel [simp]:
41524
4d2f9a1c24c7 eliminated global prems;
wenzelm
parents: 32960
diff changeset
   180
  assumes "x \<in> carrier(G)" "y \<in> carrier(G)" "z \<in> carrier(G)"
46822
95f1e700b712 mathematical symbols for Isabelle/ZF example theories
paulson
parents: 46820
diff changeset
   181
  shows "(x \<cdot> y = x \<cdot> z) \<longleftrightarrow> (y = z)"
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   182
proof
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   183
  assume eq: "x \<cdot> y = x \<cdot> z"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   184
  hence  "(inv x \<cdot> x) \<cdot> y = (inv x \<cdot> x) \<cdot> z"
41524
4d2f9a1c24c7 eliminated global prems;
wenzelm
parents: 32960
diff changeset
   185
    by (simp only: m_assoc inv_closed assms)
4d2f9a1c24c7 eliminated global prems;
wenzelm
parents: 32960
diff changeset
   186
  thus "y = z" by (simp add: assms)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   187
next
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   188
  assume eq: "y = z"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   189
  then show "x \<cdot> y = x \<cdot> z" by simp
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   190
qed
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   191
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   192
lemma (in group) r_cancel [simp]:
41524
4d2f9a1c24c7 eliminated global prems;
wenzelm
parents: 32960
diff changeset
   193
  assumes "x \<in> carrier(G)" "y \<in> carrier(G)" "z \<in> carrier(G)"
46822
95f1e700b712 mathematical symbols for Isabelle/ZF example theories
paulson
parents: 46820
diff changeset
   194
  shows "(y \<cdot> x = z \<cdot> x) \<longleftrightarrow> (y = z)"
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   195
proof
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   196
  assume eq: "y \<cdot> x = z \<cdot> x"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   197
  then have "y \<cdot> (x \<cdot> inv x) = z \<cdot> (x \<cdot> inv x)"
41524
4d2f9a1c24c7 eliminated global prems;
wenzelm
parents: 32960
diff changeset
   198
    by (simp only: m_assoc [symmetric] inv_closed assms)
4d2f9a1c24c7 eliminated global prems;
wenzelm
parents: 32960
diff changeset
   199
  thus "y = z" by (simp add: assms)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   200
next
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   201
  assume eq: "y = z"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   202
  thus  "y \<cdot> x = z \<cdot> x" by simp
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   203
qed
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   204
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   205
lemma (in group) inv_comm:
49755
b286e8f47560 avoid duplicate facts;
wenzelm
parents: 46953
diff changeset
   206
  assumes "x \<cdot> y = \<one>"
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   207
      and G: "x \<in> carrier(G)"  "y \<in> carrier(G)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   208
  shows "y \<cdot> x = \<one>"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   209
proof -
49755
b286e8f47560 avoid duplicate facts;
wenzelm
parents: 46953
diff changeset
   210
  from G have "x \<cdot> y \<cdot> x = x \<cdot> \<one>" by (auto simp add: assms)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   211
  with G show ?thesis by (simp del: r_one add: m_assoc)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   212
qed
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   213
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   214
lemma (in group) inv_equality:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   215
     "\<lbrakk>y \<cdot> x = \<one>; x \<in> carrier(G); y \<in> carrier(G)\<rbrakk> \<Longrightarrow> inv x = y"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   216
apply (simp add: m_inv_def)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   217
apply (rule the_equality)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   218
 apply (simp add: inv_comm [of y x])
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   219
apply (rule r_cancel [THEN iffD1], auto)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   220
done
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   221
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   222
lemma (in group) inv_one [simp]:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   223
  "inv \<one> = \<one>"
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   224
  by (auto intro: inv_equality)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   225
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   226
lemma (in group) inv_inv [simp]: "x \<in> carrier(G) \<Longrightarrow> inv (inv x) = x"
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   227
  by (auto intro: inv_equality)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   228
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
   229
text\<open>This proof is by cancellation\<close>
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   230
lemma (in group) inv_mult_group:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   231
  "\<lbrakk>x \<in> carrier(G); y \<in> carrier(G)\<rbrakk> \<Longrightarrow> inv (x \<cdot> y) = inv y \<cdot> inv x"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   232
proof -
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   233
  assume G: "x \<in> carrier(G)"  "y \<in> carrier(G)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   234
  then have "inv (x \<cdot> y) \<cdot> (x \<cdot> y) = (inv y \<cdot> inv x) \<cdot> (x \<cdot> y)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   235
    by (simp add: m_assoc l_inv) (simp add: m_assoc [symmetric] l_inv)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   236
  with G show ?thesis by (simp_all del: inv add: inv_closed)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   237
qed
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   238
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   239
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
   240
subsection \<open>Substructures\<close>
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   241
29223
e09c53289830 Conversion of HOL-Main and ZF to new locales.
ballarin
parents: 27618
diff changeset
   242
locale subgroup = fixes H and G (structure)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   243
  assumes subset: "H \<subseteq> carrier(G)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   244
    and m_closed [intro, simp]: "\<lbrakk>x \<in> H; y \<in> H\<rbrakk> \<Longrightarrow> x \<cdot> y \<in> H"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   245
    and  one_closed [simp]: "\<one> \<in> H"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   246
    and m_inv_closed [intro,simp]: "x \<in> H \<Longrightarrow> inv x \<in> H"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   247
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   248
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   249
lemma (in subgroup) mem_carrier [simp]:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   250
  "x \<in> H \<Longrightarrow> x \<in> carrier(G)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   251
  using subset by blast
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   252
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   253
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   254
lemma subgroup_imp_subset:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   255
  "subgroup(H,G) \<Longrightarrow> H \<subseteq> carrier(G)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   256
  by (rule subgroup.subset)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   257
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   258
lemma (in subgroup) group_axiomsI [intro]:
27618
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   259
  assumes "group(G)"
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   260
  shows "group_axioms (update_carrier(G,H))"
27618
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   261
proof -
29223
e09c53289830 Conversion of HOL-Main and ZF to new locales.
ballarin
parents: 27618
diff changeset
   262
  interpret group G by fact
27618
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   263
  show ?thesis by (force intro: group_axioms.intro l_inv r_inv)
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   264
qed
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   265
14891
f2e9f7d813af fixed the groupI ambiguity
paulson
parents: 14884
diff changeset
   266
lemma (in subgroup) is_group [intro]:
27618
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   267
  assumes "group(G)"
14891
f2e9f7d813af fixed the groupI ambiguity
paulson
parents: 14884
diff changeset
   268
  shows "group (update_carrier(G,H))"
27618
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   269
proof -
29223
e09c53289830 Conversion of HOL-Main and ZF to new locales.
ballarin
parents: 27618
diff changeset
   270
  interpret group G by fact
27618
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   271
  show ?thesis
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   272
  by (rule groupI) (auto intro: m_assoc l_inv mem_carrier)
27618
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   273
qed
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   274
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
   275
text \<open>
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   276
  Since @{term H} is nonempty, it contains some element @{term x}.  Since
61798
27f3c10b0b50 isabelle update_cartouches -c -t;
wenzelm
parents: 61565
diff changeset
   277
  it is closed under inverse, it contains \<open>inv x\<close>.  Since
27f3c10b0b50 isabelle update_cartouches -c -t;
wenzelm
parents: 61565
diff changeset
   278
  it is closed under product, it contains \<open>x \<cdot> inv x = \<one>\<close>.
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
   279
\<close>
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   280
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
   281
text \<open>
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   282
  Since @{term H} is nonempty, it contains some element @{term x}.  Since
61798
27f3c10b0b50 isabelle update_cartouches -c -t;
wenzelm
parents: 61565
diff changeset
   283
  it is closed under inverse, it contains \<open>inv x\<close>.  Since
27f3c10b0b50 isabelle update_cartouches -c -t;
wenzelm
parents: 61565
diff changeset
   284
  it is closed under product, it contains \<open>x \<cdot> inv x = \<one>\<close>.
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
   285
\<close>
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   286
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   287
lemma (in group) one_in_subset:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   288
  "\<lbrakk>H \<subseteq> carrier(G); H \<noteq> 0; \<forall>a \<in> H. inv a \<in> H; \<forall>a\<in>H. \<forall>b\<in>H. a \<cdot> b \<in> H\<rbrakk>
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   289
   \<Longrightarrow> \<one> \<in> H"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   290
by (force simp add: l_inv)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   291
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
   292
text \<open>A characterization of subgroups: closed, non-empty subset.\<close>
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   293
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   294
declare monoid.one_closed [simp] group.inv_closed [simp]
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   295
  monoid.l_one [simp] monoid.r_one [simp] group.inv_inv [simp]
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   296
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   297
lemma subgroup_nonempty:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   298
  "~ subgroup(0,G)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   299
  by (blast dest: subgroup.one_closed)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   300
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   301
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
   302
subsection \<open>Direct Products\<close>
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   303
21233
5a5c8ea5f66a tuned specifications;
wenzelm
parents: 19931
diff changeset
   304
definition
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21233
diff changeset
   305
  DirProdGroup :: "[i,i] => i"  (infixr "\<Otimes>" 80) where
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   306
  "G \<Otimes> H == <carrier(G) \<times> carrier(H),
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   307
              (\<lambda><<g,h>, <g', h'>>
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   308
                   \<in> (carrier(G) \<times> carrier(H)) \<times> (carrier(G) \<times> carrier(H)).
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   309
                <g \<cdot>\<^bsub>G\<^esub> g', h \<cdot>\<^bsub>H\<^esub> h'>),
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   310
              <\<one>\<^bsub>G\<^esub>, \<one>\<^bsub>H\<^esub>>, 0>"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   311
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   312
lemma DirProdGroup_group:
27618
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   313
  assumes "group(G)" and "group(H)"
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   314
  shows "group (G \<Otimes> H)"
27618
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   315
proof -
29223
e09c53289830 Conversion of HOL-Main and ZF to new locales.
ballarin
parents: 27618
diff changeset
   316
  interpret G: group G by fact
e09c53289830 Conversion of HOL-Main and ZF to new locales.
ballarin
parents: 27618
diff changeset
   317
  interpret H: group H by fact
27618
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   318
  show ?thesis by (force intro!: groupI G.m_assoc H.m_assoc G.l_inv H.l_inv
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   319
          simp add: DirProdGroup_def)
27618
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   320
qed
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   321
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   322
lemma carrier_DirProdGroup [simp]:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   323
     "carrier (G \<Otimes> H) = carrier(G) \<times> carrier(H)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   324
  by (simp add: DirProdGroup_def)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   325
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   326
lemma one_DirProdGroup [simp]:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   327
     "\<one>\<^bsub>G \<Otimes> H\<^esub> = <\<one>\<^bsub>G\<^esub>, \<one>\<^bsub>H\<^esub>>"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   328
  by (simp add: DirProdGroup_def)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   329
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   330
lemma mult_DirProdGroup [simp]:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   331
     "[|g \<in> carrier(G); h \<in> carrier(H); g' \<in> carrier(G); h' \<in> carrier(H)|]
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   332
      ==> <g, h> \<cdot>\<^bsub>G \<Otimes> H\<^esub> <g', h'> = <g \<cdot>\<^bsub>G\<^esub> g', h \<cdot>\<^bsub>H\<^esub> h'>"
22931
11cc1ccad58e tuned proofs;
wenzelm
parents: 21404
diff changeset
   333
  by (simp add: DirProdGroup_def)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   334
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   335
lemma inv_DirProdGroup [simp]:
27618
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   336
  assumes "group(G)" and "group(H)"
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   337
  assumes g: "g \<in> carrier(G)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   338
      and h: "h \<in> carrier(H)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   339
  shows "inv \<^bsub>G \<Otimes> H\<^esub> <g, h> = <inv\<^bsub>G\<^esub> g, inv\<^bsub>H\<^esub> h>"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   340
  apply (rule group.inv_equality [OF DirProdGroup_group])
41524
4d2f9a1c24c7 eliminated global prems;
wenzelm
parents: 32960
diff changeset
   341
  apply (simp_all add: assms group.l_inv)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   342
  done
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   343
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
   344
subsection \<open>Isomorphisms\<close>
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   345
21233
5a5c8ea5f66a tuned specifications;
wenzelm
parents: 19931
diff changeset
   346
definition
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21233
diff changeset
   347
  hom :: "[i,i] => i" where
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   348
  "hom(G,H) ==
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   349
    {h \<in> carrier(G) -> carrier(H).
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   350
      (\<forall>x \<in> carrier(G). \<forall>y \<in> carrier(G). h ` (x \<cdot>\<^bsub>G\<^esub> y) = (h ` x) \<cdot>\<^bsub>H\<^esub> (h ` y))}"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   351
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   352
lemma hom_mult:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   353
  "\<lbrakk>h \<in> hom(G,H); x \<in> carrier(G); y \<in> carrier(G)\<rbrakk>
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   354
   \<Longrightarrow> h ` (x \<cdot>\<^bsub>G\<^esub> y) = h ` x \<cdot>\<^bsub>H\<^esub> h ` y"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   355
  by (simp add: hom_def)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   356
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   357
lemma hom_closed:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   358
  "\<lbrakk>h \<in> hom(G,H); x \<in> carrier(G)\<rbrakk> \<Longrightarrow> h ` x \<in> carrier(H)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   359
  by (auto simp add: hom_def)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   360
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   361
lemma (in group) hom_compose:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   362
     "\<lbrakk>h \<in> hom(G,H); i \<in> hom(H,I)\<rbrakk> \<Longrightarrow> i O h \<in> hom(G,I)"
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   363
by (force simp add: hom_def comp_fun)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   364
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   365
lemma hom_is_fun:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   366
  "h \<in> hom(G,H) \<Longrightarrow> h \<in> carrier(G) -> carrier(H)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   367
  by (simp add: hom_def)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   368
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   369
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
   370
subsection \<open>Isomorphisms\<close>
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   371
21233
5a5c8ea5f66a tuned specifications;
wenzelm
parents: 19931
diff changeset
   372
definition
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21233
diff changeset
   373
  iso :: "[i,i] => i"  (infixr "\<cong>" 60) where
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   374
  "G \<cong> H == hom(G,H) \<inter> bij(carrier(G), carrier(H))"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   375
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   376
lemma (in group) iso_refl: "id(carrier(G)) \<in> G \<cong> G"
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   377
  by (simp add: iso_def hom_def id_type id_bij)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   378
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   379
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   380
lemma (in group) iso_sym:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   381
     "h \<in> G \<cong> H \<Longrightarrow> converse(h) \<in> H \<cong> G"
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   382
apply (simp add: iso_def bij_converse_bij, clarify)
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   383
apply (subgoal_tac "converse(h) \<in> carrier(H) \<rightarrow> carrier(G)")
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   384
 prefer 2 apply (simp add: bij_converse_bij bij_is_fun)
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   385
apply (auto intro: left_inverse_eq [of _ "carrier(G)" "carrier(H)"]
58860
fee7cfa69c50 eliminated spurious semicolons;
wenzelm
parents: 49755
diff changeset
   386
            simp add: hom_def bij_is_inj right_inverse_bij)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   387
done
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   388
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   389
lemma (in group) iso_trans:
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   390
     "\<lbrakk>h \<in> G \<cong> H; i \<in> H \<cong> I\<rbrakk> \<Longrightarrow> i O h \<in> G \<cong> I"
22931
11cc1ccad58e tuned proofs;
wenzelm
parents: 21404
diff changeset
   391
  by (auto simp add: iso_def hom_compose comp_bij)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   392
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   393
lemma DirProdGroup_commute_iso:
27618
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   394
  assumes "group(G)" and "group(H)"
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   395
  shows "(\<lambda><x,y> \<in> carrier(G \<Otimes> H). <y,x>) \<in> (G \<Otimes> H) \<cong> (H \<Otimes> G)"
27618
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   396
proof -
29223
e09c53289830 Conversion of HOL-Main and ZF to new locales.
ballarin
parents: 27618
diff changeset
   397
  interpret group G by fact
e09c53289830 Conversion of HOL-Main and ZF to new locales.
ballarin
parents: 27618
diff changeset
   398
  interpret group H by fact
27618
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   399
  show ?thesis by (auto simp add: iso_def hom_def inj_def surj_def bij_def)
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   400
qed
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   401
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   402
lemma DirProdGroup_assoc_iso:
27618
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   403
  assumes "group(G)" and "group(H)" and "group(I)"
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   404
  shows "(\<lambda><<x,y>,z> \<in> carrier((G \<Otimes> H) \<Otimes> I). <x,<y,z>>)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   405
          \<in> ((G \<Otimes> H) \<Otimes> I) \<cong> (G \<Otimes> (H \<Otimes> I))"
27618
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   406
proof -
29223
e09c53289830 Conversion of HOL-Main and ZF to new locales.
ballarin
parents: 27618
diff changeset
   407
  interpret group G by fact
e09c53289830 Conversion of HOL-Main and ZF to new locales.
ballarin
parents: 27618
diff changeset
   408
  interpret group H by fact
e09c53289830 Conversion of HOL-Main and ZF to new locales.
ballarin
parents: 27618
diff changeset
   409
  interpret group I by fact
27618
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   410
  show ?thesis
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   411
    by (auto intro: lam_type simp add: iso_def hom_def inj_def surj_def bij_def)
27618
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   412
qed
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   413
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
   414
text\<open>Basis for homomorphism proofs: we assume two groups @{term G} and
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
   415
  @{term H}, with a homomorphism @{term h} between them\<close>
29223
e09c53289830 Conversion of HOL-Main and ZF to new locales.
ballarin
parents: 27618
diff changeset
   416
locale group_hom = G: group G + H: group H
e09c53289830 Conversion of HOL-Main and ZF to new locales.
ballarin
parents: 27618
diff changeset
   417
  for G (structure) and H (structure) and h +
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   418
  assumes homh: "h \<in> hom(G,H)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   419
  notes hom_mult [simp] = hom_mult [OF homh]
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   420
    and hom_closed [simp] = hom_closed [OF homh]
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   421
    and hom_is_fun [simp] = hom_is_fun [OF homh]
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   422
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   423
lemma (in group_hom) one_closed [simp]:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   424
  "h ` \<one> \<in> carrier(H)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   425
  by simp
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   426
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   427
lemma (in group_hom) hom_one [simp]:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   428
  "h ` \<one> = \<one>\<^bsub>H\<^esub>"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   429
proof -
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   430
  have "h ` \<one> \<cdot>\<^bsub>H\<^esub> \<one>\<^bsub>H\<^esub> = (h ` \<one>) \<cdot>\<^bsub>H\<^esub> (h ` \<one>)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   431
    by (simp add: hom_mult [symmetric] del: hom_mult)
61565
352c73a689da Qualifiers in locale expressions default to mandatory regardless of the command.
ballarin
parents: 60770
diff changeset
   432
  then show ?thesis by (simp del: H.r_one)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   433
qed
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   434
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   435
lemma (in group_hom) inv_closed [simp]:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   436
  "x \<in> carrier(G) \<Longrightarrow> h ` (inv x) \<in> carrier(H)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   437
  by simp
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   438
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   439
lemma (in group_hom) hom_inv [simp]:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   440
  "x \<in> carrier(G) \<Longrightarrow> h ` (inv x) = inv\<^bsub>H\<^esub> (h ` x)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   441
proof -
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   442
  assume x: "x \<in> carrier(G)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   443
  then have "h ` x \<cdot>\<^bsub>H\<^esub> h ` (inv x) = \<one>\<^bsub>H\<^esub>"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   444
    by (simp add: hom_mult [symmetric] G.r_inv del: hom_mult)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   445
  also from x have "... = h ` x \<cdot>\<^bsub>H\<^esub> inv\<^bsub>H\<^esub> (h ` x)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   446
    by (simp add: hom_mult [symmetric] H.r_inv del: hom_mult)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   447
  finally have "h ` x \<cdot>\<^bsub>H\<^esub> h ` (inv x) = h ` x \<cdot>\<^bsub>H\<^esub> inv\<^bsub>H\<^esub> (h ` x)" .
61565
352c73a689da Qualifiers in locale expressions default to mandatory regardless of the command.
ballarin
parents: 60770
diff changeset
   448
  with x show ?thesis by (simp del: H.inv)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   449
qed
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   450
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
   451
subsection \<open>Commutative Structures\<close>
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   452
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
   453
text \<open>
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   454
  Naming convention: multiplicative structures that are commutative
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   455
  are called \emph{commutative}, additive structures are called
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   456
  \emph{Abelian}.
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
   457
\<close>
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   458
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
   459
subsection \<open>Definition\<close>
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   460
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   461
locale comm_monoid = monoid +
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   462
  assumes m_comm: "\<lbrakk>x \<in> carrier(G); y \<in> carrier(G)\<rbrakk> \<Longrightarrow> x \<cdot> y = y \<cdot> x"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   463
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   464
lemma (in comm_monoid) m_lcomm:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   465
  "\<lbrakk>x \<in> carrier(G); y \<in> carrier(G); z \<in> carrier(G)\<rbrakk> \<Longrightarrow>
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   466
   x \<cdot> (y \<cdot> z) = y \<cdot> (x \<cdot> z)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   467
proof -
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   468
  assume xyz: "x \<in> carrier(G)"  "y \<in> carrier(G)"  "z \<in> carrier(G)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   469
  from xyz have "x \<cdot> (y \<cdot> z) = (x \<cdot> y) \<cdot> z" by (simp add: m_assoc)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   470
  also from xyz have "... = (y \<cdot> x) \<cdot> z" by (simp add: m_comm)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   471
  also from xyz have "... = y \<cdot> (x \<cdot> z)" by (simp add: m_assoc)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   472
  finally show ?thesis .
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   473
qed
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   474
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   475
lemmas (in comm_monoid) m_ac = m_assoc m_comm m_lcomm
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   476
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   477
locale comm_group = comm_monoid + group
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   478
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   479
lemma (in comm_group) inv_mult:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   480
  "\<lbrakk>x \<in> carrier(G); y \<in> carrier(G)\<rbrakk> \<Longrightarrow> inv (x \<cdot> y) = inv x \<cdot> inv y"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   481
  by (simp add: m_ac inv_mult_group)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   482
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   483
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   484
lemma (in group) subgroup_self: "subgroup (carrier(G),G)"
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   485
by (simp add: subgroup_def)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   486
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   487
lemma (in group) subgroup_imp_group:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   488
  "subgroup(H,G) \<Longrightarrow> group (update_carrier(G,H))"
14891
f2e9f7d813af fixed the groupI ambiguity
paulson
parents: 14884
diff changeset
   489
by (simp add: subgroup.is_group)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   490
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   491
lemma (in group) subgroupI:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   492
  assumes subset: "H \<subseteq> carrier(G)" and non_empty: "H \<noteq> 0"
49755
b286e8f47560 avoid duplicate facts;
wenzelm
parents: 46953
diff changeset
   493
    and "!!a. a \<in> H ==> inv a \<in> H"
b286e8f47560 avoid duplicate facts;
wenzelm
parents: 46953
diff changeset
   494
    and "!!a b. [|a \<in> H; b \<in> H|] ==> a \<cdot> b \<in> H"
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   495
  shows "subgroup(H,G)"
41524
4d2f9a1c24c7 eliminated global prems;
wenzelm
parents: 32960
diff changeset
   496
proof (simp add: subgroup_def assms)
49755
b286e8f47560 avoid duplicate facts;
wenzelm
parents: 46953
diff changeset
   497
  show "\<one> \<in> H"
b286e8f47560 avoid duplicate facts;
wenzelm
parents: 46953
diff changeset
   498
    by (rule one_in_subset) (auto simp only: assms)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   499
qed
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   500
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   501
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
   502
subsection \<open>Bijections of a Set, Permutation Groups, Automorphism Groups\<close>
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   503
21233
5a5c8ea5f66a tuned specifications;
wenzelm
parents: 19931
diff changeset
   504
definition
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21233
diff changeset
   505
  BijGroup :: "i=>i" where
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   506
  "BijGroup(S) ==
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   507
    <bij(S,S),
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   508
     \<lambda><g,f> \<in> bij(S,S) \<times> bij(S,S). g O f,
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   509
     id(S), 0>"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   510
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   511
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
   512
subsection \<open>Bijections Form a Group\<close>
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   513
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   514
theorem group_BijGroup: "group(BijGroup(S))"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   515
apply (simp add: BijGroup_def)
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   516
apply (rule groupI)
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   517
    apply (simp_all add: id_bij comp_bij comp_assoc)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   518
 apply (simp add: id_bij bij_is_fun left_comp_id [of _ S S] fun_is_rel)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   519
apply (blast intro: left_comp_inverse bij_is_inj bij_converse_bij)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   520
done
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   521
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   522
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
   523
subsection\<open>Automorphisms Form a Group\<close>
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   524
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   525
lemma Bij_Inv_mem: "\<lbrakk>f \<in> bij(S,S);  x \<in> S\<rbrakk> \<Longrightarrow> converse(f) ` x \<in> S"
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   526
by (blast intro: apply_funtype bij_is_fun bij_converse_bij)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   527
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   528
lemma inv_BijGroup: "f \<in> bij(S,S) \<Longrightarrow> m_inv (BijGroup(S), f) = converse(f)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   529
apply (rule group.inv_equality)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   530
apply (rule group_BijGroup)
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   531
apply (simp_all add: BijGroup_def bij_converse_bij
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   532
          left_comp_inverse [OF bij_is_inj])
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   533
done
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   534
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   535
lemma iso_is_bij: "h \<in> G \<cong> H ==> h \<in> bij(carrier(G), carrier(H))"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   536
by (simp add: iso_def)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   537
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   538
21233
5a5c8ea5f66a tuned specifications;
wenzelm
parents: 19931
diff changeset
   539
definition
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21233
diff changeset
   540
  auto :: "i=>i" where
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   541
  "auto(G) == iso(G,G)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   542
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21233
diff changeset
   543
definition
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21233
diff changeset
   544
  AutoGroup :: "i=>i" where
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   545
  "AutoGroup(G) == update_carrier(BijGroup(carrier(G)), auto(G))"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   546
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   547
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   548
lemma (in group) id_in_auto: "id(carrier(G)) \<in> auto(G)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   549
  by (simp add: iso_refl auto_def)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   550
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   551
lemma (in group) subgroup_auto:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   552
      "subgroup (auto(G)) (BijGroup (carrier(G)))"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   553
proof (rule subgroup.intro)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   554
  show "auto(G) \<subseteq> carrier (BijGroup (carrier(G)))"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   555
    by (auto simp add: auto_def BijGroup_def iso_def)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   556
next
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   557
  fix x y
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   558
  assume "x \<in> auto(G)" "y \<in> auto(G)"
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   559
  thus "x \<cdot>\<^bsub>BijGroup (carrier(G))\<^esub> y \<in> auto(G)"
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   560
    by (auto simp add: BijGroup_def auto_def iso_def bij_is_fun
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   561
                       group.hom_compose comp_bij)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   562
next
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   563
  show "\<one>\<^bsub>BijGroup (carrier(G))\<^esub> \<in> auto(G)" by (simp add:  BijGroup_def id_in_auto)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   564
next
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   565
  fix x
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   566
  assume "x \<in> auto(G)"
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   567
  thus "inv\<^bsub>BijGroup (carrier(G))\<^esub> x \<in> auto(G)"
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   568
    by (simp add: auto_def inv_BijGroup iso_is_bij iso_sym)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   569
qed
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   570
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   571
theorem (in group) AutoGroup: "group (AutoGroup(G))"
14891
f2e9f7d813af fixed the groupI ambiguity
paulson
parents: 14884
diff changeset
   572
by (simp add: AutoGroup_def subgroup.is_group subgroup_auto group_BijGroup)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   573
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   574
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   575
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
   576
subsection\<open>Cosets and Quotient Groups\<close>
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   577
21233
5a5c8ea5f66a tuned specifications;
wenzelm
parents: 19931
diff changeset
   578
definition
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21233
diff changeset
   579
  r_coset  :: "[i,i,i] => i"  (infixl "#>\<index>" 60) where
21233
5a5c8ea5f66a tuned specifications;
wenzelm
parents: 19931
diff changeset
   580
  "H #>\<^bsub>G\<^esub> a == \<Union>h\<in>H. {h \<cdot>\<^bsub>G\<^esub> a}"
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   581
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21233
diff changeset
   582
definition
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21233
diff changeset
   583
  l_coset  :: "[i,i,i] => i"  (infixl "<#\<index>" 60) where
21233
5a5c8ea5f66a tuned specifications;
wenzelm
parents: 19931
diff changeset
   584
  "a <#\<^bsub>G\<^esub> H == \<Union>h\<in>H. {a \<cdot>\<^bsub>G\<^esub> h}"
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   585
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21233
diff changeset
   586
definition
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21233
diff changeset
   587
  RCOSETS  :: "[i,i] => i"  ("rcosets\<index> _" [81] 80) where
21233
5a5c8ea5f66a tuned specifications;
wenzelm
parents: 19931
diff changeset
   588
  "rcosets\<^bsub>G\<^esub> H == \<Union>a\<in>carrier(G). {H #>\<^bsub>G\<^esub> a}"
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   589
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21233
diff changeset
   590
definition
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21233
diff changeset
   591
  set_mult :: "[i,i,i] => i"  (infixl "<#>\<index>" 60) where
21233
5a5c8ea5f66a tuned specifications;
wenzelm
parents: 19931
diff changeset
   592
  "H <#>\<^bsub>G\<^esub> K == \<Union>h\<in>H. \<Union>k\<in>K. {h \<cdot>\<^bsub>G\<^esub> k}"
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   593
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21233
diff changeset
   594
definition
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21233
diff changeset
   595
  SET_INV  :: "[i,i] => i"  ("set'_inv\<index> _" [81] 80) where
21233
5a5c8ea5f66a tuned specifications;
wenzelm
parents: 19931
diff changeset
   596
  "set_inv\<^bsub>G\<^esub> H == \<Union>h\<in>H. {inv\<^bsub>G\<^esub> h}"
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   597
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   598
61565
352c73a689da Qualifiers in locale expressions default to mandatory regardless of the command.
ballarin
parents: 60770
diff changeset
   599
locale normal = subgroup + group +
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   600
  assumes coset_eq: "(\<forall>x \<in> carrier(G). H #> x = x <# H)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   601
21233
5a5c8ea5f66a tuned specifications;
wenzelm
parents: 19931
diff changeset
   602
notation
5a5c8ea5f66a tuned specifications;
wenzelm
parents: 19931
diff changeset
   603
  normal  (infixl "\<lhd>" 60)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   604
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   605
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
   606
subsection \<open>Basic Properties of Cosets\<close>
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   607
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   608
lemma (in group) coset_mult_assoc:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   609
     "\<lbrakk>M \<subseteq> carrier(G); g \<in> carrier(G); h \<in> carrier(G)\<rbrakk>
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   610
      \<Longrightarrow> (M #> g) #> h = M #> (g \<cdot> h)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   611
by (force simp add: r_coset_def m_assoc)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   612
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   613
lemma (in group) coset_mult_one [simp]: "M \<subseteq> carrier(G) \<Longrightarrow> M #> \<one> = M"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   614
by (force simp add: r_coset_def)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   615
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   616
lemma (in group) solve_equation:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   617
    "\<lbrakk>subgroup(H,G); x \<in> H; y \<in> H\<rbrakk> \<Longrightarrow> \<exists>h\<in>H. y = h \<cdot> x"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   618
apply (rule bexI [of _ "y \<cdot> (inv x)"])
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   619
apply (auto simp add: subgroup.m_closed subgroup.m_inv_closed m_assoc
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   620
                      subgroup.subset [THEN subsetD])
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   621
done
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   622
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   623
lemma (in group) repr_independence:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   624
     "\<lbrakk>y \<in> H #> x;  x \<in> carrier(G); subgroup(H,G)\<rbrakk> \<Longrightarrow> H #> x = H #> y"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   625
by (auto simp add: r_coset_def m_assoc [symmetric]
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   626
                   subgroup.subset [THEN subsetD]
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   627
                   subgroup.m_closed solve_equation)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   628
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   629
lemma (in group) coset_join2:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   630
     "\<lbrakk>x \<in> carrier(G);  subgroup(H,G);  x\<in>H\<rbrakk> \<Longrightarrow> H #> x = H"
61798
27f3c10b0b50 isabelle update_cartouches -c -t;
wenzelm
parents: 61565
diff changeset
   631
  \<comment>\<open>Alternative proof is to put @{term "x=\<one>"} in \<open>repr_independence\<close>.\<close>
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   632
by (force simp add: subgroup.m_closed r_coset_def solve_equation)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   633
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   634
lemma (in group) r_coset_subset_G:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   635
     "\<lbrakk>H \<subseteq> carrier(G); x \<in> carrier(G)\<rbrakk> \<Longrightarrow> H #> x \<subseteq> carrier(G)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   636
by (auto simp add: r_coset_def)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   637
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   638
lemma (in group) rcosI:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   639
     "\<lbrakk>h \<in> H; H \<subseteq> carrier(G); x \<in> carrier(G)\<rbrakk> \<Longrightarrow> h \<cdot> x \<in> H #> x"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   640
by (auto simp add: r_coset_def)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   641
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   642
lemma (in group) rcosetsI:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   643
     "\<lbrakk>H \<subseteq> carrier(G); x \<in> carrier(G)\<rbrakk> \<Longrightarrow> H #> x \<in> rcosets H"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   644
by (auto simp add: RCOSETS_def)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   645
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   646
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
   647
text\<open>Really needed?\<close>
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   648
lemma (in group) transpose_inv:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   649
     "\<lbrakk>x \<cdot> y = z;  x \<in> carrier(G);  y \<in> carrier(G);  z \<in> carrier(G)\<rbrakk>
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   650
      \<Longrightarrow> (inv x) \<cdot> z = y"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   651
by (force simp add: m_assoc [symmetric])
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   652
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   653
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   654
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
   655
subsection \<open>Normal subgroups\<close>
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   656
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   657
lemma normal_imp_subgroup: "H \<lhd> G ==> subgroup(H,G)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   658
  by (simp add: normal_def subgroup_def)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   659
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   660
lemma (in group) normalI:
58860
fee7cfa69c50 eliminated spurious semicolons;
wenzelm
parents: 49755
diff changeset
   661
  "subgroup(H,G) \<Longrightarrow> (\<forall>x \<in> carrier(G). H #> x = x <# H) \<Longrightarrow> H \<lhd> G"
19931
fb32b43e7f80 Restructured locales with predicates: import is now an interpretation.
ballarin
parents: 16417
diff changeset
   662
  by (simp add: normal_def normal_axioms_def)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   663
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   664
lemma (in normal) inv_op_closed1:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   665
     "\<lbrakk>x \<in> carrier(G); h \<in> H\<rbrakk> \<Longrightarrow> (inv x) \<cdot> h \<cdot> x \<in> H"
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   666
apply (insert coset_eq)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   667
apply (auto simp add: l_coset_def r_coset_def)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   668
apply (drule bspec, assumption)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   669
apply (drule equalityD1 [THEN subsetD], blast, clarify)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   670
apply (simp add: m_assoc)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   671
apply (simp add: m_assoc [symmetric])
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   672
done
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   673
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   674
lemma (in normal) inv_op_closed2:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   675
     "\<lbrakk>x \<in> carrier(G); h \<in> H\<rbrakk> \<Longrightarrow> x \<cdot> h \<cdot> (inv x) \<in> H"
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   676
apply (subgoal_tac "inv (inv x) \<cdot> h \<cdot> (inv x) \<in> H")
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   677
apply simp
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   678
apply (blast intro: inv_op_closed1)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   679
done
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   680
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
   681
text\<open>Alternative characterization of normal subgroups\<close>
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   682
lemma (in group) normal_inv_iff:
46822
95f1e700b712 mathematical symbols for Isabelle/ZF example theories
paulson
parents: 46820
diff changeset
   683
     "(N \<lhd> G) \<longleftrightarrow>
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   684
      (subgroup(N,G) & (\<forall>x \<in> carrier(G). \<forall>h \<in> N. x \<cdot> h \<cdot> (inv x) \<in> N))"
46822
95f1e700b712 mathematical symbols for Isabelle/ZF example theories
paulson
parents: 46820
diff changeset
   685
      (is "_ \<longleftrightarrow> ?rhs")
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   686
proof
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   687
  assume N: "N \<lhd> G"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   688
  show ?rhs
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   689
    by (blast intro: N normal.inv_op_closed2 normal_imp_subgroup)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   690
next
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   691
  assume ?rhs
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   692
  hence sg: "subgroup(N,G)"
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   693
    and closed: "\<And>x. x\<in>carrier(G) \<Longrightarrow> \<forall>h\<in>N. x \<cdot> h \<cdot> inv x \<in> N" by auto
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   694
  hence sb: "N \<subseteq> carrier(G)" by (simp add: subgroup.subset)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   695
  show "N \<lhd> G"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   696
  proof (intro normalI [OF sg], simp add: l_coset_def r_coset_def, clarify)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   697
    fix x
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   698
    assume x: "x \<in> carrier(G)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   699
    show "(\<Union>h\<in>N. {h \<cdot> x}) = (\<Union>h\<in>N. {x \<cdot> h})"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   700
    proof
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   701
      show "(\<Union>h\<in>N. {h \<cdot> x}) \<subseteq> (\<Union>h\<in>N. {x \<cdot> h})"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   702
      proof clarify
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   703
        fix n
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   704
        assume n: "n \<in> N"
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   705
        show "n \<cdot> x \<in> (\<Union>h\<in>N. {x \<cdot> h})"
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   706
        proof (rule UN_I)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   707
          from closed [of "inv x"]
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   708
          show "inv x \<cdot> n \<cdot> x \<in> N" by (simp add: x n)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   709
          show "n \<cdot> x \<in> {x \<cdot> (inv x \<cdot> n \<cdot> x)}"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   710
            by (simp add: x n m_assoc [symmetric] sb [THEN subsetD])
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   711
        qed
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   712
      qed
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   713
    next
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   714
      show "(\<Union>h\<in>N. {x \<cdot> h}) \<subseteq> (\<Union>h\<in>N. {h \<cdot> x})"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   715
      proof clarify
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   716
        fix n
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   717
        assume n: "n \<in> N"
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   718
        show "x \<cdot> n \<in> (\<Union>h\<in>N. {h \<cdot> x})"
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   719
        proof (rule UN_I)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   720
          show "x \<cdot> n \<cdot> inv x \<in> N" by (simp add: x n closed)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   721
          show "x \<cdot> n \<in> {x \<cdot> n \<cdot> inv x \<cdot> x}"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   722
            by (simp add: x n m_assoc sb [THEN subsetD])
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   723
        qed
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   724
      qed
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   725
    qed
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   726
  qed
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   727
qed
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   728
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   729
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
   730
subsection\<open>More Properties of Cosets\<close>
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   731
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   732
lemma (in group) l_coset_subset_G:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   733
     "\<lbrakk>H \<subseteq> carrier(G); x \<in> carrier(G)\<rbrakk> \<Longrightarrow> x <# H \<subseteq> carrier(G)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   734
by (auto simp add: l_coset_def subsetD)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   735
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   736
lemma (in group) l_coset_swap:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   737
     "\<lbrakk>y \<in> x <# H;  x \<in> carrier(G);  subgroup(H,G)\<rbrakk> \<Longrightarrow> x \<in> y <# H"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   738
proof (simp add: l_coset_def)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   739
  assume "\<exists>h\<in>H. y = x \<cdot> h"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   740
    and x: "x \<in> carrier(G)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   741
    and sb: "subgroup(H,G)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   742
  then obtain h' where h': "h' \<in> H & x \<cdot> h' = y" by blast
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   743
  show "\<exists>h\<in>H. x = y \<cdot> h"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   744
  proof
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   745
    show "x = y \<cdot> inv h'" using h' x sb
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   746
      by (auto simp add: m_assoc subgroup.subset [THEN subsetD])
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   747
    show "inv h' \<in> H" using h' sb
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   748
      by (auto simp add: subgroup.subset [THEN subsetD] subgroup.m_inv_closed)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   749
  qed
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   750
qed
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   751
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   752
lemma (in group) l_coset_carrier:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   753
     "\<lbrakk>y \<in> x <# H;  x \<in> carrier(G);  subgroup(H,G)\<rbrakk> \<Longrightarrow> y \<in> carrier(G)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   754
by (auto simp add: l_coset_def m_assoc
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   755
                   subgroup.subset [THEN subsetD] subgroup.m_closed)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   756
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   757
lemma (in group) l_repr_imp_subset:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   758
  assumes y: "y \<in> x <# H" and x: "x \<in> carrier(G)" and sb: "subgroup(H,G)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   759
  shows "y <# H \<subseteq> x <# H"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   760
proof -
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   761
  from y
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   762
  obtain h' where "h' \<in> H" "x \<cdot> h' = y" by (auto simp add: l_coset_def)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   763
  thus ?thesis using x sb
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   764
    by (auto simp add: l_coset_def m_assoc
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   765
                       subgroup.subset [THEN subsetD] subgroup.m_closed)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   766
qed
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   767
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   768
lemma (in group) l_repr_independence:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   769
  assumes y: "y \<in> x <# H" and x: "x \<in> carrier(G)" and sb: "subgroup(H,G)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   770
  shows "x <# H = y <# H"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   771
proof
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   772
  show "x <# H \<subseteq> y <# H"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   773
    by (rule l_repr_imp_subset,
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   774
        (blast intro: l_coset_swap l_coset_carrier y x sb)+)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   775
  show "y <# H \<subseteq> x <# H" by (rule l_repr_imp_subset [OF y x sb])
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   776
qed
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   777
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   778
lemma (in group) setmult_subset_G:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   779
     "\<lbrakk>H \<subseteq> carrier(G); K \<subseteq> carrier(G)\<rbrakk> \<Longrightarrow> H <#> K \<subseteq> carrier(G)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   780
by (auto simp add: set_mult_def subsetD)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   781
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   782
lemma (in group) subgroup_mult_id: "subgroup(H,G) \<Longrightarrow> H <#> H = H"
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   783
apply (rule equalityI)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   784
apply (auto simp add: subgroup.m_closed set_mult_def Sigma_def image_def)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   785
apply (rule_tac x = x in bexI)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   786
apply (rule bexI [of _ "\<one>"])
41524
4d2f9a1c24c7 eliminated global prems;
wenzelm
parents: 32960
diff changeset
   787
apply (auto simp add: subgroup.one_closed subgroup.subset [THEN subsetD])
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   788
done
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   789
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   790
61798
27f3c10b0b50 isabelle update_cartouches -c -t;
wenzelm
parents: 61565
diff changeset
   791
subsubsection \<open>Set of inverses of an \<open>r_coset\<close>.\<close>
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   792
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   793
lemma (in normal) rcos_inv:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   794
  assumes x:     "x \<in> carrier(G)"
41524
4d2f9a1c24c7 eliminated global prems;
wenzelm
parents: 32960
diff changeset
   795
  shows "set_inv (H #> x) = H #> (inv x)"
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   796
proof (simp add: r_coset_def SET_INV_def x inv_mult_group, safe intro!: equalityI)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   797
  fix h
41524
4d2f9a1c24c7 eliminated global prems;
wenzelm
parents: 32960
diff changeset
   798
  assume h: "h \<in> H"
4d2f9a1c24c7 eliminated global prems;
wenzelm
parents: 32960
diff changeset
   799
  {
4d2f9a1c24c7 eliminated global prems;
wenzelm
parents: 32960
diff changeset
   800
    show "inv x \<cdot> inv h \<in> (\<Union>j\<in>H. {j \<cdot> inv x})"
4d2f9a1c24c7 eliminated global prems;
wenzelm
parents: 32960
diff changeset
   801
    proof (rule UN_I)
4d2f9a1c24c7 eliminated global prems;
wenzelm
parents: 32960
diff changeset
   802
      show "inv x \<cdot> inv h \<cdot> x \<in> H"
4d2f9a1c24c7 eliminated global prems;
wenzelm
parents: 32960
diff changeset
   803
        by (simp add: inv_op_closed1 h x)
4d2f9a1c24c7 eliminated global prems;
wenzelm
parents: 32960
diff changeset
   804
      show "inv x \<cdot> inv h \<in> {inv x \<cdot> inv h \<cdot> x \<cdot> inv x}"
4d2f9a1c24c7 eliminated global prems;
wenzelm
parents: 32960
diff changeset
   805
        by (simp add: h x m_assoc)
4d2f9a1c24c7 eliminated global prems;
wenzelm
parents: 32960
diff changeset
   806
    qed
4d2f9a1c24c7 eliminated global prems;
wenzelm
parents: 32960
diff changeset
   807
  next
4d2f9a1c24c7 eliminated global prems;
wenzelm
parents: 32960
diff changeset
   808
    show "h \<cdot> inv x \<in> (\<Union>j\<in>H. {inv x \<cdot> inv j})"
4d2f9a1c24c7 eliminated global prems;
wenzelm
parents: 32960
diff changeset
   809
    proof (rule UN_I)
4d2f9a1c24c7 eliminated global prems;
wenzelm
parents: 32960
diff changeset
   810
      show "x \<cdot> inv h \<cdot> inv x \<in> H"
4d2f9a1c24c7 eliminated global prems;
wenzelm
parents: 32960
diff changeset
   811
        by (simp add: inv_op_closed2 h x)
4d2f9a1c24c7 eliminated global prems;
wenzelm
parents: 32960
diff changeset
   812
      show "h \<cdot> inv x \<in> {inv x \<cdot> inv (x \<cdot> inv h \<cdot> inv x)}"
4d2f9a1c24c7 eliminated global prems;
wenzelm
parents: 32960
diff changeset
   813
        by (simp add: h x m_assoc [symmetric] inv_mult_group)
4d2f9a1c24c7 eliminated global prems;
wenzelm
parents: 32960
diff changeset
   814
    qed
4d2f9a1c24c7 eliminated global prems;
wenzelm
parents: 32960
diff changeset
   815
  }
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   816
qed
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   817
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   818
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   819
61798
27f3c10b0b50 isabelle update_cartouches -c -t;
wenzelm
parents: 61565
diff changeset
   820
subsubsection \<open>Theorems for \<open><#>\<close> with \<open>#>\<close> or \<open><#\<close>.\<close>
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   821
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   822
lemma (in group) setmult_rcos_assoc:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   823
     "\<lbrakk>H \<subseteq> carrier(G); K \<subseteq> carrier(G); x \<in> carrier(G)\<rbrakk>
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   824
      \<Longrightarrow> H <#> (K #> x) = (H <#> K) #> x"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   825
by (force simp add: r_coset_def set_mult_def m_assoc)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   826
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   827
lemma (in group) rcos_assoc_lcos:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   828
     "\<lbrakk>H \<subseteq> carrier(G); K \<subseteq> carrier(G); x \<in> carrier(G)\<rbrakk>
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   829
      \<Longrightarrow> (H #> x) <#> K = H <#> (x <# K)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   830
by (force simp add: r_coset_def l_coset_def set_mult_def m_assoc)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   831
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   832
lemma (in normal) rcos_mult_step1:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   833
     "\<lbrakk>x \<in> carrier(G); y \<in> carrier(G)\<rbrakk>
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   834
      \<Longrightarrow> (H #> x) <#> (H #> y) = (H <#> (x <# H)) #> y"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   835
by (simp add: setmult_rcos_assoc subset
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   836
              r_coset_subset_G l_coset_subset_G rcos_assoc_lcos)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   837
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   838
lemma (in normal) rcos_mult_step2:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   839
     "\<lbrakk>x \<in> carrier(G); y \<in> carrier(G)\<rbrakk>
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   840
      \<Longrightarrow> (H <#> (x <# H)) #> y = (H <#> (H #> x)) #> y"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   841
by (insert coset_eq, simp add: normal_def)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   842
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   843
lemma (in normal) rcos_mult_step3:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   844
     "\<lbrakk>x \<in> carrier(G); y \<in> carrier(G)\<rbrakk>
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   845
      \<Longrightarrow> (H <#> (H #> x)) #> y = H #> (x \<cdot> y)"
19931
fb32b43e7f80 Restructured locales with predicates: import is now an interpretation.
ballarin
parents: 16417
diff changeset
   846
  by (simp add: setmult_rcos_assoc coset_mult_assoc
41524
4d2f9a1c24c7 eliminated global prems;
wenzelm
parents: 32960
diff changeset
   847
              subgroup_mult_id subset normal_axioms normal.axioms)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   848
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   849
lemma (in normal) rcos_sum:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   850
     "\<lbrakk>x \<in> carrier(G); y \<in> carrier(G)\<rbrakk>
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   851
      \<Longrightarrow> (H #> x) <#> (H #> y) = H #> (x \<cdot> y)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   852
by (simp add: rcos_mult_step1 rcos_mult_step2 rcos_mult_step3)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   853
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   854
lemma (in normal) rcosets_mult_eq: "M \<in> rcosets H \<Longrightarrow> H <#> M = M"
61798
27f3c10b0b50 isabelle update_cartouches -c -t;
wenzelm
parents: 61565
diff changeset
   855
  \<comment> \<open>generalizes \<open>subgroup_mult_id\<close>\<close>
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   856
  by (auto simp add: RCOSETS_def subset
41524
4d2f9a1c24c7 eliminated global prems;
wenzelm
parents: 32960
diff changeset
   857
        setmult_rcos_assoc subgroup_mult_id normal_axioms normal.axioms)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   858
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   859
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
   860
subsubsection\<open>Two distinct right cosets are disjoint\<close>
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   861
21233
5a5c8ea5f66a tuned specifications;
wenzelm
parents: 19931
diff changeset
   862
definition
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21233
diff changeset
   863
  r_congruent :: "[i,i] => i" ("rcong\<index> _" [60] 60) where
21233
5a5c8ea5f66a tuned specifications;
wenzelm
parents: 19931
diff changeset
   864
  "rcong\<^bsub>G\<^esub> H == {<x,y> \<in> carrier(G) * carrier(G). inv\<^bsub>G\<^esub> x \<cdot>\<^bsub>G\<^esub> y \<in> H}"
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   865
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   866
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   867
lemma (in subgroup) equiv_rcong:
27618
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   868
   assumes "group(G)"
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   869
   shows "equiv (carrier(G), rcong H)"
27618
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   870
proof -
29223
e09c53289830 Conversion of HOL-Main and ZF to new locales.
ballarin
parents: 27618
diff changeset
   871
  interpret group G by fact
27618
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   872
  show ?thesis proof (simp add: equiv_def, intro conjI)
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   873
    show "rcong H \<subseteq> carrier(G) \<times> carrier(G)"
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   874
      by (auto simp add: r_congruent_def)
27618
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   875
  next
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   876
    show "refl (carrier(G), rcong H)"
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   877
      by (auto simp add: r_congruent_def refl_def)
27618
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   878
  next
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   879
    show "sym (rcong H)"
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   880
    proof (simp add: r_congruent_def sym_def, clarify)
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   881
      fix x y
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   882
      assume [simp]: "x \<in> carrier(G)" "y \<in> carrier(G)"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 29223
diff changeset
   883
        and "inv x \<cdot> y \<in> H"
41524
4d2f9a1c24c7 eliminated global prems;
wenzelm
parents: 32960
diff changeset
   884
      hence "inv (inv x \<cdot> y) \<in> H" by simp
27618
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   885
      thus "inv y \<cdot> x \<in> H" by (simp add: inv_mult_group)
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   886
    qed
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   887
  next
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   888
    show "trans (rcong H)"
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   889
    proof (simp add: r_congruent_def trans_def, clarify)
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   890
      fix x y z
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   891
      assume [simp]: "x \<in> carrier(G)" "y \<in> carrier(G)" "z \<in> carrier(G)"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 29223
diff changeset
   892
        and "inv x \<cdot> y \<in> H" and "inv y \<cdot> z \<in> H"
27618
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   893
      hence "(inv x \<cdot> y) \<cdot> (inv y \<cdot> z) \<in> H" by simp
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   894
      hence "inv x \<cdot> (y \<cdot> inv y) \<cdot> z \<in> H" by (simp add: m_assoc del: inv)
27618
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   895
      thus "inv x \<cdot> z \<in> H" by simp
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   896
    qed
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   897
  qed
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   898
qed
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   899
61798
27f3c10b0b50 isabelle update_cartouches -c -t;
wenzelm
parents: 61565
diff changeset
   900
text\<open>Equivalence classes of \<open>rcong\<close> correspond to left cosets.
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   901
  Was there a mistake in the definitions? I'd have expected them to
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
   902
  correspond to right cosets.\<close>
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   903
lemma (in subgroup) l_coset_eq_rcong:
27618
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   904
  assumes "group(G)"
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   905
  assumes a: "a \<in> carrier(G)"
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   906
  shows "a <# H = (rcong H) `` {a}"
27618
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   907
proof -
29223
e09c53289830 Conversion of HOL-Main and ZF to new locales.
ballarin
parents: 27618
diff changeset
   908
  interpret group G by fact
27618
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   909
  show ?thesis
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   910
    by (force simp add: r_congruent_def l_coset_def m_assoc [symmetric] a
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   911
      Collect_image_eq)
27618
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   912
qed
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   913
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   914
lemma (in group) rcos_equation:
27618
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   915
  assumes "subgroup(H, G)"
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   916
  shows
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   917
     "\<lbrakk>ha \<cdot> a = h \<cdot> b; a \<in> carrier(G);  b \<in> carrier(G);
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   918
        h \<in> H;  ha \<in> H;  hb \<in> H\<rbrakk>
27618
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   919
      \<Longrightarrow> hb \<cdot> a \<in> (\<Union>h\<in>H. {h \<cdot> b})" (is "PROP ?P")
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   920
proof -
29223
e09c53289830 Conversion of HOL-Main and ZF to new locales.
ballarin
parents: 27618
diff changeset
   921
  interpret subgroup H G by fact
27618
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   922
  show "PROP ?P"
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   923
    apply (rule UN_I [of "hb \<cdot> ((inv ha) \<cdot> h)"], simp)
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   924
    apply (simp add: m_assoc transpose_inv)
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   925
    done
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   926
qed
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   927
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   928
lemma (in group) rcos_disjoint:
27618
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   929
  assumes "subgroup(H, G)"
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   930
  shows "\<lbrakk>a \<in> rcosets H; b \<in> rcosets H; a\<noteq>b\<rbrakk> \<Longrightarrow> a \<inter> b = 0" (is "PROP ?P")
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   931
proof -
29223
e09c53289830 Conversion of HOL-Main and ZF to new locales.
ballarin
parents: 27618
diff changeset
   932
  interpret subgroup H G by fact
27618
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   933
  show "PROP ?P"
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   934
    apply (simp add: RCOSETS_def r_coset_def)
41524
4d2f9a1c24c7 eliminated global prems;
wenzelm
parents: 32960
diff changeset
   935
    apply (blast intro: rcos_equation assms sym)
27618
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   936
    done
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   937
qed
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   938
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   939
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
   940
subsection \<open>Order of a Group and Lagrange's Theorem\<close>
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   941
21233
5a5c8ea5f66a tuned specifications;
wenzelm
parents: 19931
diff changeset
   942
definition
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21233
diff changeset
   943
  order :: "i => i" where
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   944
  "order(S) == |carrier(S)|"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   945
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   946
lemma (in group) rcos_self:
27618
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   947
  assumes "subgroup(H, G)"
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   948
  shows "x \<in> carrier(G) \<Longrightarrow> x \<in> H #> x" (is "PROP ?P")
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   949
proof -
29223
e09c53289830 Conversion of HOL-Main and ZF to new locales.
ballarin
parents: 27618
diff changeset
   950
  interpret subgroup H G by fact
27618
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   951
  show "PROP ?P"
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   952
    apply (simp add: r_coset_def)
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   953
    apply (rule_tac x="\<one>" in bexI) apply (auto)
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   954
    done
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   955
qed
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   956
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   957
lemma (in group) rcosets_part_G:
27618
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   958
  assumes "subgroup(H, G)"
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   959
  shows "\<Union>(rcosets H) = carrier(G)"
27618
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   960
proof -
29223
e09c53289830 Conversion of HOL-Main and ZF to new locales.
ballarin
parents: 27618
diff changeset
   961
  interpret subgroup H G by fact
27618
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   962
  show ?thesis
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   963
    apply (rule equalityI)
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   964
    apply (force simp add: RCOSETS_def r_coset_def)
41524
4d2f9a1c24c7 eliminated global prems;
wenzelm
parents: 32960
diff changeset
   965
    apply (auto simp add: RCOSETS_def intro: rcos_self assms)
27618
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   966
    done
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
   967
qed
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   968
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   969
lemma (in group) cosets_finite:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   970
     "\<lbrakk>c \<in> rcosets H;  H \<subseteq> carrier(G);  Finite (carrier(G))\<rbrakk> \<Longrightarrow> Finite(c)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   971
apply (auto simp add: RCOSETS_def)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   972
apply (simp add: r_coset_subset_G [THEN subset_Finite])
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   973
done
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   974
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
   975
text\<open>More general than the HOL version, which also requires @{term G} to
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
   976
      be finite.\<close>
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   977
lemma (in group) card_cosets_equal:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   978
  assumes H:   "H \<subseteq> carrier(G)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   979
  shows "c \<in> rcosets H \<Longrightarrow> |c| = |H|"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   980
proof (simp add: RCOSETS_def, clarify)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   981
  fix a
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   982
  assume a: "a \<in> carrier(G)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   983
  show "|H #> a| = |H|"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   984
  proof (rule eqpollI [THEN cardinal_cong])
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   985
    show "H #> a \<lesssim> H"
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   986
    proof (simp add: lepoll_def, intro exI)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   987
      show "(\<lambda>y \<in> H#>a. y \<cdot> inv a) \<in> inj(H #> a, H)"
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   988
        by (auto intro: lam_type
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   989
                 simp add: inj_def r_coset_def m_assoc subsetD [OF H] a)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   990
    qed
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   991
    show "H \<lesssim> H #> a"
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   992
    proof (simp add: lepoll_def, intro exI)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   993
      show "(\<lambda>y\<in> H. y \<cdot> a) \<in> inj(H, H #> a)"
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
   994
        by (auto intro: lam_type
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   995
                 simp add: inj_def r_coset_def  subsetD [OF H] a)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   996
    qed
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   997
  qed
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   998
qed
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
   999
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1000
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1001
lemma (in group) rcosets_subset_PowG:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1002
     "subgroup(H,G) \<Longrightarrow> rcosets H \<subseteq> Pow(carrier(G))"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1003
apply (simp add: RCOSETS_def)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1004
apply (blast dest: r_coset_subset_G subgroup.subset)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1005
done
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1006
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1007
theorem (in group) lagrange:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1008
     "\<lbrakk>Finite(carrier(G)); subgroup(H,G)\<rbrakk>
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1009
      \<Longrightarrow> |rcosets H| #* |H| = order(G)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1010
apply (simp (no_asm_simp) add: order_def rcosets_part_G [symmetric])
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1011
apply (subst mult_commute)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1012
apply (rule card_partition)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1013
   apply (simp add: rcosets_subset_PowG [THEN subset_Finite])
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1014
  apply (simp add: rcosets_part_G)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1015
 apply (simp add: card_cosets_equal [OF subgroup.subset])
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1016
apply (simp add: rcos_disjoint)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1017
done
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1018
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1019
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
  1020
subsection \<open>Quotient Groups: Factorization of a Group\<close>
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1021
21233
5a5c8ea5f66a tuned specifications;
wenzelm
parents: 19931
diff changeset
  1022
definition
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21233
diff changeset
  1023
  FactGroup :: "[i,i] => i" (infixl "Mod" 65) where
61798
27f3c10b0b50 isabelle update_cartouches -c -t;
wenzelm
parents: 61565
diff changeset
  1024
    \<comment>\<open>Actually defined for groups rather than monoids\<close>
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
  1025
  "G Mod H ==
21233
5a5c8ea5f66a tuned specifications;
wenzelm
parents: 19931
diff changeset
  1026
     <rcosets\<^bsub>G\<^esub> H, \<lambda><K1,K2> \<in> (rcosets\<^bsub>G\<^esub> H) \<times> (rcosets\<^bsub>G\<^esub> H). K1 <#>\<^bsub>G\<^esub> K2, H, 0>"
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1027
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1028
lemma (in normal) setmult_closed:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1029
     "\<lbrakk>K1 \<in> rcosets H; K2 \<in> rcosets H\<rbrakk> \<Longrightarrow> K1 <#> K2 \<in> rcosets H"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1030
by (auto simp add: rcos_sum RCOSETS_def)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1031
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1032
lemma (in normal) setinv_closed:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1033
     "K \<in> rcosets H \<Longrightarrow> set_inv K \<in> rcosets H"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1034
by (auto simp add: rcos_inv RCOSETS_def)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1035
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1036
lemma (in normal) rcosets_assoc:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1037
     "\<lbrakk>M1 \<in> rcosets H; M2 \<in> rcosets H; M3 \<in> rcosets H\<rbrakk>
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1038
      \<Longrightarrow> M1 <#> M2 <#> M3 = M1 <#> (M2 <#> M3)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1039
by (auto simp add: RCOSETS_def rcos_sum m_assoc)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1040
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1041
lemma (in subgroup) subgroup_in_rcosets:
27618
72fe9939a2ab Removed uses of context element includes.
ballarin
parents: 26199
diff changeset
  1042
  assumes "group(G)"
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1043
  shows "H \<in> rcosets H"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1044
proof -
29223
e09c53289830 Conversion of HOL-Main and ZF to new locales.
ballarin
parents: 27618
diff changeset
  1045
  interpret group G by fact
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1046
  have "H #> \<one> = H"
26199
04817a8802f2 explicit referencing of background facts;
wenzelm
parents: 22931
diff changeset
  1047
    using _ subgroup_axioms by (rule coset_join2) simp_all
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1048
  then show ?thesis
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1049
    by (auto simp add: RCOSETS_def intro: sym)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1050
qed
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1051
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1052
lemma (in normal) rcosets_inv_mult_group_eq:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1053
     "M \<in> rcosets H \<Longrightarrow> set_inv M <#> M = H"
41524
4d2f9a1c24c7 eliminated global prems;
wenzelm
parents: 32960
diff changeset
  1054
by (auto simp add: RCOSETS_def rcos_inv rcos_sum subgroup.subset normal_axioms normal.axioms)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1055
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1056
theorem (in normal) factorgroup_is_group:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1057
  "group (G Mod H)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1058
apply (simp add: FactGroup_def)
14891
f2e9f7d813af fixed the groupI ambiguity
paulson
parents: 14884
diff changeset
  1059
apply (rule groupI)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1060
    apply (simp add: setmult_closed)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1061
   apply (simp add: normal_imp_subgroup subgroup_in_rcosets)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1062
  apply (simp add: setmult_closed rcosets_assoc)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1063
 apply (simp add: normal_imp_subgroup
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1064
                  subgroup_in_rcosets rcosets_mult_eq)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1065
apply (auto dest: rcosets_inv_mult_group_eq simp add: setinv_closed)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1066
done
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1067
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1068
lemma (in normal) inv_FactGroup:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1069
     "X \<in> carrier (G Mod H) \<Longrightarrow> inv\<^bsub>G Mod H\<^esub> X = set_inv X"
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
  1070
apply (rule group.inv_equality [OF factorgroup_is_group])
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1071
apply (simp_all add: FactGroup_def setinv_closed rcosets_inv_mult_group_eq)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1072
done
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1073
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
  1074
text\<open>The coset map is a homomorphism from @{term G} to the quotient group
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
  1075
  @{term "G Mod H"}\<close>
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1076
lemma (in normal) r_coset_hom_Mod:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1077
  "(\<lambda>a \<in> carrier(G). H #> a) \<in> hom(G, G Mod H)"
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
  1078
by (auto simp add: FactGroup_def RCOSETS_def hom_def rcos_sum intro: lam_type)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1079
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1080
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
  1081
subsection\<open>The First Isomorphism Theorem\<close>
14891
f2e9f7d813af fixed the groupI ambiguity
paulson
parents: 14884
diff changeset
  1082
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
  1083
text\<open>The quotient by the kernel of a homomorphism is isomorphic to the
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
  1084
  range of that homomorphism.\<close>
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1085
21233
5a5c8ea5f66a tuned specifications;
wenzelm
parents: 19931
diff changeset
  1086
definition
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21233
diff changeset
  1087
  kernel :: "[i,i,i] => i" where
61798
27f3c10b0b50 isabelle update_cartouches -c -t;
wenzelm
parents: 61565
diff changeset
  1088
    \<comment>\<open>the kernel of a homomorphism\<close>
58860
fee7cfa69c50 eliminated spurious semicolons;
wenzelm
parents: 49755
diff changeset
  1089
  "kernel(G,H,h) == {x \<in> carrier(G). h ` x = \<one>\<^bsub>H\<^esub>}"
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1090
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1091
lemma (in group_hom) subgroup_kernel: "subgroup (kernel(G,H,h), G)"
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
  1092
apply (rule subgroup.intro)
41524
4d2f9a1c24c7 eliminated global prems;
wenzelm
parents: 32960
diff changeset
  1093
apply (auto simp add: kernel_def group.intro)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1094
done
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1095
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
  1096
text\<open>The kernel of a homomorphism is a normal subgroup\<close>
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1097
lemma (in group_hom) normal_kernel: "(kernel(G,H,h)) \<lhd> G"
41524
4d2f9a1c24c7 eliminated global prems;
wenzelm
parents: 32960
diff changeset
  1098
apply (simp add: group.normal_inv_iff subgroup_kernel group.intro)
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
  1099
apply (simp add: kernel_def)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1100
done
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1101
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1102
lemma (in group_hom) FactGroup_nonempty:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1103
  assumes X: "X \<in> carrier (G Mod kernel(G,H,h))"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1104
  shows "X \<noteq> 0"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1105
proof -
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1106
  from X
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
  1107
  obtain g where "g \<in> carrier(G)"
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1108
             and "X = kernel(G,H,h) #> g"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1109
    by (auto simp add: FactGroup_def RCOSETS_def)
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
  1110
  thus ?thesis
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1111
   by (auto simp add: kernel_def r_coset_def image_def intro: hom_one)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1112
qed
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1113
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1114
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1115
lemma (in group_hom) FactGroup_contents_mem:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1116
  assumes X: "X \<in> carrier (G Mod (kernel(G,H,h)))"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1117
  shows "contents (h``X) \<in> carrier(H)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1118
proof -
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1119
  from X
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
  1120
  obtain g where g: "g \<in> carrier(G)"
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1121
             and "X = kernel(G,H,h) #> g"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1122
    by (auto simp add: FactGroup_def RCOSETS_def)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1123
  hence "h `` X = {h ` g}"
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
  1124
    by (auto simp add: kernel_def r_coset_def image_UN
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1125
                       image_eq_UN [OF hom_is_fun] g)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1126
  thus ?thesis by (auto simp add: g)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1127
qed
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1128
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1129
lemma mult_FactGroup:
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
  1130
     "[|X \<in> carrier(G Mod H); X' \<in> carrier(G Mod H)|]
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1131
      ==> X \<cdot>\<^bsub>(G Mod H)\<^esub> X' = X <#>\<^bsub>G\<^esub> X'"
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
  1132
by (simp add: FactGroup_def)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1133
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1134
lemma (in normal) FactGroup_m_closed:
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
  1135
     "[|X \<in> carrier(G Mod H); X' \<in> carrier(G Mod H)|]
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1136
      ==> X <#>\<^bsub>G\<^esub> X' \<in> carrier(G Mod H)"
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
  1137
by (simp add: FactGroup_def setmult_closed)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1138
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1139
lemma (in group_hom) FactGroup_hom:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1140
     "(\<lambda>X \<in> carrier(G Mod (kernel(G,H,h))). contents (h``X))
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
  1141
      \<in> hom (G Mod (kernel(G,H,h)), H)"
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
  1142
proof (simp add: hom_def FactGroup_contents_mem lam_type mult_FactGroup normal.FactGroup_m_closed [OF normal_kernel], intro ballI)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1143
  fix X and X'
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1144
  assume X:  "X  \<in> carrier (G Mod kernel(G,H,h))"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1145
     and X': "X' \<in> carrier (G Mod kernel(G,H,h))"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1146
  then
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1147
  obtain g and g'
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
  1148
           where "g \<in> carrier(G)" and "g' \<in> carrier(G)"
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1149
             and "X = kernel(G,H,h) #> g" and "X' = kernel(G,H,h) #> g'"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1150
    by (auto simp add: FactGroup_def RCOSETS_def)
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
  1151
  hence all: "\<forall>x\<in>X. h ` x = h ` g" "\<forall>x\<in>X'. h ` x = h ` g'"
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1152
    and Xsub: "X \<subseteq> carrier(G)" and X'sub: "X' \<subseteq> carrier(G)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1153
    by (force simp add: kernel_def r_coset_def image_def)+
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1154
  hence "h `` (X <#> X') = {h ` g \<cdot>\<^bsub>H\<^esub> h ` g'}" using X X'
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1155
    by (auto dest!: FactGroup_nonempty
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1156
             simp add: set_mult_def image_eq_UN [OF hom_is_fun] image_UN
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
  1157
                       subsetD [OF Xsub] subsetD [OF X'sub])
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1158
  thus "contents (h `` (X <#> X')) = contents (h `` X) \<cdot>\<^bsub>H\<^esub> contents (h `` X')"
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
  1159
    by (simp add: all image_eq_UN [OF hom_is_fun] FactGroup_nonempty
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1160
                  X X' Xsub X'sub)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1161
qed
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1162
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1163
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
  1164
text\<open>Lemma for the following injectivity result\<close>
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1165
lemma (in group_hom) FactGroup_subset:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1166
     "\<lbrakk>g \<in> carrier(G); g' \<in> carrier(G); h ` g = h ` g'\<rbrakk>
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1167
      \<Longrightarrow>  kernel(G,H,h) #> g \<subseteq> kernel(G,H,h) #> g'"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1168
apply (clarsimp simp add: kernel_def r_coset_def image_def)
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
  1169
apply (rename_tac y)
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
  1170
apply (rule_tac x="y \<cdot> g \<cdot> inv g'" in bexI)
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
  1171
apply (simp_all add: G.m_assoc)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1172
done
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1173
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1174
lemma (in group_hom) FactGroup_inj:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1175
     "(\<lambda>X\<in>carrier (G Mod kernel(G,H,h)). contents (h `` X))
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1176
      \<in> inj(carrier (G Mod kernel(G,H,h)), carrier(H))"
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
  1177
proof (simp add: inj_def FactGroup_contents_mem lam_type, clarify)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1178
  fix X and X'
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1179
  assume X:  "X  \<in> carrier (G Mod kernel(G,H,h))"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1180
     and X': "X' \<in> carrier (G Mod kernel(G,H,h))"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1181
  then
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1182
  obtain g and g'
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
  1183
           where gX: "g \<in> carrier(G)"  "g' \<in> carrier(G)"
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1184
              "X = kernel(G,H,h) #> g" "X' = kernel(G,H,h) #> g'"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1185
    by (auto simp add: FactGroup_def RCOSETS_def)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1186
  hence all: "\<forall>x\<in>X. h ` x = h ` g" "\<forall>x\<in>X'. h ` x = h ` g'"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1187
    and Xsub: "X \<subseteq> carrier(G)" and X'sub: "X' \<subseteq> carrier(G)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1188
    by (force simp add: kernel_def r_coset_def image_def)+
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1189
  assume "contents (h `` X) = contents (h `` X')"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1190
  hence h: "h ` g = h ` g'"
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
  1191
    by (simp add: all image_eq_UN [OF hom_is_fun] FactGroup_nonempty
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1192
                  X X' Xsub X'sub)
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
  1193
  show "X=X'" by (rule equalityI) (simp_all add: FactGroup_subset h gX)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1194
qed
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1195
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1196
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1197
lemma (in group_hom) kernel_rcoset_subset:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1198
  assumes g: "g \<in> carrier(G)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1199
  shows "kernel(G,H,h) #> g \<subseteq> carrier (G)"
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
  1200
    by (auto simp add: g kernel_def r_coset_def)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1201
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1202
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1203
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
  1204
text\<open>If the homomorphism @{term h} is onto @{term H}, then so is the
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
  1205
homomorphism from the quotient group\<close>
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1206
lemma (in group_hom) FactGroup_surj:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1207
  assumes h: "h \<in> surj(carrier(G), carrier(H))"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1208
  shows "(\<lambda>X\<in>carrier (G Mod kernel(G,H,h)). contents (h `` X))
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1209
         \<in> surj(carrier (G Mod kernel(G,H,h)), carrier(H))"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1210
proof (simp add: surj_def FactGroup_contents_mem lam_type, clarify)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1211
  fix y
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1212
  assume y: "y \<in> carrier(H)"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1213
  with h obtain g where g: "g \<in> carrier(G)" "h ` g = y"
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
  1214
    by (auto simp add: surj_def)
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
  1215
  hence "(\<Union>x\<in>kernel(G,H,h) #> g. {h ` x}) = {y}"
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
  1216
    by (auto simp add: y kernel_def r_coset_def)
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1217
  with g show "\<exists>x\<in>carrier(G Mod kernel(G, H, h)). contents(h `` x) = y"
61798
27f3c10b0b50 isabelle update_cartouches -c -t;
wenzelm
parents: 61565
diff changeset
  1218
        \<comment>\<open>The witness is @{term "kernel(G,H,h) #> g"}\<close>
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
  1219
    by (force simp add: FactGroup_def RCOSETS_def
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1220
           image_eq_UN [OF hom_is_fun] kernel_rcoset_subset)
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1221
qed
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1222
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1223
60770
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
  1224
text\<open>If @{term h} is a homomorphism from @{term G} onto @{term H}, then the
240563fbf41d isabelle update_cartouches;
wenzelm
parents: 58871
diff changeset
  1225
 quotient group @{term "G Mod (kernel(G,H,h))"} is isomorphic to @{term H}.\<close>
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1226
theorem (in group_hom) FactGroup_iso:
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1227
  "h \<in> surj(carrier(G), carrier(H))
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1228
   \<Longrightarrow> (\<lambda>X\<in>carrier (G Mod kernel(G,H,h)). contents (h``X)) \<in> (G Mod (kernel(G,H,h))) \<cong> H"
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1229
by (simp add: iso_def FactGroup_hom FactGroup_inj bij_def FactGroup_surj)
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46822
diff changeset
  1230
14884
0d7d8b1b3a97 Groups, Rings and supporting lemmas
paulson
parents:
diff changeset
  1231
end