author | haftmann |
Sun, 21 Jun 2009 15:45:42 +0200 | |
changeset 31739 | 8155c4d94354 |
parent 27678 | 85ea2be46c71 |
child 32960 | 69916a850301 |
permissions | -rw-r--r-- |
5464 | 1 |
(* Title: ZF/AC/WO1_WO7.thy |
2 |
ID: $Id$ |
|
3 |
Author: Lawrence C Paulson, CU Computer Laboratory |
|
4 |
Copyright 1998 University of Cambridge |
|
5 |
||
6 |
WO7 <-> LEMMA <-> WO1 (Rubin & Rubin p. 5) |
|
7 |
LEMMA is the sentence denoted by (**) |
|
12776 | 8 |
|
9 |
Also, WO1 <-> WO8 |
|
5464 | 10 |
*) |
11 |
||
27678 | 12 |
theory WO1_WO7 |
13 |
imports AC_Equiv |
|
14 |
begin |
|
5464 | 15 |
|
24893 | 16 |
definition |
5464 | 17 |
"LEMMA == |
12776 | 18 |
\<forall>X. ~Finite(X) --> (\<exists>R. well_ord(X,R) & ~well_ord(X,converse(R)))" |
19 |
||
20 |
(* ********************************************************************** *) |
|
21 |
(* It is easy to see that WO7 is equivalent to (**) *) |
|
22 |
(* ********************************************************************** *) |
|
23 |
||
24 |
lemma WO7_iff_LEMMA: "WO7 <-> LEMMA" |
|
25 |
apply (unfold WO7_def LEMMA_def) |
|
26 |
apply (blast intro: Finite_well_ord_converse) |
|
27 |
done |
|
28 |
||
29 |
(* ********************************************************************** *) |
|
30 |
(* It is also easy to show that LEMMA implies WO1. *) |
|
31 |
(* ********************************************************************** *) |
|
32 |
||
33 |
lemma LEMMA_imp_WO1: "LEMMA ==> WO1" |
|
34 |
apply (unfold WO1_def LEMMA_def Finite_def eqpoll_def) |
|
35 |
apply (blast intro!: well_ord_rvimage [OF bij_is_inj nat_implies_well_ord]) |
|
36 |
done |
|
37 |
||
38 |
(* ********************************************************************** *) |
|
39 |
(* The Rubins' proof of the other implication is contained within the *) |
|
40 |
(* following sentence \<in> *) |
|
41 |
(* "... each infinite ordinal is well ordered by < but not by >." *) |
|
42 |
(* This statement can be proved by the following two theorems. *) |
|
43 |
(* But moreover we need to show similar property for any well ordered *) |
|
44 |
(* infinite set. It is not very difficult thanks to Isabelle order types *) |
|
45 |
(* We show that if a set is well ordered by some relation and by its *) |
|
46 |
(* converse, then apropriate order type is well ordered by the converse *) |
|
47 |
(* of it's membership relation, which in connection with the previous *) |
|
48 |
(* gives the conclusion. *) |
|
49 |
(* ********************************************************************** *) |
|
50 |
||
51 |
lemma converse_Memrel_not_wf_on: |
|
52 |
"[| Ord(a); ~Finite(a) |] ==> ~wf[a](converse(Memrel(a)))" |
|
53 |
apply (unfold wf_on_def wf_def) |
|
12820 | 54 |
apply (drule nat_le_infinite_Ord [THEN le_imp_subset], assumption) |
12776 | 55 |
apply (rule notI) |
13339
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents:
12820
diff
changeset
|
56 |
apply (erule_tac x = nat in allE, blast) |
12776 | 57 |
done |
58 |
||
59 |
lemma converse_Memrel_not_well_ord: |
|
60 |
"[| Ord(a); ~Finite(a) |] ==> ~well_ord(a,converse(Memrel(a)))" |
|
61 |
apply (unfold well_ord_def) |
|
62 |
apply (blast dest: converse_Memrel_not_wf_on) |
|
63 |
done |
|
64 |
||
65 |
lemma well_ord_rvimage_ordertype: |
|
66 |
"well_ord(A,r) \<Longrightarrow> |
|
67 |
rvimage (ordertype(A,r), converse(ordermap(A,r)),r) = |
|
68 |
Memrel(ordertype(A,r))" |
|
69 |
by (blast intro: ordertype_ord_iso [THEN ord_iso_sym] ord_iso_rvimage_eq |
|
70 |
Memrel_type [THEN subset_Int_iff [THEN iffD1]] trans) |
|
71 |
||
72 |
lemma well_ord_converse_Memrel: |
|
73 |
"[| well_ord(A,r); well_ord(A,converse(r)) |] |
|
74 |
==> well_ord(ordertype(A,r), converse(Memrel(ordertype(A,r))))" |
|
75 |
apply (subst well_ord_rvimage_ordertype [symmetric], assumption) |
|
76 |
apply (rule rvimage_converse [THEN subst]) |
|
77 |
apply (blast intro: ordertype_ord_iso ord_iso_sym ord_iso_is_bij |
|
78 |
bij_is_inj well_ord_rvimage) |
|
79 |
done |
|
80 |
||
81 |
lemma WO1_imp_LEMMA: "WO1 ==> LEMMA" |
|
82 |
apply (unfold WO1_def LEMMA_def, clarify) |
|
83 |
apply (blast dest: well_ord_converse_Memrel |
|
84 |
Ord_ordertype [THEN converse_Memrel_not_well_ord] |
|
85 |
intro: ordertype_ord_iso ord_iso_is_bij bij_is_inj lepoll_Finite |
|
86 |
lepoll_def [THEN def_imp_iff, THEN iffD2] ) |
|
87 |
done |
|
88 |
||
89 |
lemma WO1_iff_WO7: "WO1 <-> WO7" |
|
90 |
apply (simp add: WO7_iff_LEMMA) |
|
91 |
apply (blast intro: LEMMA_imp_WO1 WO1_imp_LEMMA) |
|
92 |
done |
|
93 |
||
94 |
||
95 |
||
96 |
(* ********************************************************************** *) |
|
97 |
(* The proof of WO8 <-> WO1 (Rubin & Rubin p. 6) *) |
|
98 |
(* ********************************************************************** *) |
|
99 |
||
100 |
lemma WO1_WO8: "WO1 ==> WO8" |
|
101 |
by (unfold WO1_def WO8_def, fast) |
|
102 |
||
103 |
||
104 |
(* The implication "WO8 ==> WO1": a faithful image of Rubin & Rubin's proof*) |
|
105 |
lemma WO8_WO1: "WO8 ==> WO1" |
|
106 |
apply (unfold WO1_def WO8_def) |
|
107 |
apply (rule allI) |
|
108 |
apply (erule_tac x = "{{x}. x \<in> A}" in allE) |
|
109 |
apply (erule impE) |
|
110 |
apply (rule_tac x = "\<lambda>a \<in> {{x}. x \<in> A}. THE x. a={x}" in exI) |
|
111 |
apply (force intro!: lam_type simp add: singleton_eq_iff the_equality) |
|
112 |
apply (blast intro: lam_sing_bij bij_is_inj well_ord_rvimage) |
|
113 |
done |
|
5464 | 114 |
|
115 |
end |