| 
17453
 | 
     1  | 
header {* Lambda Cube Examples *}
 | 
| 
 | 
     2  | 
  | 
| 
 | 
     3  | 
theory Example
  | 
| 
 | 
     4  | 
imports Cube
  | 
| 
 | 
     5  | 
begin
  | 
| 
 | 
     6  | 
  | 
| 
 | 
     7  | 
text {*
 | 
| 
 | 
     8  | 
  Examples taken from:
  | 
| 
 | 
     9  | 
  | 
| 
 | 
    10  | 
  H. Barendregt. Introduction to Generalised Type Systems.
  | 
| 
 | 
    11  | 
  J. Functional Programming.
  | 
| 
 | 
    12  | 
*}
  | 
| 
 | 
    13  | 
  | 
| 
 | 
    14  | 
method_setup depth_solve = {*
 | 
| 
30549
 | 
    15  | 
  Attrib.thms >> (fn thms => K (METHOD (fn facts =>
  | 
| 
42814
 | 
    16  | 
    (DEPTH_SOLVE (HEADGOAL (ares_tac (facts @ thms)))))))
  | 
| 
 | 
    17  | 
*}
  | 
| 
17453
 | 
    18  | 
  | 
| 
 | 
    19  | 
method_setup depth_solve1 = {*
 | 
| 
30549
 | 
    20  | 
  Attrib.thms >> (fn thms => K (METHOD (fn facts =>
  | 
| 
42814
 | 
    21  | 
    (DEPTH_SOLVE_1 (HEADGOAL (ares_tac (facts @ thms)))))))
  | 
| 
 | 
    22  | 
*}
  | 
| 
17453
 | 
    23  | 
  | 
| 
 | 
    24  | 
method_setup strip_asms =  {*
 | 
| 
30549
 | 
    25  | 
  Attrib.thms >> (fn thms => K (METHOD (fn facts =>
  | 
| 
 | 
    26  | 
    REPEAT (resolve_tac [@{thm strip_b}, @{thm strip_s}] 1 THEN
 | 
| 
 | 
    27  | 
    DEPTH_SOLVE_1 (ares_tac (facts @ thms) 1)))))
  | 
| 
42814
 | 
    28  | 
*}
  | 
| 
17453
 | 
    29  | 
  | 
| 
 | 
    30  | 
  | 
| 
 | 
    31  | 
subsection {* Simple types *}
 | 
| 
 | 
    32  | 
  | 
| 
36319
 | 
    33  | 
schematic_lemma "A:* |- A->A : ?T"
  | 
| 
17453
 | 
    34  | 
  by (depth_solve rules)
  | 
| 
 | 
    35  | 
  | 
| 
36319
 | 
    36  | 
schematic_lemma "A:* |- Lam a:A. a : ?T"
  | 
| 
17453
 | 
    37  | 
  by (depth_solve rules)
  | 
| 
 | 
    38  | 
  | 
| 
36319
 | 
    39  | 
schematic_lemma "A:* B:* b:B |- Lam x:A. b : ?T"
  | 
| 
17453
 | 
    40  | 
  by (depth_solve rules)
  | 
| 
 | 
    41  | 
  | 
| 
36319
 | 
    42  | 
schematic_lemma "A:* b:A |- (Lam a:A. a)^b: ?T"
  | 
| 
17453
 | 
    43  | 
  by (depth_solve rules)
  | 
| 
 | 
    44  | 
  | 
| 
36319
 | 
    45  | 
schematic_lemma "A:* B:* c:A b:B |- (Lam x:A. b)^ c: ?T"
  | 
| 
17453
 | 
    46  | 
  by (depth_solve rules)
  | 
| 
 | 
    47  | 
  | 
| 
36319
 | 
    48  | 
schematic_lemma "A:* B:* |- Lam a:A. Lam b:B. a : ?T"
  | 
| 
17453
 | 
    49  | 
  by (depth_solve rules)
  | 
| 
 | 
    50  | 
  | 
| 
 | 
    51  | 
  | 
| 
 | 
    52  | 
subsection {* Second-order types *}
 | 
| 
 | 
    53  | 
  | 
| 
36319
 | 
    54  | 
schematic_lemma (in L2) "|- Lam A:*. Lam a:A. a : ?T"
  | 
| 
17453
 | 
    55  | 
  by (depth_solve rules)
  | 
| 
 | 
    56  | 
  | 
| 
36319
 | 
    57  | 
schematic_lemma (in L2) "A:* |- (Lam B:*.Lam b:B. b)^A : ?T"
  | 
| 
17453
 | 
    58  | 
  by (depth_solve rules)
  | 
| 
 | 
    59  | 
  | 
| 
36319
 | 
    60  | 
schematic_lemma (in L2) "A:* b:A |- (Lam B:*.Lam b:B. b) ^ A ^ b: ?T"
  | 
| 
17453
 | 
    61  | 
  by (depth_solve rules)
  | 
| 
 | 
    62  | 
  | 
| 
36319
 | 
    63  | 
schematic_lemma (in L2) "|- Lam B:*.Lam a:(Pi A:*.A).a ^ ((Pi A:*.A)->B) ^ a: ?T"
  | 
| 
17453
 | 
    64  | 
  by (depth_solve rules)
  | 
| 
 | 
    65  | 
  | 
| 
 | 
    66  | 
  | 
| 
 | 
    67  | 
subsection {* Weakly higher-order propositional logic *}
 | 
| 
 | 
    68  | 
  | 
| 
36319
 | 
    69  | 
schematic_lemma (in Lomega) "|- Lam A:*.A->A : ?T"
  | 
| 
17453
 | 
    70  | 
  by (depth_solve rules)
  | 
| 
 | 
    71  | 
  | 
| 
36319
 | 
    72  | 
schematic_lemma (in Lomega) "B:* |- (Lam A:*.A->A) ^ B : ?T"
  | 
| 
17453
 | 
    73  | 
  by (depth_solve rules)
  | 
| 
 | 
    74  | 
  | 
| 
36319
 | 
    75  | 
schematic_lemma (in Lomega) "B:* b:B |- (Lam y:B. b): ?T"
  | 
| 
17453
 | 
    76  | 
  by (depth_solve rules)
  | 
| 
 | 
    77  | 
  | 
| 
36319
 | 
    78  | 
schematic_lemma (in Lomega) "A:* F:*->* |- F^(F^A): ?T"
  | 
| 
17453
 | 
    79  | 
  by (depth_solve rules)
  | 
| 
 | 
    80  | 
  | 
| 
36319
 | 
    81  | 
schematic_lemma (in Lomega) "A:* |- Lam F:*->*.F^(F^A): ?T"
  | 
| 
17453
 | 
    82  | 
  by (depth_solve rules)
  | 
| 
 | 
    83  | 
  | 
| 
 | 
    84  | 
  | 
| 
 | 
    85  | 
subsection {* LP *}
 | 
| 
 | 
    86  | 
  | 
| 
36319
 | 
    87  | 
schematic_lemma (in LP) "A:* |- A -> * : ?T"
  | 
| 
17453
 | 
    88  | 
  by (depth_solve rules)
  | 
| 
 | 
    89  | 
  | 
| 
36319
 | 
    90  | 
schematic_lemma (in LP) "A:* P:A->* a:A |- P^a: ?T"
  | 
| 
17453
 | 
    91  | 
  by (depth_solve rules)
  | 
| 
 | 
    92  | 
  | 
| 
36319
 | 
    93  | 
schematic_lemma (in LP) "A:* P:A->A->* a:A |- Pi a:A. P^a^a: ?T"
  | 
| 
17453
 | 
    94  | 
  by (depth_solve rules)
  | 
| 
 | 
    95  | 
  | 
| 
36319
 | 
    96  | 
schematic_lemma (in LP) "A:* P:A->* Q:A->* |- Pi a:A. P^a -> Q^a: ?T"
  | 
| 
17453
 | 
    97  | 
  by (depth_solve rules)
  | 
| 
 | 
    98  | 
  | 
| 
36319
 | 
    99  | 
schematic_lemma (in LP) "A:* P:A->* |- Pi a:A. P^a -> P^a: ?T"
  | 
| 
17453
 | 
   100  | 
  by (depth_solve rules)
  | 
| 
 | 
   101  | 
  | 
| 
36319
 | 
   102  | 
schematic_lemma (in LP) "A:* P:A->* |- Lam a:A. Lam x:P^a. x: ?T"
  | 
| 
17453
 | 
   103  | 
  by (depth_solve rules)
  | 
| 
 | 
   104  | 
  | 
| 
36319
 | 
   105  | 
schematic_lemma (in LP) "A:* P:A->* Q:* |- (Pi a:A. P^a->Q) -> (Pi a:A. P^a) -> Q : ?T"
  | 
| 
17453
 | 
   106  | 
  by (depth_solve rules)
  | 
| 
 | 
   107  | 
  | 
| 
36319
 | 
   108  | 
schematic_lemma (in LP) "A:* P:A->* Q:* a0:A |-
  | 
| 
17453
 | 
   109  | 
        Lam x:Pi a:A. P^a->Q. Lam y:Pi a:A. P^a. x^a0^(y^a0): ?T"
  | 
| 
 | 
   110  | 
  by (depth_solve rules)
  | 
| 
 | 
   111  | 
  | 
| 
 | 
   112  | 
  | 
| 
 | 
   113  | 
subsection {* Omega-order types *}
 | 
| 
 | 
   114  | 
  | 
| 
36319
 | 
   115  | 
schematic_lemma (in L2) "A:* B:* |- Pi C:*.(A->B->C)->C : ?T"
  | 
| 
17453
 | 
   116  | 
  by (depth_solve rules)
  | 
| 
 | 
   117  | 
  | 
| 
36319
 | 
   118  | 
schematic_lemma (in Lomega2) "|- Lam A:*.Lam B:*.Pi C:*.(A->B->C)->C : ?T"
  | 
| 
17453
 | 
   119  | 
  by (depth_solve rules)
  | 
| 
 | 
   120  | 
  | 
| 
36319
 | 
   121  | 
schematic_lemma (in Lomega2) "|- Lam A:*.Lam B:*.Lam x:A. Lam y:B. x : ?T"
  | 
| 
17453
 | 
   122  | 
  by (depth_solve rules)
  | 
| 
 | 
   123  | 
  | 
| 
36319
 | 
   124  | 
schematic_lemma (in Lomega2) "A:* B:* |- ?p : (A->B) -> ((B->Pi P:*.P)->(A->Pi P:*.P))"
  | 
| 
17453
 | 
   125  | 
  apply (strip_asms rules)
  | 
| 
 | 
   126  | 
  apply (rule lam_ss)
  | 
| 
 | 
   127  | 
    apply (depth_solve1 rules)
  | 
| 
 | 
   128  | 
   prefer 2
  | 
| 
 | 
   129  | 
   apply (depth_solve1 rules)
  | 
| 
 | 
   130  | 
  apply (rule lam_ss)
  | 
| 
 | 
   131  | 
    apply (depth_solve1 rules)
  | 
| 
 | 
   132  | 
   prefer 2
  | 
| 
 | 
   133  | 
   apply (depth_solve1 rules)
  | 
| 
 | 
   134  | 
  apply (rule lam_ss)
  | 
| 
 | 
   135  | 
    apply assumption
  | 
| 
 | 
   136  | 
   prefer 2
  | 
| 
 | 
   137  | 
   apply (depth_solve1 rules)
  | 
| 
 | 
   138  | 
  apply (erule pi_elim)
  | 
| 
 | 
   139  | 
   apply assumption
  | 
| 
 | 
   140  | 
  apply (erule pi_elim)
  | 
| 
 | 
   141  | 
   apply assumption
  | 
| 
 | 
   142  | 
  apply assumption
  | 
| 
 | 
   143  | 
  done
  | 
| 
 | 
   144  | 
  | 
| 
 | 
   145  | 
  | 
| 
 | 
   146  | 
subsection {* Second-order Predicate Logic *}
 | 
| 
 | 
   147  | 
  | 
| 
36319
 | 
   148  | 
schematic_lemma (in LP2) "A:* P:A->* |- Lam a:A. P^a->(Pi A:*.A) : ?T"
  | 
| 
17453
 | 
   149  | 
  by (depth_solve rules)
  | 
| 
 | 
   150  | 
  | 
| 
36319
 | 
   151  | 
schematic_lemma (in LP2) "A:* P:A->A->* |-
  | 
| 
17453
 | 
   152  | 
    (Pi a:A. Pi b:A. P^a^b->P^b^a->Pi P:*.P) -> Pi a:A. P^a^a->Pi P:*.P : ?T"
  | 
| 
 | 
   153  | 
  by (depth_solve rules)
  | 
| 
 | 
   154  | 
  | 
| 
36319
 | 
   155  | 
schematic_lemma (in LP2) "A:* P:A->A->* |-
  | 
| 
17453
 | 
   156  | 
    ?p: (Pi a:A. Pi b:A. P^a^b->P^b^a->Pi P:*.P) -> Pi a:A. P^a^a->Pi P:*.P"
  | 
| 
 | 
   157  | 
  -- {* Antisymmetry implies irreflexivity: *}
 | 
| 
 | 
   158  | 
  apply (strip_asms rules)
  | 
| 
 | 
   159  | 
  apply (rule lam_ss)
  | 
| 
 | 
   160  | 
    apply (depth_solve1 rules)
  | 
| 
 | 
   161  | 
   prefer 2
  | 
| 
 | 
   162  | 
   apply (depth_solve1 rules)
  | 
| 
 | 
   163  | 
  apply (rule lam_ss)
  | 
| 
 | 
   164  | 
    apply assumption
  | 
| 
 | 
   165  | 
   prefer 2
  | 
| 
 | 
   166  | 
   apply (depth_solve1 rules)
  | 
| 
 | 
   167  | 
  apply (rule lam_ss)
  | 
| 
 | 
   168  | 
    apply (depth_solve1 rules)
  | 
| 
 | 
   169  | 
   prefer 2
  | 
| 
 | 
   170  | 
   apply (depth_solve1 rules)
  | 
| 
 | 
   171  | 
  apply (erule pi_elim, assumption, assumption?)+
  | 
| 
 | 
   172  | 
  done
  | 
| 
 | 
   173  | 
  | 
| 
 | 
   174  | 
  | 
| 
 | 
   175  | 
subsection {* LPomega *}
 | 
| 
 | 
   176  | 
  | 
| 
36319
 | 
   177  | 
schematic_lemma (in LPomega) "A:* |- Lam P:A->A->*.Lam a:A. P^a^a : ?T"
  | 
| 
17453
 | 
   178  | 
  by (depth_solve rules)
  | 
| 
 | 
   179  | 
  | 
| 
36319
 | 
   180  | 
schematic_lemma (in LPomega) "|- Lam A:*.Lam P:A->A->*.Lam a:A. P^a^a : ?T"
  | 
| 
17453
 | 
   181  | 
  by (depth_solve rules)
  | 
| 
 | 
   182  | 
  | 
| 
 | 
   183  | 
  | 
| 
 | 
   184  | 
subsection {* Constructions *}
 | 
| 
 | 
   185  | 
  | 
| 
36319
 | 
   186  | 
schematic_lemma (in CC) "|- Lam A:*.Lam P:A->*.Lam a:A. P^a->Pi P:*.P: ?T"
  | 
| 
17453
 | 
   187  | 
  by (depth_solve rules)
  | 
| 
 | 
   188  | 
  | 
| 
36319
 | 
   189  | 
schematic_lemma (in CC) "|- Lam A:*.Lam P:A->*.Pi a:A. P^a: ?T"
  | 
| 
17453
 | 
   190  | 
  by (depth_solve rules)
  | 
| 
 | 
   191  | 
  | 
| 
36319
 | 
   192  | 
schematic_lemma (in CC) "A:* P:A->* a:A |- ?p : (Pi a:A. P^a)->P^a"
  | 
| 
17453
 | 
   193  | 
  apply (strip_asms rules)
  | 
| 
 | 
   194  | 
  apply (rule lam_ss)
  | 
| 
 | 
   195  | 
    apply (depth_solve1 rules)
  | 
| 
 | 
   196  | 
   prefer 2
  | 
| 
 | 
   197  | 
   apply (depth_solve1 rules)
  | 
| 
 | 
   198  | 
  apply (erule pi_elim, assumption, assumption)
  | 
| 
 | 
   199  | 
  done
  | 
| 
 | 
   200  | 
  | 
| 
 | 
   201  | 
  | 
| 
 | 
   202  | 
subsection {* Some random examples *}
 | 
| 
 | 
   203  | 
  | 
| 
36319
 | 
   204  | 
schematic_lemma (in LP2) "A:* c:A f:A->A |-
  | 
| 
17453
 | 
   205  | 
    Lam a:A. Pi P:A->*.P^c -> (Pi x:A. P^x->P^(f^x)) -> P^a : ?T"
  | 
| 
 | 
   206  | 
  by (depth_solve rules)
  | 
| 
 | 
   207  | 
  | 
| 
36319
 | 
   208  | 
schematic_lemma (in CC) "Lam A:*.Lam c:A. Lam f:A->A.
  | 
| 
17453
 | 
   209  | 
    Lam a:A. Pi P:A->*.P^c -> (Pi x:A. P^x->P^(f^x)) -> P^a : ?T"
  | 
| 
 | 
   210  | 
  by (depth_solve rules)
  | 
| 
 | 
   211  | 
  | 
| 
36319
 | 
   212  | 
schematic_lemma (in LP2)
  | 
| 
17453
 | 
   213  | 
  "A:* a:A b:A |- ?p: (Pi P:A->*.P^a->P^b) -> (Pi P:A->*.P^b->P^a)"
  | 
| 
 | 
   214  | 
  -- {* Symmetry of Leibnitz equality *}
 | 
| 
 | 
   215  | 
  apply (strip_asms rules)
  | 
| 
 | 
   216  | 
  apply (rule lam_ss)
  | 
| 
 | 
   217  | 
    apply (depth_solve1 rules)
  | 
| 
 | 
   218  | 
   prefer 2
  | 
| 
 | 
   219  | 
   apply (depth_solve1 rules)
  | 
| 
 | 
   220  | 
  apply (erule_tac a = "Lam x:A. Pi Q:A->*.Q^x->Q^a" in pi_elim)
  | 
| 
 | 
   221  | 
   apply (depth_solve1 rules)
  | 
| 
 | 
   222  | 
  apply (unfold beta)
  | 
| 
 | 
   223  | 
  apply (erule imp_elim)
  | 
| 
 | 
   224  | 
   apply (rule lam_bs)
  | 
| 
 | 
   225  | 
     apply (depth_solve1 rules)
  | 
| 
 | 
   226  | 
    prefer 2
  | 
| 
 | 
   227  | 
    apply (depth_solve1 rules)
  | 
| 
 | 
   228  | 
   apply (rule lam_ss)
  | 
| 
 | 
   229  | 
     apply (depth_solve1 rules)
  | 
| 
 | 
   230  | 
    prefer 2
  | 
| 
 | 
   231  | 
    apply (depth_solve1 rules)
  | 
| 
 | 
   232  | 
   apply assumption
  | 
| 
 | 
   233  | 
  apply assumption
  | 
| 
 | 
   234  | 
  done
  | 
| 
 | 
   235  | 
  | 
| 
 | 
   236  | 
end
  |