| 
35303
 | 
     1  | 
(* Author: Florian Haftmann, TU Muenchen *)
  | 
| 
 | 
     2  | 
  | 
| 
 | 
     3  | 
header {* Lists with elements distinct as canonical example for datatype invariants *}
 | 
| 
 | 
     4  | 
  | 
| 
 | 
     5  | 
theory Dlist
  | 
| 
 | 
     6  | 
imports Main Fset
  | 
| 
 | 
     7  | 
begin
  | 
| 
 | 
     8  | 
  | 
| 
 | 
     9  | 
section {* Prelude *}
 | 
| 
 | 
    10  | 
  | 
| 
 | 
    11  | 
text {* Without canonical argument order, higher-order things tend to get confusing quite fast: *}
 | 
| 
 | 
    12  | 
  | 
| 
 | 
    13  | 
setup {* Sign.map_naming (Name_Space.add_path "List") *}
 | 
| 
 | 
    14  | 
  | 
| 
 | 
    15  | 
primrec member :: "'a list \<Rightarrow> 'a \<Rightarrow> bool" where
  | 
| 
 | 
    16  | 
    "member [] y \<longleftrightarrow> False"
  | 
| 
 | 
    17  | 
  | "member (x#xs) y \<longleftrightarrow> x = y \<or> member xs y"
  | 
| 
 | 
    18  | 
  | 
| 
 | 
    19  | 
lemma member_set:
  | 
| 
 | 
    20  | 
  "member = set"
  | 
| 
 | 
    21  | 
proof (rule ext)+
  | 
| 
 | 
    22  | 
  fix xs :: "'a list" and x :: 'a
  | 
| 
 | 
    23  | 
  have "member xs x \<longleftrightarrow> x \<in> set xs" by (induct xs) auto
  | 
| 
 | 
    24  | 
  then show "member xs x = set xs x" by (simp add: mem_def)
  | 
| 
 | 
    25  | 
qed
  | 
| 
 | 
    26  | 
  | 
| 
 | 
    27  | 
lemma not_set_compl:
  | 
| 
 | 
    28  | 
  "Not \<circ> set xs = - set xs"
  | 
| 
 | 
    29  | 
  by (simp add: fun_Compl_def bool_Compl_def comp_def expand_fun_eq)
  | 
| 
 | 
    30  | 
  | 
| 
 | 
    31  | 
primrec fold :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a list \<Rightarrow> 'b \<Rightarrow> 'b" where
 | 
| 
 | 
    32  | 
    "fold f [] s = s"
  | 
| 
 | 
    33  | 
  | "fold f (x#xs) s = fold f xs (f x s)"
  | 
| 
 | 
    34  | 
  | 
| 
 | 
    35  | 
lemma foldl_fold:
  | 
| 
 | 
    36  | 
  "foldl f s xs = List.fold (\<lambda>x s. f s x) xs s"
  | 
| 
 | 
    37  | 
  by (induct xs arbitrary: s) simp_all
  | 
| 
 | 
    38  | 
  | 
| 
 | 
    39  | 
setup {* Sign.map_naming Name_Space.parent_path *}
 | 
| 
 | 
    40  | 
  | 
| 
 | 
    41  | 
  | 
| 
 | 
    42  | 
section {* The type of distinct lists *}
 | 
| 
 | 
    43  | 
  | 
| 
 | 
    44  | 
typedef (open) 'a dlist = "{xs::'a list. distinct xs}"
 | 
| 
 | 
    45  | 
  morphisms list_of_dlist Abs_dlist
  | 
| 
 | 
    46  | 
proof
  | 
| 
 | 
    47  | 
  show "[] \<in> ?dlist" by simp
  | 
| 
 | 
    48  | 
qed
  | 
| 
 | 
    49  | 
  | 
| 
 | 
    50  | 
text {* Formal, totalized constructor for @{typ "'a dlist"}: *}
 | 
| 
 | 
    51  | 
  | 
| 
 | 
    52  | 
definition Dlist :: "'a list \<Rightarrow> 'a dlist" where
  | 
| 
 | 
    53  | 
  [code del]: "Dlist xs = Abs_dlist (remdups xs)"
  | 
| 
 | 
    54  | 
  | 
| 
 | 
    55  | 
lemma distinct_list_of_dlist [simp]:
  | 
| 
 | 
    56  | 
  "distinct (list_of_dlist dxs)"
  | 
| 
 | 
    57  | 
  using list_of_dlist [of dxs] by simp
  | 
| 
 | 
    58  | 
  | 
| 
 | 
    59  | 
lemma list_of_dlist_Dlist [simp]:
  | 
| 
 | 
    60  | 
  "list_of_dlist (Dlist xs) = remdups xs"
  | 
| 
 | 
    61  | 
  by (simp add: Dlist_def Abs_dlist_inverse)
  | 
| 
 | 
    62  | 
  | 
| 
 | 
    63  | 
lemma Dlist_list_of_dlist [simp]:
  | 
| 
 | 
    64  | 
  "Dlist (list_of_dlist dxs) = dxs"
  | 
| 
 | 
    65  | 
  by (simp add: Dlist_def list_of_dlist_inverse distinct_remdups_id)
  | 
| 
 | 
    66  | 
  | 
| 
 | 
    67  | 
  | 
| 
 | 
    68  | 
text {* Fundamental operations: *}
 | 
| 
 | 
    69  | 
  | 
| 
 | 
    70  | 
definition empty :: "'a dlist" where
  | 
| 
 | 
    71  | 
  "empty = Dlist []"
  | 
| 
 | 
    72  | 
  | 
| 
 | 
    73  | 
definition insert :: "'a \<Rightarrow> 'a dlist \<Rightarrow> 'a dlist" where
  | 
| 
 | 
    74  | 
  "insert x dxs = Dlist (List.insert x (list_of_dlist dxs))"
  | 
| 
 | 
    75  | 
  | 
| 
 | 
    76  | 
definition remove :: "'a \<Rightarrow> 'a dlist \<Rightarrow> 'a dlist" where
  | 
| 
 | 
    77  | 
  "remove x dxs = Dlist (remove1 x (list_of_dlist dxs))"
  | 
| 
 | 
    78  | 
  | 
| 
 | 
    79  | 
definition map :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a dlist \<Rightarrow> 'b dlist" where
 | 
| 
 | 
    80  | 
  "map f dxs = Dlist (remdups (List.map f (list_of_dlist dxs)))"
  | 
| 
 | 
    81  | 
  | 
| 
 | 
    82  | 
definition filter :: "('a \<Rightarrow> bool) \<Rightarrow> 'a dlist \<Rightarrow> 'a dlist" where
 | 
| 
 | 
    83  | 
  "filter P dxs = Dlist (List.filter P (list_of_dlist dxs))"
  | 
| 
 | 
    84  | 
  | 
| 
 | 
    85  | 
  | 
| 
 | 
    86  | 
text {* Derived operations: *}
 | 
| 
 | 
    87  | 
  | 
| 
 | 
    88  | 
definition null :: "'a dlist \<Rightarrow> bool" where
  | 
| 
 | 
    89  | 
  "null dxs = List.null (list_of_dlist dxs)"
  | 
| 
 | 
    90  | 
  | 
| 
 | 
    91  | 
definition member :: "'a dlist \<Rightarrow> 'a \<Rightarrow> bool" where
  | 
| 
 | 
    92  | 
  "member dxs = List.member (list_of_dlist dxs)"
  | 
| 
 | 
    93  | 
  | 
| 
 | 
    94  | 
definition length :: "'a dlist \<Rightarrow> nat" where
  | 
| 
 | 
    95  | 
  "length dxs = List.length (list_of_dlist dxs)"
  | 
| 
 | 
    96  | 
  | 
| 
 | 
    97  | 
definition fold :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a dlist \<Rightarrow> 'b \<Rightarrow> 'b" where
 | 
| 
 | 
    98  | 
  "fold f dxs = List.fold f (list_of_dlist dxs)"
  | 
| 
 | 
    99  | 
  | 
| 
 | 
   100  | 
  | 
| 
 | 
   101  | 
section {* Executable version obeying invariant *}
 | 
| 
 | 
   102  | 
  | 
| 
 | 
   103  | 
code_abstype Dlist list_of_dlist
  | 
| 
 | 
   104  | 
  by simp
  | 
| 
 | 
   105  | 
  | 
| 
 | 
   106  | 
lemma list_of_dlist_empty [simp, code abstract]:
  | 
| 
 | 
   107  | 
  "list_of_dlist empty = []"
  | 
| 
 | 
   108  | 
  by (simp add: empty_def)
  | 
| 
 | 
   109  | 
  | 
| 
 | 
   110  | 
lemma list_of_dlist_insert [simp, code abstract]:
  | 
| 
 | 
   111  | 
  "list_of_dlist (insert x dxs) = List.insert x (list_of_dlist dxs)"
  | 
| 
 | 
   112  | 
  by (simp add: insert_def)
  | 
| 
 | 
   113  | 
  | 
| 
 | 
   114  | 
lemma list_of_dlist_remove [simp, code abstract]:
  | 
| 
 | 
   115  | 
  "list_of_dlist (remove x dxs) = remove1 x (list_of_dlist dxs)"
  | 
| 
 | 
   116  | 
  by (simp add: remove_def)
  | 
| 
 | 
   117  | 
  | 
| 
 | 
   118  | 
lemma list_of_dlist_map [simp, code abstract]:
  | 
| 
 | 
   119  | 
  "list_of_dlist (map f dxs) = remdups (List.map f (list_of_dlist dxs))"
  | 
| 
 | 
   120  | 
  by (simp add: map_def)
  | 
| 
 | 
   121  | 
  | 
| 
 | 
   122  | 
lemma list_of_dlist_filter [simp, code abstract]:
  | 
| 
 | 
   123  | 
  "list_of_dlist (filter P dxs) = List.filter P (list_of_dlist dxs)"
  | 
| 
 | 
   124  | 
  by (simp add: filter_def)
  | 
| 
 | 
   125  | 
  | 
| 
 | 
   126  | 
declare null_def [code] member_def [code] length_def [code] fold_def [code] -- {* explicit is better than implicit *}
 | 
| 
 | 
   127  | 
  | 
| 
 | 
   128  | 
  | 
| 
 | 
   129  | 
section {* Implementation of sets by distinct lists -- canonical! *}
 | 
| 
 | 
   130  | 
  | 
| 
 | 
   131  | 
definition Set :: "'a dlist \<Rightarrow> 'a fset" where
  | 
| 
 | 
   132  | 
  "Set dxs = Fset.Set (list_of_dlist dxs)"
  | 
| 
 | 
   133  | 
  | 
| 
 | 
   134  | 
definition Coset :: "'a dlist \<Rightarrow> 'a fset" where
  | 
| 
 | 
   135  | 
  "Coset dxs = Fset.Coset (list_of_dlist dxs)"
  | 
| 
 | 
   136  | 
  | 
| 
 | 
   137  | 
code_datatype Set Coset
  | 
| 
 | 
   138  | 
  | 
| 
 | 
   139  | 
declare member_code [code del]
  | 
| 
 | 
   140  | 
declare is_empty_Set [code del]
  | 
| 
 | 
   141  | 
declare empty_Set [code del]
  | 
| 
 | 
   142  | 
declare UNIV_Set [code del]
  | 
| 
 | 
   143  | 
declare insert_Set [code del]
  | 
| 
 | 
   144  | 
declare remove_Set [code del]
  | 
| 
 | 
   145  | 
declare map_Set [code del]
  | 
| 
 | 
   146  | 
declare filter_Set [code del]
  | 
| 
 | 
   147  | 
declare forall_Set [code del]
  | 
| 
 | 
   148  | 
declare exists_Set [code del]
  | 
| 
 | 
   149  | 
declare card_Set [code del]
  | 
| 
 | 
   150  | 
declare subfset_eq_forall [code del]
  | 
| 
 | 
   151  | 
declare subfset_subfset_eq [code del]
  | 
| 
 | 
   152  | 
declare eq_fset_subfset_eq [code del]
  | 
| 
 | 
   153  | 
declare inter_project [code del]
  | 
| 
 | 
   154  | 
declare subtract_remove [code del]
  | 
| 
 | 
   155  | 
declare union_insert [code del]
  | 
| 
 | 
   156  | 
declare Infimum_inf [code del]
  | 
| 
 | 
   157  | 
declare Supremum_sup [code del]
  | 
| 
 | 
   158  | 
  | 
| 
 | 
   159  | 
lemma Set_Dlist [simp]:
  | 
| 
 | 
   160  | 
  "Set (Dlist xs) = Fset (set xs)"
  | 
| 
 | 
   161  | 
  by (simp add: Set_def Fset.Set_def)
  | 
| 
 | 
   162  | 
  | 
| 
 | 
   163  | 
lemma Coset_Dlist [simp]:
  | 
| 
 | 
   164  | 
  "Coset (Dlist xs) = Fset (- set xs)"
  | 
| 
 | 
   165  | 
  by (simp add: Coset_def Fset.Coset_def)
  | 
| 
 | 
   166  | 
  | 
| 
 | 
   167  | 
lemma member_Set [simp]:
  | 
| 
 | 
   168  | 
  "Fset.member (Set dxs) = List.member (list_of_dlist dxs)"
  | 
| 
 | 
   169  | 
  by (simp add: Set_def member_set)
  | 
| 
 | 
   170  | 
  | 
| 
 | 
   171  | 
lemma member_Coset [simp]:
  | 
| 
 | 
   172  | 
  "Fset.member (Coset dxs) = Not \<circ> List.member (list_of_dlist dxs)"
  | 
| 
 | 
   173  | 
  by (simp add: Coset_def member_set not_set_compl)
  | 
| 
 | 
   174  | 
  | 
| 
 | 
   175  | 
lemma is_empty_Set [code]:
  | 
| 
 | 
   176  | 
  "Fset.is_empty (Set dxs) \<longleftrightarrow> null dxs"
  | 
| 
 | 
   177  | 
  by (simp add: null_def null_empty member_set)
  | 
| 
 | 
   178  | 
  | 
| 
 | 
   179  | 
lemma bot_code [code]:
  | 
| 
 | 
   180  | 
  "bot = Set empty"
  | 
| 
 | 
   181  | 
  by (simp add: empty_def)
  | 
| 
 | 
   182  | 
  | 
| 
 | 
   183  | 
lemma top_code [code]:
  | 
| 
 | 
   184  | 
  "top = Coset empty"
  | 
| 
 | 
   185  | 
  by (simp add: empty_def)
  | 
| 
 | 
   186  | 
  | 
| 
 | 
   187  | 
lemma insert_code [code]:
  | 
| 
 | 
   188  | 
  "Fset.insert x (Set dxs) = Set (insert x dxs)"
  | 
| 
 | 
   189  | 
  "Fset.insert x (Coset dxs) = Coset (remove x dxs)"
  | 
| 
 | 
   190  | 
  by (simp_all add: insert_def remove_def member_set not_set_compl)
  | 
| 
 | 
   191  | 
  | 
| 
 | 
   192  | 
lemma remove_code [code]:
  | 
| 
 | 
   193  | 
  "Fset.remove x (Set dxs) = Set (remove x dxs)"
  | 
| 
 | 
   194  | 
  "Fset.remove x (Coset dxs) = Coset (insert x dxs)"
  | 
| 
 | 
   195  | 
  by (auto simp add: insert_def remove_def member_set not_set_compl)
  | 
| 
 | 
   196  | 
  | 
| 
 | 
   197  | 
lemma member_code [code]:
  | 
| 
 | 
   198  | 
  "Fset.member (Set dxs) = member dxs"
  | 
| 
 | 
   199  | 
  "Fset.member (Coset dxs) = Not \<circ> member dxs"
  | 
| 
 | 
   200  | 
  by (simp_all add: member_def)
  | 
| 
 | 
   201  | 
  | 
| 
 | 
   202  | 
lemma map_code [code]:
  | 
| 
 | 
   203  | 
  "Fset.map f (Set dxs) = Set (map f dxs)"
  | 
| 
 | 
   204  | 
  by (simp add: member_set)
  | 
| 
 | 
   205  | 
  
  | 
| 
 | 
   206  | 
lemma filter_code [code]:
  | 
| 
 | 
   207  | 
  "Fset.filter f (Set dxs) = Set (filter f dxs)"
  | 
| 
 | 
   208  | 
  by (simp add: member_set)
  | 
| 
 | 
   209  | 
  | 
| 
 | 
   210  | 
lemma forall_Set [code]:
  | 
| 
 | 
   211  | 
  "Fset.forall P (Set xs) \<longleftrightarrow> list_all P (list_of_dlist xs)"
  | 
| 
 | 
   212  | 
  by (simp add: member_set list_all_iff)
  | 
| 
 | 
   213  | 
  | 
| 
 | 
   214  | 
lemma exists_Set [code]:
  | 
| 
 | 
   215  | 
  "Fset.exists P (Set xs) \<longleftrightarrow> list_ex P (list_of_dlist xs)"
  | 
| 
 | 
   216  | 
  by (simp add: member_set list_ex_iff)
  | 
| 
 | 
   217  | 
  | 
| 
 | 
   218  | 
lemma card_code [code]:
  | 
| 
 | 
   219  | 
  "Fset.card (Set dxs) = length dxs"
  | 
| 
 | 
   220  | 
  by (simp add: length_def member_set distinct_card)
  | 
| 
 | 
   221  | 
  | 
| 
 | 
   222  | 
lemma foldl_list_of_dlist:
  | 
| 
 | 
   223  | 
  "foldl f s (list_of_dlist dxs) = fold (\<lambda>x s. f s x) dxs s"
  | 
| 
 | 
   224  | 
  by (simp add: foldl_fold fold_def)
  | 
| 
 | 
   225  | 
  | 
| 
 | 
   226  | 
lemma inter_code [code]:
  | 
| 
 | 
   227  | 
  "inf A (Set xs) = Set (filter (Fset.member A) xs)"
  | 
| 
 | 
   228  | 
  "inf A (Coset xs) = fold Fset.remove xs A"
  | 
| 
 | 
   229  | 
  by (simp_all only: Set_def Coset_def foldl_list_of_dlist inter_project list_of_dlist_filter)
  | 
| 
 | 
   230  | 
  | 
| 
 | 
   231  | 
lemma subtract_code [code]:
  | 
| 
 | 
   232  | 
  "A - Set xs = fold Fset.remove xs A"
  | 
| 
 | 
   233  | 
  "A - Coset xs = Set (filter (Fset.member A) xs)"
  | 
| 
 | 
   234  | 
  by (simp_all only: Set_def Coset_def foldl_list_of_dlist subtract_remove list_of_dlist_filter)
  | 
| 
 | 
   235  | 
  | 
| 
 | 
   236  | 
lemma union_code [code]:
  | 
| 
 | 
   237  | 
  "sup (Set xs) A = fold Fset.insert xs A"
  | 
| 
 | 
   238  | 
  "sup (Coset xs) A = Coset (filter (Not \<circ> Fset.member A) xs)"
  | 
| 
 | 
   239  | 
  by (simp_all only: Set_def Coset_def foldl_list_of_dlist union_insert list_of_dlist_filter)
  | 
| 
 | 
   240  | 
  | 
| 
 | 
   241  | 
context complete_lattice
  | 
| 
 | 
   242  | 
begin
  | 
| 
 | 
   243  | 
  | 
| 
 | 
   244  | 
lemma Infimum_code [code]:
  | 
| 
 | 
   245  | 
  "Infimum (Set As) = fold inf As top"
  | 
| 
 | 
   246  | 
  by (simp only: Set_def Infimum_inf foldl_list_of_dlist inf.commute)
  | 
| 
 | 
   247  | 
  | 
| 
 | 
   248  | 
lemma Supremum_code [code]:
  | 
| 
 | 
   249  | 
  "Supremum (Set As) = fold sup As bot"
  | 
| 
 | 
   250  | 
  by (simp only: Set_def Supremum_sup foldl_list_of_dlist sup.commute)
  | 
| 
 | 
   251  | 
  | 
| 
 | 
   252  | 
end
  | 
| 
 | 
   253  | 
  | 
| 
 | 
   254  | 
hide (open) const member fold empty insert remove map filter null member length fold
  | 
| 
 | 
   255  | 
  | 
| 
 | 
   256  | 
end
  |