| 
31381
 | 
     1  | 
  | 
| 
 | 
     2  | 
(* Author: Florian Haftmann, TU Muenchen *)
  | 
| 
 | 
     3  | 
  | 
| 
 | 
     4  | 
header {* Comparing growth of functions on natural numbers by a preorder relation *}
 | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
theory Landau
  | 
| 
 | 
     7  | 
imports Main Preorder
  | 
| 
 | 
     8  | 
begin
  | 
| 
 | 
     9  | 
  | 
| 
 | 
    10  | 
text {*
 | 
| 
 | 
    11  | 
  We establish a preorder releation @{text "\<lesssim>"} on functions
 | 
| 
 | 
    12  | 
  from @{text "\<nat>"} to @{text "\<nat>"} such that @{text "f \<lesssim> g \<longleftrightarrow> f \<in> O(g)"}.
 | 
| 
 | 
    13  | 
*}
  | 
| 
 | 
    14  | 
  | 
| 
 | 
    15  | 
subsection {* Auxiliary *}
 | 
| 
 | 
    16  | 
  | 
| 
 | 
    17  | 
lemma Ex_All_bounded:
  | 
| 
 | 
    18  | 
  fixes n :: nat
  | 
| 
 | 
    19  | 
  assumes "\<exists>n. \<forall>m\<ge>n. P m"
  | 
| 
 | 
    20  | 
  obtains m where "m \<ge> n" and "P m"
  | 
| 
 | 
    21  | 
proof -
  | 
| 
 | 
    22  | 
  from assms obtain q where m_q: "\<forall>m\<ge>q. P m" ..
  | 
| 
 | 
    23  | 
  let ?m = "max q n"
  | 
| 
 | 
    24  | 
  have "?m \<ge> n" by auto
  | 
| 
 | 
    25  | 
  moreover from m_q have "P ?m" by auto
  | 
| 
 | 
    26  | 
  ultimately show thesis ..
  | 
| 
 | 
    27  | 
qed
  | 
| 
 | 
    28  | 
    
  | 
| 
 | 
    29  | 
  | 
| 
 | 
    30  | 
subsection {* The @{text "\<lesssim>"} relation *}
 | 
| 
 | 
    31  | 
  | 
| 
 | 
    32  | 
definition less_eq_fun :: "(nat \<Rightarrow> nat) \<Rightarrow> (nat \<Rightarrow> nat) \<Rightarrow> bool" (infix "\<lesssim>" 50) where
  | 
| 
 | 
    33  | 
  "f \<lesssim> g \<longleftrightarrow> (\<exists>c n. \<forall>m\<ge>n. f m \<le> Suc c * g m)"
  | 
| 
 | 
    34  | 
  | 
| 
 | 
    35  | 
lemma less_eq_fun_intro:
  | 
| 
 | 
    36  | 
  assumes "\<exists>c n. \<forall>m\<ge>n. f m \<le> Suc c * g m"
  | 
| 
 | 
    37  | 
  shows "f \<lesssim> g"
  | 
| 
 | 
    38  | 
  unfolding less_eq_fun_def by (rule assms)
  | 
| 
 | 
    39  | 
  | 
| 
 | 
    40  | 
lemma less_eq_fun_not_intro:
  | 
| 
 | 
    41  | 
  assumes "\<And>c n. \<exists>m\<ge>n. Suc c * g m < f m"
  | 
| 
 | 
    42  | 
  shows "\<not> f \<lesssim> g"
  | 
| 
 | 
    43  | 
  using assms unfolding less_eq_fun_def linorder_not_le [symmetric]
  | 
| 
 | 
    44  | 
  by blast
  | 
| 
 | 
    45  | 
  | 
| 
 | 
    46  | 
lemma less_eq_fun_elim:
  | 
| 
 | 
    47  | 
  assumes "f \<lesssim> g"
  | 
| 
 | 
    48  | 
  obtains n c where "\<And>m. m \<ge> n \<Longrightarrow> f m \<le> Suc c * g m"
  | 
| 
 | 
    49  | 
  using assms unfolding less_eq_fun_def by blast
  | 
| 
 | 
    50  | 
  | 
| 
 | 
    51  | 
lemma less_eq_fun_not_elim:
  | 
| 
 | 
    52  | 
  assumes "\<not> f \<lesssim> g"
  | 
| 
 | 
    53  | 
  obtains m where "m \<ge> n" and "Suc c * g m < f m"
  | 
| 
 | 
    54  | 
  using assms unfolding less_eq_fun_def linorder_not_le [symmetric]
  | 
| 
 | 
    55  | 
  by blast
  | 
| 
 | 
    56  | 
  | 
| 
 | 
    57  | 
lemma less_eq_fun_refl:
  | 
| 
 | 
    58  | 
  "f \<lesssim> f"
  | 
| 
 | 
    59  | 
proof (rule less_eq_fun_intro)
  | 
| 
 | 
    60  | 
  have "\<exists>n. \<forall>m\<ge>n. f m \<le> Suc 0 * f m" by auto
  | 
| 
 | 
    61  | 
  then show "\<exists>c n. \<forall>m\<ge>n. f m \<le> Suc c * f m" by blast
  | 
| 
 | 
    62  | 
qed
  | 
| 
 | 
    63  | 
  | 
| 
 | 
    64  | 
lemma less_eq_fun_trans:
  | 
| 
 | 
    65  | 
  assumes f_g: "f \<lesssim> g" and g_h: "g \<lesssim> h"
  | 
| 
 | 
    66  | 
  shows f_h: "f \<lesssim> h"
  | 
| 
 | 
    67  | 
proof -
  | 
| 
 | 
    68  | 
  from f_g obtain n\<^isub>1 c\<^isub>1
  | 
| 
 | 
    69  | 
    where P1: "\<And>m. m \<ge> n\<^isub>1 \<Longrightarrow> f m \<le> Suc c\<^isub>1 * g m"
  | 
| 
 | 
    70  | 
  by (erule less_eq_fun_elim)
  | 
| 
 | 
    71  | 
  moreover from g_h obtain n\<^isub>2 c\<^isub>2
  | 
| 
 | 
    72  | 
    where P2: "\<And>m. m \<ge> n\<^isub>2 \<Longrightarrow> g m \<le> Suc c\<^isub>2 * h m"
  | 
| 
 | 
    73  | 
  by (erule less_eq_fun_elim)
  | 
| 
 | 
    74  | 
  ultimately have "\<And>m. m \<ge> max n\<^isub>1 n\<^isub>2 \<Longrightarrow> f m \<le> Suc c\<^isub>1 * g m \<and> g m \<le> Suc c\<^isub>2 * h m"
  | 
| 
 | 
    75  | 
  by auto
  | 
| 
 | 
    76  | 
  moreover {
 | 
| 
 | 
    77  | 
    fix k l r :: nat
  | 
| 
 | 
    78  | 
    assume k_l: "k \<le> Suc c\<^isub>1 * l" and l_r: "l \<le> Suc c\<^isub>2 * r"
  | 
| 
 | 
    79  | 
    from l_r have "Suc c\<^isub>1 * l \<le> (Suc c\<^isub>1 * Suc c\<^isub>2) * r"
  | 
| 
 | 
    80  | 
    by (auto simp add: mult_le_cancel_left mult_assoc simp del: times_nat.simps mult_Suc_right)
  | 
| 
 | 
    81  | 
    with k_l have "k \<le> (Suc c\<^isub>1 * Suc c\<^isub>2) * r" by (rule preorder_class.order_trans)
  | 
| 
 | 
    82  | 
  }
  | 
| 
 | 
    83  | 
  ultimately have "\<And>m. m \<ge> max n\<^isub>1 n\<^isub>2 \<Longrightarrow> f m \<le> (Suc c\<^isub>1 * Suc c\<^isub>2) * h m" by auto
  | 
| 
 | 
    84  | 
  then have "\<And>m. m \<ge> max n\<^isub>1 n\<^isub>2 \<Longrightarrow> f m \<le> Suc ((Suc c\<^isub>1 * Suc c\<^isub>2) - 1) * h m" by auto
  | 
| 
 | 
    85  | 
  then show ?thesis unfolding less_eq_fun_def by blast
  | 
| 
 | 
    86  | 
qed
  | 
| 
 | 
    87  | 
  | 
| 
 | 
    88  | 
  | 
| 
 | 
    89  | 
subsection {* The @{text "\<approx>"} relation, the equivalence relation induced by @{text "\<lesssim>"} *}
 | 
| 
 | 
    90  | 
  | 
| 
 | 
    91  | 
definition equiv_fun :: "(nat \<Rightarrow> nat) \<Rightarrow> (nat \<Rightarrow> nat) \<Rightarrow> bool" (infix "\<cong>" 50) where
  | 
| 
 | 
    92  | 
  "f \<cong> g \<longleftrightarrow> (\<exists>d c n. \<forall>m\<ge>n. g m \<le> Suc d * f m \<and> f m \<le> Suc c * g m)"
  | 
| 
 | 
    93  | 
  | 
| 
 | 
    94  | 
lemma equiv_fun_intro:
  | 
| 
 | 
    95  | 
  assumes "\<exists>d c n. \<forall>m\<ge>n. g m \<le> Suc d * f m \<and> f m \<le> Suc c * g m"
  | 
| 
 | 
    96  | 
  shows "f \<cong> g"
  | 
| 
 | 
    97  | 
  unfolding equiv_fun_def by (rule assms)
  | 
| 
 | 
    98  | 
  | 
| 
 | 
    99  | 
lemma equiv_fun_not_intro:
  | 
| 
 | 
   100  | 
  assumes "\<And>d c n. \<exists>m\<ge>n. Suc d * f m < g m \<or> Suc c * g m < f m"
  | 
| 
 | 
   101  | 
  shows "\<not> f \<cong> g"
  | 
| 
 | 
   102  | 
  unfolding equiv_fun_def
  | 
| 
 | 
   103  | 
  by (auto simp add: assms linorder_not_le
  | 
| 
 | 
   104  | 
    simp del: times_nat.simps mult_Suc_right)
  | 
| 
 | 
   105  | 
  | 
| 
 | 
   106  | 
lemma equiv_fun_elim:
  | 
| 
 | 
   107  | 
  assumes "f \<cong> g"
  | 
| 
 | 
   108  | 
  obtains n d c
  | 
| 
 | 
   109  | 
    where "\<And>m. m \<ge> n \<Longrightarrow> g m \<le> Suc d * f m \<and> f m \<le> Suc c * g m"
  | 
| 
 | 
   110  | 
  using assms unfolding equiv_fun_def by blast
  | 
| 
 | 
   111  | 
  | 
| 
 | 
   112  | 
lemma equiv_fun_not_elim:
  | 
| 
 | 
   113  | 
  fixes n d c
  | 
| 
 | 
   114  | 
  assumes "\<not> f \<cong> g"
  | 
| 
 | 
   115  | 
  obtains m where "m \<ge> n"
  | 
| 
 | 
   116  | 
    and "Suc d * f m < g m \<or> Suc c * g m < f m"
  | 
| 
 | 
   117  | 
  using assms unfolding equiv_fun_def
  | 
| 
 | 
   118  | 
  by (auto simp add: linorder_not_le, blast)
  | 
| 
 | 
   119  | 
  | 
| 
 | 
   120  | 
lemma equiv_fun_less_eq_fun:
  | 
| 
 | 
   121  | 
  "f \<cong> g \<longleftrightarrow> f \<lesssim> g \<and> g \<lesssim> f"
  | 
| 
 | 
   122  | 
proof
  | 
| 
 | 
   123  | 
  assume x_y: "f \<cong> g"
  | 
| 
 | 
   124  | 
  then obtain n d c
  | 
| 
 | 
   125  | 
    where interv: "\<And>m. m \<ge> n \<Longrightarrow> g m \<le> Suc d * f m \<and> f m \<le> Suc c * g m"
  | 
| 
 | 
   126  | 
  by (erule equiv_fun_elim)
  | 
| 
 | 
   127  | 
  from interv have "\<exists>c n. \<forall>m \<ge> n. f m \<le> Suc c * g m" by auto
  | 
| 
 | 
   128  | 
  then have f_g: "f \<lesssim> g" by (rule less_eq_fun_intro)
  | 
| 
 | 
   129  | 
  from interv have "\<exists>d n. \<forall>m \<ge> n. g m \<le> Suc d * f m" by auto
  | 
| 
 | 
   130  | 
  then have g_f: "g \<lesssim> f" by (rule less_eq_fun_intro)
  | 
| 
 | 
   131  | 
  from f_g g_f show "f \<lesssim> g \<and> g \<lesssim> f" by auto
  | 
| 
 | 
   132  | 
next
  | 
| 
 | 
   133  | 
  assume assm: "f \<lesssim> g \<and> g \<lesssim> f"
  | 
| 
 | 
   134  | 
  from assm less_eq_fun_elim obtain c n\<^isub>1 where
  | 
| 
 | 
   135  | 
    bound1: "\<And>m. m \<ge> n\<^isub>1 \<Longrightarrow> f m \<le> Suc c * g m" 
  | 
| 
 | 
   136  | 
    by blast
  | 
| 
 | 
   137  | 
  from assm less_eq_fun_elim obtain d n\<^isub>2 where
  | 
| 
 | 
   138  | 
    bound2: "\<And>m. m \<ge> n\<^isub>2 \<Longrightarrow> g m \<le> Suc d * f m"
  | 
| 
 | 
   139  | 
    by blast
  | 
| 
 | 
   140  | 
  from bound2 have "\<And>m. m \<ge> max n\<^isub>1 n\<^isub>2 \<Longrightarrow> g m \<le> Suc d * f m"
  | 
| 
 | 
   141  | 
  by auto
  | 
| 
 | 
   142  | 
  with bound1
  | 
| 
 | 
   143  | 
    have "\<forall>m \<ge> max n\<^isub>1 n\<^isub>2. g m \<le> Suc d * f m \<and> f m \<le> Suc c * g m"
  | 
| 
 | 
   144  | 
    by auto
  | 
| 
 | 
   145  | 
  then
  | 
| 
 | 
   146  | 
    have "\<exists>d c n. \<forall>m\<ge>n. g m \<le> Suc d * f m \<and> f m \<le> Suc c * g m"
  | 
| 
 | 
   147  | 
    by blast
  | 
| 
 | 
   148  | 
  then show "f \<cong> g" by (rule equiv_fun_intro)
  | 
| 
 | 
   149  | 
qed
  | 
| 
 | 
   150  | 
  | 
| 
 | 
   151  | 
subsection {* The @{text "\<prec>"} relation, the strict part of @{text "\<lesssim>"} *}
 | 
| 
 | 
   152  | 
  | 
| 
 | 
   153  | 
definition less_fun :: "(nat \<Rightarrow> nat) \<Rightarrow> (nat \<Rightarrow> nat) \<Rightarrow> bool" (infix "\<prec>" 50) where
  | 
| 
 | 
   154  | 
  "f \<prec> g \<longleftrightarrow> f \<lesssim> g \<and> \<not> g \<lesssim> f"
  | 
| 
 | 
   155  | 
  | 
| 
 | 
   156  | 
lemma less_fun_intro:
  | 
| 
 | 
   157  | 
  assumes "\<And>c. \<exists>n. \<forall>m\<ge>n. Suc c * f m < g m"
  | 
| 
 | 
   158  | 
  shows "f \<prec> g"
  | 
| 
 | 
   159  | 
proof (unfold less_fun_def, rule conjI)
  | 
| 
 | 
   160  | 
  from assms obtain n
  | 
| 
 | 
   161  | 
    where "\<forall>m\<ge>n. Suc 0 * f m < g m" ..
  | 
| 
 | 
   162  | 
  then have "\<forall>m\<ge>n. f m \<le> Suc 0 * g m" by auto
  | 
| 
 | 
   163  | 
  then have "\<exists>c n. \<forall>m\<ge>n. f m \<le> Suc c * g m" by blast
  | 
| 
 | 
   164  | 
  then show "f \<lesssim> g" by (rule less_eq_fun_intro)
  | 
| 
 | 
   165  | 
next
  | 
| 
 | 
   166  | 
  show "\<not> g \<lesssim> f"
  | 
| 
 | 
   167  | 
  proof (rule less_eq_fun_not_intro)
  | 
| 
 | 
   168  | 
    fix c n :: nat
  | 
| 
 | 
   169  | 
    from assms have "\<exists>n. \<forall>m\<ge>n. Suc c * f m < g m" by blast
  | 
| 
 | 
   170  | 
    then obtain m where "m \<ge> n" and "Suc c * f m < g m"
  | 
| 
 | 
   171  | 
      by (rule Ex_All_bounded)
  | 
| 
 | 
   172  | 
    then show "\<exists>m\<ge>n. Suc c * f m < g m" by blast
  | 
| 
 | 
   173  | 
  qed
  | 
| 
 | 
   174  | 
qed
  | 
| 
 | 
   175  | 
  | 
| 
 | 
   176  | 
text {*
 | 
| 
 | 
   177  | 
  We would like to show (or refute) that @{text "f \<prec> g \<longleftrightarrow> f \<in> o(g)"},
 | 
| 
 | 
   178  | 
  i.e.~@{prop "f \<prec> g \<longleftrightarrow> (\<forall>c. \<exists>n. \<forall>m>n. f m < Suc c * g m)"} but did not manage to
 | 
| 
 | 
   179  | 
  do so.
  | 
| 
 | 
   180  | 
*}
  | 
| 
 | 
   181  | 
  | 
| 
 | 
   182  | 
  | 
| 
 | 
   183  | 
subsection {* Assert that @{text "\<lesssim>"} is ineed a preorder *}
 | 
| 
 | 
   184  | 
  | 
| 
 | 
   185  | 
interpretation fun_order: preorder_equiv less_eq_fun less_fun
  | 
| 
 | 
   186  | 
  where "preorder_equiv.equiv less_eq_fun = equiv_fun"
  | 
| 
 | 
   187  | 
proof -
  | 
| 
 | 
   188  | 
  interpret preorder_equiv less_eq_fun less_fun proof
  | 
| 
 | 
   189  | 
  qed (simp_all add: less_fun_def less_eq_fun_refl, auto intro: less_eq_fun_trans)
  | 
| 
 | 
   190  | 
  show "preorder_equiv less_eq_fun less_fun" using preorder_equiv_axioms .
  | 
| 
 | 
   191  | 
  show "preorder_equiv.equiv less_eq_fun = equiv_fun"
  | 
| 
 | 
   192  | 
    by (simp add: expand_fun_eq equiv_def equiv_fun_less_eq_fun)
  | 
| 
 | 
   193  | 
qed
  | 
| 
 | 
   194  | 
  | 
| 
 | 
   195  | 
  | 
| 
 | 
   196  | 
subsection {* Simple examples *}
 | 
| 
 | 
   197  | 
  | 
| 
 | 
   198  | 
lemma "(\<lambda>_. n) \<lesssim> (\<lambda>n. n)"
  | 
| 
 | 
   199  | 
proof (rule less_eq_fun_intro)
  | 
| 
 | 
   200  | 
  show "\<exists>c q. \<forall>m\<ge>q. n \<le> Suc c * m"
  | 
| 
 | 
   201  | 
  proof -
  | 
| 
 | 
   202  | 
    have "\<forall>m\<ge>n. n \<le> Suc 0 * m" by simp
  | 
| 
 | 
   203  | 
    then show ?thesis by blast
  | 
| 
 | 
   204  | 
  qed
  | 
| 
 | 
   205  | 
qed
  | 
| 
 | 
   206  | 
  | 
| 
 | 
   207  | 
lemma "(\<lambda>n. n) \<cong> (\<lambda>n. Suc k * n)"
  | 
| 
 | 
   208  | 
proof (rule equiv_fun_intro)
  | 
| 
 | 
   209  | 
  show "\<exists>d c n. \<forall>m\<ge>n. Suc k * m \<le> Suc d * m \<and> m \<le> Suc c * (Suc k * m)"
  | 
| 
 | 
   210  | 
  proof -
  | 
| 
 | 
   211  | 
    have "\<forall>m\<ge>n. Suc k * m \<le> Suc k * m \<and> m \<le> Suc c * (Suc k * m)" by simp
  | 
| 
 | 
   212  | 
    then show ?thesis by blast
  | 
| 
 | 
   213  | 
  qed
  | 
| 
 | 
   214  | 
qed  
  | 
| 
 | 
   215  | 
  | 
| 
 | 
   216  | 
lemma "(\<lambda>_. n) \<prec> (\<lambda>n. n)"
  | 
| 
 | 
   217  | 
proof (rule less_fun_intro)
  | 
| 
 | 
   218  | 
  fix c
  | 
| 
 | 
   219  | 
  show "\<exists>q. \<forall>m\<ge>q. Suc c * n < m"
  | 
| 
 | 
   220  | 
  proof -
  | 
| 
 | 
   221  | 
    have "\<forall>m\<ge>Suc c * n + 1. Suc c * n < m" by simp
  | 
| 
 | 
   222  | 
    then show ?thesis by blast
  | 
| 
 | 
   223  | 
  qed
  | 
| 
 | 
   224  | 
qed
  | 
| 
 | 
   225  | 
  | 
| 
 | 
   226  | 
end
  |