| author | wenzelm | 
| Sun, 18 Sep 2011 15:30:21 +0200 | |
| changeset 44971 | 8104eec1bf94 | 
| parent 44947 | 8ae418dfe561 | 
| child 45620 | f2a587696afb | 
| permissions | -rw-r--r-- | 
| 9548 | 1  | 
(* Title: ZF/arith_data.ML  | 
2  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
|
3  | 
||
4  | 
Arithmetic simplification: cancellation of common terms  | 
|
5  | 
*)  | 
|
6  | 
||
7  | 
signature ARITH_DATA =  | 
|
8  | 
sig  | 
|
| 
9570
 
e16e168984e1
installation of cancellation simprocs for the integers
 
paulson 
parents: 
9548 
diff
changeset
 | 
9  | 
(*the main outcome*)  | 
| 9548 | 10  | 
val nat_cancel: simproc list  | 
| 
9570
 
e16e168984e1
installation of cancellation simprocs for the integers
 
paulson 
parents: 
9548 
diff
changeset
 | 
11  | 
(*tools for use in similar applications*)  | 
| 
 
e16e168984e1
installation of cancellation simprocs for the integers
 
paulson 
parents: 
9548 
diff
changeset
 | 
12  | 
val gen_trans_tac: thm -> thm option -> tactic  | 
| 20113 | 13  | 
val prove_conv: string -> tactic list -> Proof.context -> thm list -> term * term -> thm option  | 
| 16973 | 14  | 
val simplify_meta_eq: thm list -> simpset -> thm -> thm  | 
| 9874 | 15  | 
(*debugging*)  | 
16  | 
structure EqCancelNumeralsData : CANCEL_NUMERALS_DATA  | 
|
17  | 
structure LessCancelNumeralsData : CANCEL_NUMERALS_DATA  | 
|
18  | 
structure DiffCancelNumeralsData : CANCEL_NUMERALS_DATA  | 
|
| 9548 | 19  | 
end;  | 
20  | 
||
| 
9570
 
e16e168984e1
installation of cancellation simprocs for the integers
 
paulson 
parents: 
9548 
diff
changeset
 | 
21  | 
|
| 9548 | 22  | 
structure ArithData: ARITH_DATA =  | 
23  | 
struct  | 
|
24  | 
||
25  | 
val iT = Ind_Syntax.iT;  | 
|
26  | 
||
| 41310 | 27  | 
val zero = Const(@{const_name zero}, iT);
 | 
| 38513 | 28  | 
val succ = Const(@{const_name succ}, iT --> iT);
 | 
| 9548 | 29  | 
fun mk_succ t = succ $ t;  | 
30  | 
val one = mk_succ zero;  | 
|
31  | 
||
| 38513 | 32  | 
val mk_plus = FOLogic.mk_binop @{const_name Arith.add};
 | 
| 9548 | 33  | 
|
34  | 
(*Thus mk_sum[t] yields t+#0; longer sums don't have a trailing zero*)  | 
|
35  | 
fun mk_sum [] = zero  | 
|
36  | 
| mk_sum [t,u] = mk_plus (t, u)  | 
|
37  | 
| mk_sum (t :: ts) = mk_plus (t, mk_sum ts);  | 
|
38  | 
||
39  | 
(*this version ALWAYS includes a trailing zero*)  | 
|
40  | 
fun long_mk_sum [] = zero  | 
|
41  | 
| long_mk_sum (t :: ts) = mk_plus (t, mk_sum ts);  | 
|
42  | 
||
| 38513 | 43  | 
val dest_plus = FOLogic.dest_bin @{const_name Arith.add} iT;
 | 
| 9548 | 44  | 
|
45  | 
(* dest_sum *)  | 
|
46  | 
||
| 41310 | 47  | 
fun dest_sum (Const(@{const_name zero},_)) = []
 | 
| 38513 | 48  | 
  | dest_sum (Const(@{const_name succ},_) $ t) = one :: dest_sum t
 | 
49  | 
  | dest_sum (Const(@{const_name Arith.add},_) $ t $ u) = dest_sum t @ dest_sum u
 | 
|
| 9548 | 50  | 
| dest_sum tm = [tm];  | 
51  | 
||
52  | 
(*Apply the given rewrite (if present) just once*)  | 
|
| 15531 | 53  | 
fun gen_trans_tac th2 NONE = all_tac  | 
54  | 
| gen_trans_tac th2 (SOME th) = ALLGOALS (rtac (th RS th2));  | 
|
| 9548 | 55  | 
|
56  | 
(*Use <-> or = depending on the type of t*)  | 
|
57  | 
fun mk_eq_iff(t,u) =  | 
|
58  | 
if fastype_of t = iT then FOLogic.mk_eq(t,u)  | 
|
59  | 
else FOLogic.mk_iff(t,u);  | 
|
60  | 
||
| 9874 | 61  | 
(*We remove equality assumptions because they confuse the simplifier and  | 
62  | 
because only type-checking assumptions are necessary.*)  | 
|
| 13462 | 63  | 
fun is_eq_thm th =  | 
| 44058 | 64  | 
can FOLogic.dest_eq (FOLogic.dest_Trueprop (Thm.prop_of th));  | 
| 
9649
 
89155e48fa53
simproc bug fix: only TYPING assumptions are given to the simplifier
 
paulson 
parents: 
9570 
diff
changeset
 | 
65  | 
|
| 9548 | 66  | 
fun add_chyps chyps ct = Drule.list_implies (map cprop_of chyps, ct);  | 
67  | 
||
| 20113 | 68  | 
fun prove_conv name tacs ctxt prems (t,u) =  | 
| 15531 | 69  | 
if t aconv u then NONE  | 
| 9548 | 70  | 
else  | 
| 33317 | 71  | 
let val prems' = filter_out is_eq_thm prems  | 
| 44058 | 72  | 
val goal = Logic.list_implies (map Thm.prop_of prems',  | 
| 12134 | 73  | 
FOLogic.mk_Trueprop (mk_eq_iff (t, u)));  | 
| 20113 | 74  | 
in SOME (prems' MRS Goal.prove ctxt [] [] goal (K (EVERY tacs)))  | 
| 18678 | 75  | 
handle ERROR msg =>  | 
| 15531 | 76  | 
        (warning (msg ^ "\nCancellation failed: no typing information? (" ^ name ^ ")"); NONE)
 | 
| 9548 | 77  | 
end;  | 
78  | 
||
| 32155 | 79  | 
fun prep_simproc thy (name, pats, proc) =  | 
| 
38715
 
6513ea67d95d
renamed Simplifier.simproc(_i) to Simplifier.simproc_global(_i) to emphasize that this is not the real thing;
 
wenzelm 
parents: 
38513 
diff
changeset
 | 
80  | 
Simplifier.simproc_global thy name pats proc;  | 
| 9548 | 81  | 
|
82  | 
||
| 13462 | 83  | 
(*** Use CancelNumerals simproc without binary numerals,  | 
| 9548 | 84  | 
just for cancellation ***)  | 
85  | 
||
| 38513 | 86  | 
val mk_times = FOLogic.mk_binop @{const_name Arith.mult};
 | 
| 9548 | 87  | 
|
88  | 
fun mk_prod [] = one  | 
|
89  | 
| mk_prod [t] = t  | 
|
90  | 
| mk_prod (t :: ts) = if t = one then mk_prod ts  | 
|
91  | 
else mk_times (t, mk_prod ts);  | 
|
92  | 
||
| 38513 | 93  | 
val dest_times = FOLogic.dest_bin @{const_name Arith.mult} iT;
 | 
| 9548 | 94  | 
|
95  | 
fun dest_prod t =  | 
|
96  | 
let val (t,u) = dest_times t  | 
|
97  | 
in dest_prod t @ dest_prod u end  | 
|
98  | 
handle TERM _ => [t];  | 
|
99  | 
||
100  | 
(*Dummy version: the only arguments are 0 and 1*)  | 
|
| 
24630
 
351a308ab58d
simplified type int (eliminated IntInf.int, integer);
 
wenzelm 
parents: 
20342 
diff
changeset
 | 
101  | 
fun mk_coeff (0, t) = zero  | 
| 9548 | 102  | 
| mk_coeff (1, t) = t  | 
103  | 
  | mk_coeff _       = raise TERM("mk_coeff", []);
 | 
|
104  | 
||
105  | 
(*Dummy version: the "coefficient" is always 1.  | 
|
106  | 
In the result, the factors are sorted terms*)  | 
|
| 35408 | 107  | 
fun dest_coeff t = (1, mk_prod (sort Term_Ord.term_ord (dest_prod t)));  | 
| 9548 | 108  | 
|
109  | 
(*Find first coefficient-term THAT MATCHES u*)  | 
|
110  | 
fun find_first_coeff past u [] = raise TERM("find_first_coeff", [])
 | 
|
111  | 
| find_first_coeff past u (t::terms) =  | 
|
112  | 
let val (n,u') = dest_coeff t  | 
|
113  | 
in if u aconv u' then (n, rev past @ terms)  | 
|
114  | 
else find_first_coeff (t::past) u terms  | 
|
115  | 
end  | 
|
116  | 
handle TERM _ => find_first_coeff (t::past) u terms;  | 
|
117  | 
||
118  | 
||
119  | 
(*Simplify #1*n and n*#1 to n*)  | 
|
| 24893 | 120  | 
val add_0s = [@{thm add_0_natify}, @{thm add_0_right_natify}];
 | 
121  | 
val add_succs = [@{thm add_succ}, @{thm add_succ_right}];
 | 
|
122  | 
val mult_1s = [@{thm mult_1_natify}, @{thm mult_1_right_natify}];
 | 
|
123  | 
val tc_rules = [@{thm natify_in_nat}, @{thm add_type}, @{thm diff_type}, @{thm mult_type}];
 | 
|
124  | 
val natifys = [@{thm natify_0}, @{thm natify_ident}, @{thm add_natify1}, @{thm add_natify2},
 | 
|
125  | 
               @{thm diff_natify1}, @{thm diff_natify2}];
 | 
|
| 9548 | 126  | 
|
127  | 
(*Final simplification: cancel + and **)  | 
|
| 18328 | 128  | 
fun simplify_meta_eq rules =  | 
129  | 
let val ss0 =  | 
|
| 24893 | 130  | 
    FOL_ss addeqcongs [@{thm eq_cong2}, @{thm iff_cong2}]
 | 
| 26287 | 131  | 
      delsimps @{thms iff_simps} (*these could erase the whole rule!*)
 | 
| 18328 | 132  | 
addsimps rules  | 
133  | 
in fn ss => mk_meta_eq o simplify (Simplifier.inherit_context ss ss0) end;  | 
|
| 9548 | 134  | 
|
| 24893 | 135  | 
val final_rules = add_0s @ mult_1s @ [@{thm mult_0}, @{thm mult_0_right}];
 | 
| 9548 | 136  | 
|
137  | 
structure CancelNumeralsCommon =  | 
|
138  | 
struct  | 
|
| 
14387
 
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
 
paulson 
parents: 
13487 
diff
changeset
 | 
139  | 
val mk_sum = (fn T:typ => mk_sum)  | 
| 9548 | 140  | 
val dest_sum = dest_sum  | 
141  | 
val mk_coeff = mk_coeff  | 
|
142  | 
val dest_coeff = dest_coeff  | 
|
143  | 
val find_first_coeff = find_first_coeff []  | 
|
| 18328 | 144  | 
|
| 24893 | 145  | 
  val norm_ss1 = ZF_ss addsimps add_0s @ add_succs @ mult_1s @ @{thms add_ac}
 | 
146  | 
  val norm_ss2 = ZF_ss addsimps add_0s @ mult_1s @ @{thms add_ac} @
 | 
|
147  | 
    @{thms mult_ac} @ tc_rules @ natifys
 | 
|
| 16973 | 148  | 
fun norm_tac ss =  | 
| 18328 | 149  | 
ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss1))  | 
150  | 
THEN ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss2))  | 
|
151  | 
val numeral_simp_ss = ZF_ss addsimps add_0s @ tc_rules @ natifys  | 
|
| 16973 | 152  | 
fun numeral_simp_tac ss =  | 
| 18328 | 153  | 
ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss numeral_simp_ss))  | 
| 9548 | 154  | 
val simplify_meta_eq = simplify_meta_eq final_rules  | 
155  | 
end;  | 
|
156  | 
||
| 9874 | 157  | 
(** The functor argumnets are declared as separate structures  | 
158  | 
so that they can be exported to ease debugging. **)  | 
|
| 9548 | 159  | 
|
| 13462 | 160  | 
structure EqCancelNumeralsData =  | 
| 9874 | 161  | 
struct  | 
162  | 
open CancelNumeralsCommon  | 
|
| 9548 | 163  | 
val prove_conv = prove_conv "nateq_cancel_numerals"  | 
164  | 
val mk_bal = FOLogic.mk_eq  | 
|
| 
9649
 
89155e48fa53
simproc bug fix: only TYPING assumptions are given to the simplifier
 
paulson 
parents: 
9570 
diff
changeset
 | 
165  | 
val dest_bal = FOLogic.dest_eq  | 
| 35409 | 166  | 
  val bal_add1 = @{thm eq_add_iff} RS @{thm iff_trans}
 | 
167  | 
  val bal_add2 = @{thm eq_add_iff} RS @{thm iff_trans}
 | 
|
| 
44947
 
8ae418dfe561
dropped unused argument – avoids problem with SML/NJ
 
haftmann 
parents: 
44058 
diff
changeset
 | 
168  | 
  val trans_tac = gen_trans_tac @{thm iff_trans}
 | 
| 9874 | 169  | 
end;  | 
170  | 
||
171  | 
structure EqCancelNumerals = CancelNumeralsFun(EqCancelNumeralsData);  | 
|
| 9548 | 172  | 
|
| 13462 | 173  | 
structure LessCancelNumeralsData =  | 
| 9874 | 174  | 
struct  | 
175  | 
open CancelNumeralsCommon  | 
|
| 9548 | 176  | 
val prove_conv = prove_conv "natless_cancel_numerals"  | 
| 38513 | 177  | 
  val mk_bal   = FOLogic.mk_binrel @{const_name Ordinal.lt}
 | 
178  | 
  val dest_bal = FOLogic.dest_bin @{const_name Ordinal.lt} iT
 | 
|
| 35409 | 179  | 
  val bal_add1 = @{thm less_add_iff} RS @{thm iff_trans}
 | 
180  | 
  val bal_add2 = @{thm less_add_iff} RS @{thm iff_trans}
 | 
|
| 
44947
 
8ae418dfe561
dropped unused argument – avoids problem with SML/NJ
 
haftmann 
parents: 
44058 
diff
changeset
 | 
181  | 
  val trans_tac = gen_trans_tac @{thm iff_trans}
 | 
| 9874 | 182  | 
end;  | 
183  | 
||
184  | 
structure LessCancelNumerals = CancelNumeralsFun(LessCancelNumeralsData);  | 
|
| 9548 | 185  | 
|
| 13462 | 186  | 
structure DiffCancelNumeralsData =  | 
| 9874 | 187  | 
struct  | 
188  | 
open CancelNumeralsCommon  | 
|
| 9548 | 189  | 
val prove_conv = prove_conv "natdiff_cancel_numerals"  | 
| 38513 | 190  | 
  val mk_bal   = FOLogic.mk_binop @{const_name Arith.diff}
 | 
191  | 
  val dest_bal = FOLogic.dest_bin @{const_name Arith.diff} iT
 | 
|
| 35409 | 192  | 
  val bal_add1 = @{thm diff_add_eq} RS @{thm trans}
 | 
193  | 
  val bal_add2 = @{thm diff_add_eq} RS @{thm trans}
 | 
|
| 
44947
 
8ae418dfe561
dropped unused argument – avoids problem with SML/NJ
 
haftmann 
parents: 
44058 
diff
changeset
 | 
194  | 
  val trans_tac = gen_trans_tac @{thm trans}
 | 
| 9874 | 195  | 
end;  | 
196  | 
||
197  | 
structure DiffCancelNumerals = CancelNumeralsFun(DiffCancelNumeralsData);  | 
|
| 9548 | 198  | 
|
199  | 
||
200  | 
val nat_cancel =  | 
|
| 32155 | 201  | 
  map (prep_simproc @{theory})
 | 
| 13462 | 202  | 
   [("nateq_cancel_numerals",
 | 
203  | 
["l #+ m = n", "l = m #+ n",  | 
|
204  | 
"l #* m = n", "l = m #* n",  | 
|
205  | 
"succ(m) = n", "m = succ(n)"],  | 
|
| 
20044
 
92cc2f4c7335
simprocs: no theory argument -- use simpset context instead;
 
wenzelm 
parents: 
19250 
diff
changeset
 | 
206  | 
(K EqCancelNumerals.proc)),  | 
| 13462 | 207  | 
    ("natless_cancel_numerals",
 | 
208  | 
["l #+ m < n", "l < m #+ n",  | 
|
209  | 
"l #* m < n", "l < m #* n",  | 
|
210  | 
"succ(m) < n", "m < succ(n)"],  | 
|
| 
20044
 
92cc2f4c7335
simprocs: no theory argument -- use simpset context instead;
 
wenzelm 
parents: 
19250 
diff
changeset
 | 
211  | 
(K LessCancelNumerals.proc)),  | 
| 13462 | 212  | 
    ("natdiff_cancel_numerals",
 | 
213  | 
["(l #+ m) #- n", "l #- (m #+ n)",  | 
|
214  | 
"(l #* m) #- n", "l #- (m #* n)",  | 
|
215  | 
"succ(m) #- n", "m #- succ(n)"],  | 
|
| 
20044
 
92cc2f4c7335
simprocs: no theory argument -- use simpset context instead;
 
wenzelm 
parents: 
19250 
diff
changeset
 | 
216  | 
(K DiffCancelNumerals.proc))];  | 
| 9548 | 217  | 
|
218  | 
end;  | 
|
219  | 
||
| 13259 | 220  | 
Addsimprocs ArithData.nat_cancel;  | 
221  | 
||
222  | 
||
| 9548 | 223  | 
(*examples:  | 
224  | 
print_depth 22;  | 
|
225  | 
set timing;  | 
|
| 
40878
 
7695e4de4d86
renamed trace_simp to simp_trace, and debug_simp to simp_debug;
 
wenzelm 
parents: 
38715 
diff
changeset
 | 
226  | 
set simp_trace;  | 
| 9548 | 227  | 
fun test s = (Goal s; by (Asm_simp_tac 1));  | 
228  | 
||
229  | 
test "x #+ y = x #+ z";  | 
|
230  | 
test "y #+ x = x #+ z";  | 
|
231  | 
test "x #+ y #+ z = x #+ z";  | 
|
232  | 
test "y #+ (z #+ x) = z #+ x";  | 
|
233  | 
test "x #+ y #+ z = (z #+ y) #+ (x #+ w)";  | 
|
234  | 
test "x#*y #+ z = (z #+ y) #+ (y#*x #+ w)";  | 
|
235  | 
||
236  | 
test "x #+ succ(y) = x #+ z";  | 
|
237  | 
test "x #+ succ(y) = succ(z #+ x)";  | 
|
238  | 
test "succ(x) #+ succ(y) #+ z = succ(z #+ y) #+ succ(x #+ w)";  | 
|
239  | 
||
240  | 
test "(x #+ y) #- (x #+ z) = w";  | 
|
241  | 
test "(y #+ x) #- (x #+ z) = dd";  | 
|
242  | 
test "(x #+ y #+ z) #- (x #+ z) = dd";  | 
|
243  | 
test "(y #+ (z #+ x)) #- (z #+ x) = dd";  | 
|
244  | 
test "(x #+ y #+ z) #- ((z #+ y) #+ (x #+ w)) = dd";  | 
|
245  | 
test "(x#*y #+ z) #- ((z #+ y) #+ (y#*x #+ w)) = dd";  | 
|
246  | 
||
247  | 
(*BAD occurrence of natify*)  | 
|
248  | 
test "(x #+ succ(y)) #- (x #+ z) = dd";  | 
|
249  | 
||
250  | 
test "x #* y2 #+ y #* x2 = y #* x2 #+ x #* y2";  | 
|
251  | 
||
252  | 
test "(x #+ succ(y)) #- (succ(z #+ x)) = dd";  | 
|
253  | 
test "(succ(x) #+ succ(y) #+ z) #- (succ(z #+ y) #+ succ(x #+ w)) = dd";  | 
|
254  | 
||
255  | 
(*use of typing information*)  | 
|
256  | 
test "x : nat ==> x #+ y = x";  | 
|
257  | 
test "x : nat --> x #+ y = x";  | 
|
258  | 
test "x : nat ==> x #+ y < x";  | 
|
259  | 
test "x : nat ==> x < y#+x";  | 
|
| 13126 | 260  | 
test "x : nat ==> x le succ(x)";  | 
| 9548 | 261  | 
|
262  | 
(*fails: no typing information isn't visible*)  | 
|
263  | 
test "x #+ y = x";  | 
|
264  | 
||
265  | 
test "x #+ y < x #+ z";  | 
|
266  | 
test "y #+ x < x #+ z";  | 
|
267  | 
test "x #+ y #+ z < x #+ z";  | 
|
268  | 
test "y #+ z #+ x < x #+ z";  | 
|
269  | 
test "y #+ (z #+ x) < z #+ x";  | 
|
270  | 
test "x #+ y #+ z < (z #+ y) #+ (x #+ w)";  | 
|
271  | 
test "x#*y #+ z < (z #+ y) #+ (y#*x #+ w)";  | 
|
272  | 
||
273  | 
test "x #+ succ(y) < x #+ z";  | 
|
274  | 
test "x #+ succ(y) < succ(z #+ x)";  | 
|
275  | 
test "succ(x) #+ succ(y) #+ z < succ(z #+ y) #+ succ(x #+ w)";  | 
|
276  | 
||
277  | 
test "x #+ succ(y) le succ(z #+ x)";  | 
|
278  | 
*)  |