| author | wenzelm | 
| Fri, 27 Nov 2015 19:00:27 +0100 | |
| changeset 61752 | 814bbe5d9204 | 
| parent 61605 | 1bf7b186542e | 
| child 61776 | 57bb7da5c867 | 
| permissions | -rw-r--r-- | 
| 58101 | 1 | (* Author: Tobias Nipkow, TU Muenchen *) | 
| 2 | ||
| 60758 | 3 | section \<open>Sum and product over lists\<close> | 
| 58101 | 4 | |
| 5 | theory Groups_List | |
| 6 | imports List | |
| 7 | begin | |
| 8 | ||
| 58320 | 9 | no_notation times (infixl "*" 70) | 
| 10 | no_notation Groups.one ("1")
 | |
| 11 | ||
| 12 | locale monoid_list = monoid | |
| 13 | begin | |
| 14 | ||
| 15 | definition F :: "'a list \<Rightarrow> 'a" | |
| 16 | where | |
| 17 | eq_foldr [code]: "F xs = foldr f xs 1" | |
| 18 | ||
| 19 | lemma Nil [simp]: | |
| 20 | "F [] = 1" | |
| 21 | by (simp add: eq_foldr) | |
| 22 | ||
| 23 | lemma Cons [simp]: | |
| 24 | "F (x # xs) = x * F xs" | |
| 25 | by (simp add: eq_foldr) | |
| 26 | ||
| 27 | lemma append [simp]: | |
| 28 | "F (xs @ ys) = F xs * F ys" | |
| 29 | by (induct xs) (simp_all add: assoc) | |
| 30 | ||
| 31 | end | |
| 58101 | 32 | |
| 58320 | 33 | locale comm_monoid_list = comm_monoid + monoid_list | 
| 34 | begin | |
| 35 | ||
| 36 | lemma rev [simp]: | |
| 37 | "F (rev xs) = F xs" | |
| 38 | by (simp add: eq_foldr foldr_fold fold_rev fun_eq_iff assoc left_commute) | |
| 39 | ||
| 40 | end | |
| 41 | ||
| 42 | locale comm_monoid_list_set = list: comm_monoid_list + set: comm_monoid_set | |
| 43 | begin | |
| 58101 | 44 | |
| 58320 | 45 | lemma distinct_set_conv_list: | 
| 46 | "distinct xs \<Longrightarrow> set.F g (set xs) = list.F (map g xs)" | |
| 47 | by (induct xs) simp_all | |
| 58101 | 48 | |
| 58320 | 49 | lemma set_conv_list [code]: | 
| 50 | "set.F g (set xs) = list.F (map g (remdups xs))" | |
| 51 | by (simp add: distinct_set_conv_list [symmetric]) | |
| 52 | ||
| 53 | end | |
| 54 | ||
| 55 | notation times (infixl "*" 70) | |
| 56 | notation Groups.one ("1")
 | |
| 57 | ||
| 58 | ||
| 60758 | 59 | subsection \<open>List summation\<close> | 
| 58320 | 60 | |
| 61 | context monoid_add | |
| 62 | begin | |
| 63 | ||
| 64 | definition listsum :: "'a list \<Rightarrow> 'a" | |
| 65 | where | |
| 66 | "listsum = monoid_list.F plus 0" | |
| 58101 | 67 | |
| 61605 | 68 | sublocale listsum: monoid_list plus 0 | 
| 61566 
c3d6e570ccef
Keyword 'rewrites' identifies rewrite morphisms.
 ballarin parents: 
61378diff
changeset | 69 | rewrites | 
| 58320 | 70 | "monoid_list.F plus 0 = listsum" | 
| 71 | proof - | |
| 72 | show "monoid_list plus 0" .. | |
| 61605 | 73 | then interpret listsum: monoid_list plus 0 . | 
| 58320 | 74 | from listsum_def show "monoid_list.F plus 0 = listsum" by rule | 
| 75 | qed | |
| 76 | ||
| 77 | end | |
| 78 | ||
| 79 | context comm_monoid_add | |
| 80 | begin | |
| 81 | ||
| 61605 | 82 | sublocale listsum: comm_monoid_list plus 0 | 
| 61566 
c3d6e570ccef
Keyword 'rewrites' identifies rewrite morphisms.
 ballarin parents: 
61378diff
changeset | 83 | rewrites | 
| 58320 | 84 | "monoid_list.F plus 0 = listsum" | 
| 85 | proof - | |
| 86 | show "comm_monoid_list plus 0" .. | |
| 61605 | 87 | then interpret listsum: comm_monoid_list plus 0 . | 
| 58320 | 88 | from listsum_def show "monoid_list.F plus 0 = listsum" by rule | 
| 58101 | 89 | qed | 
| 90 | ||
| 61605 | 91 | sublocale setsum: comm_monoid_list_set plus 0 | 
| 61566 
c3d6e570ccef
Keyword 'rewrites' identifies rewrite morphisms.
 ballarin parents: 
61378diff
changeset | 92 | rewrites | 
| 58320 | 93 | "monoid_list.F plus 0 = listsum" | 
| 94 | and "comm_monoid_set.F plus 0 = setsum" | |
| 95 | proof - | |
| 96 | show "comm_monoid_list_set plus 0" .. | |
| 61605 | 97 | then interpret setsum: comm_monoid_list_set plus 0 . | 
| 58320 | 98 | from listsum_def show "monoid_list.F plus 0 = listsum" by rule | 
| 99 | from setsum_def show "comm_monoid_set.F plus 0 = setsum" by rule | |
| 100 | qed | |
| 101 | ||
| 102 | end | |
| 103 | ||
| 60758 | 104 | text \<open>Some syntactic sugar for summing a function over a list:\<close> | 
| 58101 | 105 | |
| 106 | syntax | |
| 107 |   "_listsum" :: "pttrn => 'a list => 'b => 'b"    ("(3SUM _<-_. _)" [0, 51, 10] 10)
 | |
| 108 | syntax (xsymbols) | |
| 109 |   "_listsum" :: "pttrn => 'a list => 'b => 'b"    ("(3\<Sum>_\<leftarrow>_. _)" [0, 51, 10] 10)
 | |
| 110 | ||
| 60758 | 111 | translations -- \<open>Beware of argument permutation!\<close> | 
| 58101 | 112 | "SUM x<-xs. b" == "CONST listsum (CONST map (%x. b) xs)" | 
| 113 | "\<Sum>x\<leftarrow>xs. b" == "CONST listsum (CONST map (%x. b) xs)" | |
| 114 | ||
| 60758 | 115 | text \<open>TODO duplicates\<close> | 
| 58320 | 116 | lemmas listsum_simps = listsum.Nil listsum.Cons | 
| 117 | lemmas listsum_append = listsum.append | |
| 118 | lemmas listsum_rev = listsum.rev | |
| 119 | ||
| 120 | lemma (in monoid_add) fold_plus_listsum_rev: | |
| 121 | "fold plus xs = plus (listsum (rev xs))" | |
| 122 | proof | |
| 123 | fix x | |
| 124 | have "fold plus xs x = listsum (rev xs @ [x])" | |
| 125 | by (simp add: foldr_conv_fold listsum.eq_foldr) | |
| 126 | also have "\<dots> = listsum (rev xs) + x" | |
| 127 | by simp | |
| 128 | finally show "fold plus xs x = listsum (rev xs) + x" | |
| 129 | . | |
| 130 | qed | |
| 131 | ||
| 58101 | 132 | lemma (in comm_monoid_add) listsum_map_remove1: | 
| 133 | "x \<in> set xs \<Longrightarrow> listsum (map f xs) = f x + listsum (map f (remove1 x xs))" | |
| 134 | by (induct xs) (auto simp add: ac_simps) | |
| 135 | ||
| 136 | lemma (in monoid_add) size_list_conv_listsum: | |
| 137 | "size_list f xs = listsum (map f xs) + size xs" | |
| 138 | by (induct xs) auto | |
| 139 | ||
| 140 | lemma (in monoid_add) length_concat: | |
| 141 | "length (concat xss) = listsum (map length xss)" | |
| 142 | by (induct xss) simp_all | |
| 143 | ||
| 144 | lemma (in monoid_add) length_product_lists: | |
| 145 | "length (product_lists xss) = foldr op * (map length xss) 1" | |
| 146 | proof (induct xss) | |
| 147 | case (Cons xs xss) then show ?case by (induct xs) (auto simp: length_concat o_def) | |
| 148 | qed simp | |
| 149 | ||
| 150 | lemma (in monoid_add) listsum_map_filter: | |
| 151 | assumes "\<And>x. x \<in> set xs \<Longrightarrow> \<not> P x \<Longrightarrow> f x = 0" | |
| 152 | shows "listsum (map f (filter P xs)) = listsum (map f xs)" | |
| 153 | using assms by (induct xs) auto | |
| 154 | ||
| 155 | lemma (in comm_monoid_add) distinct_listsum_conv_Setsum: | |
| 156 | "distinct xs \<Longrightarrow> listsum xs = Setsum (set xs)" | |
| 157 | by (induct xs) simp_all | |
| 158 | ||
| 58995 | 159 | lemma listsum_upt[simp]: | 
| 160 |   "m \<le> n \<Longrightarrow> listsum [m..<n] = \<Sum> {m..<n}"
 | |
| 161 | by(simp add: distinct_listsum_conv_Setsum) | |
| 162 | ||
| 58101 | 163 | lemma listsum_eq_0_nat_iff_nat [simp]: | 
| 164 | "listsum ns = (0::nat) \<longleftrightarrow> (\<forall>n \<in> set ns. n = 0)" | |
| 165 | by (induct ns) simp_all | |
| 166 | ||
| 167 | lemma member_le_listsum_nat: | |
| 168 | "(n :: nat) \<in> set ns \<Longrightarrow> n \<le> listsum ns" | |
| 169 | by (induct ns) auto | |
| 170 | ||
| 171 | lemma elem_le_listsum_nat: | |
| 172 | "k < size ns \<Longrightarrow> ns ! k \<le> listsum (ns::nat list)" | |
| 173 | by (rule member_le_listsum_nat) simp | |
| 174 | ||
| 175 | lemma listsum_update_nat: | |
| 176 | "k < size ns \<Longrightarrow> listsum (ns[k := (n::nat)]) = listsum ns + n - ns ! k" | |
| 177 | apply(induct ns arbitrary:k) | |
| 178 | apply (auto split:nat.split) | |
| 179 | apply(drule elem_le_listsum_nat) | |
| 180 | apply arith | |
| 181 | done | |
| 182 | ||
| 183 | lemma (in monoid_add) listsum_triv: | |
| 184 | "(\<Sum>x\<leftarrow>xs. r) = of_nat (length xs) * r" | |
| 185 | by (induct xs) (simp_all add: distrib_right) | |
| 186 | ||
| 187 | lemma (in monoid_add) listsum_0 [simp]: | |
| 188 | "(\<Sum>x\<leftarrow>xs. 0) = 0" | |
| 189 | by (induct xs) (simp_all add: distrib_right) | |
| 190 | ||
| 60758 | 191 | text\<open>For non-Abelian groups @{text xs} needs to be reversed on one side:\<close>
 | 
| 58101 | 192 | lemma (in ab_group_add) uminus_listsum_map: | 
| 193 | "- listsum (map f xs) = listsum (map (uminus \<circ> f) xs)" | |
| 194 | by (induct xs) simp_all | |
| 195 | ||
| 196 | lemma (in comm_monoid_add) listsum_addf: | |
| 197 | "(\<Sum>x\<leftarrow>xs. f x + g x) = listsum (map f xs) + listsum (map g xs)" | |
| 198 | by (induct xs) (simp_all add: algebra_simps) | |
| 199 | ||
| 200 | lemma (in ab_group_add) listsum_subtractf: | |
| 201 | "(\<Sum>x\<leftarrow>xs. f x - g x) = listsum (map f xs) - listsum (map g xs)" | |
| 202 | by (induct xs) (simp_all add: algebra_simps) | |
| 203 | ||
| 204 | lemma (in semiring_0) listsum_const_mult: | |
| 205 | "(\<Sum>x\<leftarrow>xs. c * f x) = c * (\<Sum>x\<leftarrow>xs. f x)" | |
| 206 | by (induct xs) (simp_all add: algebra_simps) | |
| 207 | ||
| 208 | lemma (in semiring_0) listsum_mult_const: | |
| 209 | "(\<Sum>x\<leftarrow>xs. f x * c) = (\<Sum>x\<leftarrow>xs. f x) * c" | |
| 210 | by (induct xs) (simp_all add: algebra_simps) | |
| 211 | ||
| 212 | lemma (in ordered_ab_group_add_abs) listsum_abs: | |
| 213 | "\<bar>listsum xs\<bar> \<le> listsum (map abs xs)" | |
| 214 | by (induct xs) (simp_all add: order_trans [OF abs_triangle_ineq]) | |
| 215 | ||
| 216 | lemma listsum_mono: | |
| 217 |   fixes f g :: "'a \<Rightarrow> 'b::{monoid_add, ordered_ab_semigroup_add}"
 | |
| 218 | shows "(\<And>x. x \<in> set xs \<Longrightarrow> f x \<le> g x) \<Longrightarrow> (\<Sum>x\<leftarrow>xs. f x) \<le> (\<Sum>x\<leftarrow>xs. g x)" | |
| 219 | by (induct xs) (simp, simp add: add_mono) | |
| 220 | ||
| 221 | lemma (in monoid_add) listsum_distinct_conv_setsum_set: | |
| 222 | "distinct xs \<Longrightarrow> listsum (map f xs) = setsum f (set xs)" | |
| 223 | by (induct xs) simp_all | |
| 224 | ||
| 225 | lemma (in monoid_add) interv_listsum_conv_setsum_set_nat: | |
| 226 | "listsum (map f [m..<n]) = setsum f (set [m..<n])" | |
| 227 | by (simp add: listsum_distinct_conv_setsum_set) | |
| 228 | ||
| 229 | lemma (in monoid_add) interv_listsum_conv_setsum_set_int: | |
| 230 | "listsum (map f [k..l]) = setsum f (set [k..l])" | |
| 231 | by (simp add: listsum_distinct_conv_setsum_set) | |
| 232 | ||
| 60758 | 233 | text \<open>General equivalence between @{const listsum} and @{const setsum}\<close>
 | 
| 58101 | 234 | lemma (in monoid_add) listsum_setsum_nth: | 
| 235 | "listsum xs = (\<Sum> i = 0 ..< length xs. xs ! i)" | |
| 236 | using interv_listsum_conv_setsum_set_nat [of "op ! xs" 0 "length xs"] by (simp add: map_nth) | |
| 237 | ||
| 59728 | 238 | lemma listsum_map_eq_setsum_count: | 
| 60541 | 239 | "listsum (map f xs) = setsum (\<lambda>x. count_list xs x * f x) (set xs)" | 
| 59728 | 240 | proof(induction xs) | 
| 241 | case (Cons x xs) | |
| 242 | show ?case (is "?l = ?r") | |
| 243 | proof cases | |
| 244 | assume "x \<in> set xs" | |
| 60541 | 245 | have "?l = f x + (\<Sum>x\<in>set xs. count_list xs x * f x)" by (simp add: Cons.IH) | 
| 60758 | 246 |     also have "set xs = insert x (set xs - {x})" using \<open>x \<in> set xs\<close>by blast
 | 
| 60541 | 247 |     also have "f x + (\<Sum>x\<in>insert x (set xs - {x}). count_list xs x * f x) = ?r"
 | 
| 59728 | 248 | by (simp add: setsum.insert_remove eq_commute) | 
| 249 | finally show ?thesis . | |
| 250 | next | |
| 251 | assume "x \<notin> set xs" | |
| 252 | hence "\<And>xa. xa \<in> set xs \<Longrightarrow> x \<noteq> xa" by blast | |
| 60758 | 253 | thus ?thesis by (simp add: Cons.IH \<open>x \<notin> set xs\<close>) | 
| 59728 | 254 | qed | 
| 255 | qed simp | |
| 256 | ||
| 257 | lemma listsum_map_eq_setsum_count2: | |
| 258 | assumes "set xs \<subseteq> X" "finite X" | |
| 60541 | 259 | shows "listsum (map f xs) = setsum (\<lambda>x. count_list xs x * f x) X" | 
| 59728 | 260 | proof- | 
| 60541 | 261 | let ?F = "\<lambda>x. count_list xs x * f x" | 
| 59728 | 262 | have "setsum ?F X = setsum ?F (set xs \<union> (X - set xs))" | 
| 263 | using Un_absorb1[OF assms(1)] by(simp) | |
| 264 | also have "\<dots> = setsum ?F (set xs)" | |
| 265 | using assms(2) | |
| 266 | by(simp add: setsum.union_disjoint[OF _ _ Diff_disjoint] del: Un_Diff_cancel) | |
| 267 | finally show ?thesis by(simp add:listsum_map_eq_setsum_count) | |
| 268 | qed | |
| 269 | ||
| 58101 | 270 | |
| 60758 | 271 | subsection \<open>Further facts about @{const List.n_lists}\<close>
 | 
| 58101 | 272 | |
| 273 | lemma length_n_lists: "length (List.n_lists n xs) = length xs ^ n" | |
| 274 | by (induct n) (auto simp add: comp_def length_concat listsum_triv) | |
| 275 | ||
| 276 | lemma distinct_n_lists: | |
| 277 | assumes "distinct xs" | |
| 278 | shows "distinct (List.n_lists n xs)" | |
| 279 | proof (rule card_distinct) | |
| 280 | from assms have card_length: "card (set xs) = length xs" by (rule distinct_card) | |
| 281 | have "card (set (List.n_lists n xs)) = card (set xs) ^ n" | |
| 282 | proof (induct n) | |
| 283 | case 0 then show ?case by simp | |
| 284 | next | |
| 285 | case (Suc n) | |
| 286 | moreover have "card (\<Union>ys\<in>set (List.n_lists n xs). (\<lambda>y. y # ys) ` set xs) | |
| 287 | = (\<Sum>ys\<in>set (List.n_lists n xs). card ((\<lambda>y. y # ys) ` set xs))" | |
| 288 | by (rule card_UN_disjoint) auto | |
| 289 | moreover have "\<And>ys. card ((\<lambda>y. y # ys) ` set xs) = card (set xs)" | |
| 290 | by (rule card_image) (simp add: inj_on_def) | |
| 291 | ultimately show ?case by auto | |
| 292 | qed | |
| 293 | also have "\<dots> = length xs ^ n" by (simp add: card_length) | |
| 294 | finally show "card (set (List.n_lists n xs)) = length (List.n_lists n xs)" | |
| 295 | by (simp add: length_n_lists) | |
| 296 | qed | |
| 297 | ||
| 298 | ||
| 60758 | 299 | subsection \<open>Tools setup\<close> | 
| 58101 | 300 | |
| 58320 | 301 | lemmas setsum_code = setsum.set_conv_list | 
| 302 | ||
| 58101 | 303 | lemma setsum_set_upto_conv_listsum_int [code_unfold]: | 
| 304 | "setsum f (set [i..j::int]) = listsum (map f [i..j])" | |
| 305 | by (simp add: interv_listsum_conv_setsum_set_int) | |
| 306 | ||
| 307 | lemma setsum_set_upt_conv_listsum_nat [code_unfold]: | |
| 308 | "setsum f (set [m..<n]) = listsum (map f [m..<n])" | |
| 309 | by (simp add: interv_listsum_conv_setsum_set_nat) | |
| 310 | ||
| 311 | context | |
| 312 | begin | |
| 313 | ||
| 314 | interpretation lifting_syntax . | |
| 315 | ||
| 316 | lemma listsum_transfer[transfer_rule]: | |
| 317 | assumes [transfer_rule]: "A 0 0" | |
| 318 | assumes [transfer_rule]: "(A ===> A ===> A) op + op +" | |
| 319 | shows "(list_all2 A ===> A) listsum listsum" | |
| 58320 | 320 | unfolding listsum.eq_foldr [abs_def] | 
| 58101 | 321 | by transfer_prover | 
| 322 | ||
| 323 | end | |
| 324 | ||
| 58368 | 325 | |
| 60758 | 326 | subsection \<open>List product\<close> | 
| 58368 | 327 | |
| 328 | context monoid_mult | |
| 329 | begin | |
| 330 | ||
| 331 | definition listprod :: "'a list \<Rightarrow> 'a" | |
| 332 | where | |
| 333 | "listprod = monoid_list.F times 1" | |
| 334 | ||
| 61605 | 335 | sublocale listprod: monoid_list times 1 | 
| 61566 
c3d6e570ccef
Keyword 'rewrites' identifies rewrite morphisms.
 ballarin parents: 
61378diff
changeset | 336 | rewrites | 
| 58368 | 337 | "monoid_list.F times 1 = listprod" | 
| 338 | proof - | |
| 339 | show "monoid_list times 1" .. | |
| 61605 | 340 | then interpret listprod: monoid_list times 1 . | 
| 58368 | 341 | from listprod_def show "monoid_list.F times 1 = listprod" by rule | 
| 342 | qed | |
| 343 | ||
| 58320 | 344 | end | 
| 58368 | 345 | |
| 346 | context comm_monoid_mult | |
| 347 | begin | |
| 348 | ||
| 61605 | 349 | sublocale listprod: comm_monoid_list times 1 | 
| 61566 
c3d6e570ccef
Keyword 'rewrites' identifies rewrite morphisms.
 ballarin parents: 
61378diff
changeset | 350 | rewrites | 
| 58368 | 351 | "monoid_list.F times 1 = listprod" | 
| 352 | proof - | |
| 353 | show "comm_monoid_list times 1" .. | |
| 61605 | 354 | then interpret listprod: comm_monoid_list times 1 . | 
| 58368 | 355 | from listprod_def show "monoid_list.F times 1 = listprod" by rule | 
| 356 | qed | |
| 357 | ||
| 61605 | 358 | sublocale setprod: comm_monoid_list_set times 1 | 
| 61566 
c3d6e570ccef
Keyword 'rewrites' identifies rewrite morphisms.
 ballarin parents: 
61378diff
changeset | 359 | rewrites | 
| 58368 | 360 | "monoid_list.F times 1 = listprod" | 
| 361 | and "comm_monoid_set.F times 1 = setprod" | |
| 362 | proof - | |
| 363 | show "comm_monoid_list_set times 1" .. | |
| 61605 | 364 | then interpret setprod: comm_monoid_list_set times 1 . | 
| 58368 | 365 | from listprod_def show "monoid_list.F times 1 = listprod" by rule | 
| 366 | from setprod_def show "comm_monoid_set.F times 1 = setprod" by rule | |
| 367 | qed | |
| 368 | ||
| 369 | end | |
| 370 | ||
| 60758 | 371 | text \<open>Some syntactic sugar:\<close> | 
| 58368 | 372 | |
| 373 | syntax | |
| 374 |   "_listprod" :: "pttrn => 'a list => 'b => 'b"    ("(3PROD _<-_. _)" [0, 51, 10] 10)
 | |
| 375 | syntax (xsymbols) | |
| 376 |   "_listprod" :: "pttrn => 'a list => 'b => 'b"    ("(3\<Prod>_\<leftarrow>_. _)" [0, 51, 10] 10)
 | |
| 377 | ||
| 60758 | 378 | translations -- \<open>Beware of argument permutation!\<close> | 
| 58368 | 379 | "PROD x<-xs. b" == "CONST listprod (CONST map (%x. b) xs)" | 
| 380 | "\<Prod>x\<leftarrow>xs. b" == "CONST listprod (CONST map (%x. b) xs)" | |
| 381 | ||
| 382 | end |