author | paulson <lp15@cam.ac.uk> |
Wed, 21 Feb 2018 12:57:49 +0000 | |
changeset 67683 | 817944aeac3f |
parent 67135 | 1a94352812f4 |
child 68499 | d4312962161a |
permissions | -rw-r--r-- |
67135
1a94352812f4
Moved material from AFP to Analysis/Number_Theory
Manuel Eberl <eberlm@in.tum.de>
parents:
63092
diff
changeset
|
1 |
(* Title: HOL/Library/Nonpos_Ints.thy |
62055
755fda743c49
Multivariate-Analysis: fixed headers and a LaTex error (c.f. Isabelle b0f941e207cf)
hoelzl
parents:
62049
diff
changeset
|
2 |
Author: Manuel Eberl, TU München |
62049
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
3 |
*) |
62055
755fda743c49
Multivariate-Analysis: fixed headers and a LaTex error (c.f. Isabelle b0f941e207cf)
hoelzl
parents:
62049
diff
changeset
|
4 |
|
62131
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
5 |
section \<open>Non-negative, non-positive integers and reals\<close> |
62055
755fda743c49
Multivariate-Analysis: fixed headers and a LaTex error (c.f. Isabelle b0f941e207cf)
hoelzl
parents:
62049
diff
changeset
|
6 |
|
62049
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
7 |
theory Nonpos_Ints |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
8 |
imports Complex_Main |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
9 |
begin |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
10 |
|
62131
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
11 |
subsection\<open>Non-positive integers\<close> |
62055
755fda743c49
Multivariate-Analysis: fixed headers and a LaTex error (c.f. Isabelle b0f941e207cf)
hoelzl
parents:
62049
diff
changeset
|
12 |
text \<open> |
755fda743c49
Multivariate-Analysis: fixed headers and a LaTex error (c.f. Isabelle b0f941e207cf)
hoelzl
parents:
62049
diff
changeset
|
13 |
The set of non-positive integers on a ring. (in analogy to the set of non-negative |
755fda743c49
Multivariate-Analysis: fixed headers and a LaTex error (c.f. Isabelle b0f941e207cf)
hoelzl
parents:
62049
diff
changeset
|
14 |
integers @{term "\<nat>"}) This is useful e.g. for the Gamma function. |
755fda743c49
Multivariate-Analysis: fixed headers and a LaTex error (c.f. Isabelle b0f941e207cf)
hoelzl
parents:
62049
diff
changeset
|
15 |
\<close> |
62049
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
16 |
|
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
17 |
definition nonpos_Ints ("\<int>\<^sub>\<le>\<^sub>0") where "\<int>\<^sub>\<le>\<^sub>0 = {of_int n |n. n \<le> 0}" |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
18 |
|
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
19 |
lemma zero_in_nonpos_Ints [simp,intro]: "0 \<in> \<int>\<^sub>\<le>\<^sub>0" |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
20 |
unfolding nonpos_Ints_def by (auto intro!: exI[of _ "0::int"]) |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
21 |
|
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
22 |
lemma neg_one_in_nonpos_Ints [simp,intro]: "-1 \<in> \<int>\<^sub>\<le>\<^sub>0" |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
23 |
unfolding nonpos_Ints_def by (auto intro!: exI[of _ "-1::int"]) |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
24 |
|
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
25 |
lemma neg_numeral_in_nonpos_Ints [simp,intro]: "-numeral n \<in> \<int>\<^sub>\<le>\<^sub>0" |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
26 |
unfolding nonpos_Ints_def by (auto intro!: exI[of _ "-numeral n::int"]) |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
27 |
|
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
28 |
lemma one_notin_nonpos_Ints [simp]: "(1 :: 'a :: ring_char_0) \<notin> \<int>\<^sub>\<le>\<^sub>0" |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
29 |
by (auto simp: nonpos_Ints_def) |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
30 |
|
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
31 |
lemma numeral_notin_nonpos_Ints [simp]: "(numeral n :: 'a :: ring_char_0) \<notin> \<int>\<^sub>\<le>\<^sub>0" |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
32 |
by (auto simp: nonpos_Ints_def) |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
33 |
|
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
34 |
lemma minus_of_nat_in_nonpos_Ints [simp, intro]: "- of_nat n \<in> \<int>\<^sub>\<le>\<^sub>0" |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
35 |
proof - |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
36 |
have "- of_nat n = of_int (-int n)" by simp |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
37 |
also have "-int n \<le> 0" by simp |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
38 |
hence "of_int (-int n) \<in> \<int>\<^sub>\<le>\<^sub>0" unfolding nonpos_Ints_def by blast |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
39 |
finally show ?thesis . |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
40 |
qed |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
41 |
|
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
42 |
lemma of_nat_in_nonpos_Ints_iff: "(of_nat n :: 'a :: {ring_1,ring_char_0}) \<in> \<int>\<^sub>\<le>\<^sub>0 \<longleftrightarrow> n = 0" |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
43 |
proof |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
44 |
assume "(of_nat n :: 'a) \<in> \<int>\<^sub>\<le>\<^sub>0" |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
45 |
then obtain m where "of_nat n = (of_int m :: 'a)" "m \<le> 0" by (auto simp: nonpos_Ints_def) |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
46 |
hence "(of_int m :: 'a) = of_nat n" by simp |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
47 |
also have "... = of_int (int n)" by simp |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
48 |
finally have "m = int n" by (subst (asm) of_int_eq_iff) |
62072 | 49 |
with \<open>m \<le> 0\<close> show "n = 0" by auto |
62049
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
50 |
qed simp |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
51 |
|
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
52 |
lemma nonpos_Ints_of_int: "n \<le> 0 \<Longrightarrow> of_int n \<in> \<int>\<^sub>\<le>\<^sub>0" |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
53 |
unfolding nonpos_Ints_def by blast |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
54 |
|
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
55 |
lemma nonpos_IntsI: |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
56 |
"x \<in> \<int> \<Longrightarrow> x \<le> 0 \<Longrightarrow> (x :: 'a :: linordered_idom) \<in> \<int>\<^sub>\<le>\<^sub>0" |
63092 | 57 |
unfolding nonpos_Ints_def Ints_def by auto |
62049
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
58 |
|
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
59 |
lemma nonpos_Ints_subset_Ints: "\<int>\<^sub>\<le>\<^sub>0 \<subseteq> \<int>" |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
60 |
unfolding nonpos_Ints_def Ints_def by blast |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
61 |
|
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
62 |
lemma nonpos_Ints_nonpos [dest]: "x \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> x \<le> (0 :: 'a :: linordered_idom)" |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
63 |
unfolding nonpos_Ints_def by auto |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
64 |
|
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
65 |
lemma nonpos_Ints_Int [dest]: "x \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> x \<in> \<int>" |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
66 |
unfolding nonpos_Ints_def Ints_def by blast |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
67 |
|
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
68 |
lemma nonpos_Ints_cases: |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
69 |
assumes "x \<in> \<int>\<^sub>\<le>\<^sub>0" |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
70 |
obtains n where "x = of_int n" "n \<le> 0" |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
71 |
using assms unfolding nonpos_Ints_def by (auto elim!: Ints_cases) |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
72 |
|
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
73 |
lemma nonpos_Ints_cases': |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
74 |
assumes "x \<in> \<int>\<^sub>\<le>\<^sub>0" |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
75 |
obtains n where "x = -of_nat n" |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
76 |
proof - |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
77 |
from assms obtain m where "x = of_int m" and m: "m \<le> 0" by (auto elim!: nonpos_Ints_cases) |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
78 |
hence "x = - of_int (-m)" by auto |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
79 |
also from m have "(of_int (-m) :: 'a) = of_nat (nat (-m))" by simp_all |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
80 |
finally show ?thesis by (rule that) |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
81 |
qed |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
82 |
|
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
83 |
lemma of_real_in_nonpos_Ints_iff: "(of_real x :: 'a :: real_algebra_1) \<in> \<int>\<^sub>\<le>\<^sub>0 \<longleftrightarrow> x \<in> \<int>\<^sub>\<le>\<^sub>0" |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
84 |
proof |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
85 |
assume "of_real x \<in> (\<int>\<^sub>\<le>\<^sub>0 :: 'a set)" |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
86 |
then obtain n where "(of_real x :: 'a) = of_int n" "n \<le> 0" by (erule nonpos_Ints_cases) |
62072 | 87 |
note \<open>of_real x = of_int n\<close> |
62049
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
88 |
also have "of_int n = of_real (of_int n)" by (rule of_real_of_int_eq [symmetric]) |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
89 |
finally have "x = of_int n" by (subst (asm) of_real_eq_iff) |
62072 | 90 |
with \<open>n \<le> 0\<close> show "x \<in> \<int>\<^sub>\<le>\<^sub>0" by (simp add: nonpos_Ints_of_int) |
62049
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
91 |
qed (auto elim!: nonpos_Ints_cases intro!: nonpos_Ints_of_int) |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
92 |
|
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
93 |
lemma nonpos_Ints_altdef: "\<int>\<^sub>\<le>\<^sub>0 = {n \<in> \<int>. (n :: 'a :: linordered_idom) \<le> 0}" |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
94 |
by (auto intro!: nonpos_IntsI elim!: nonpos_Ints_cases) |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
95 |
|
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
96 |
lemma uminus_in_Nats_iff: "-x \<in> \<nat> \<longleftrightarrow> x \<in> \<int>\<^sub>\<le>\<^sub>0" |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
97 |
proof |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
98 |
assume "-x \<in> \<nat>" |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
99 |
then obtain n where "n \<ge> 0" "-x = of_int n" by (auto simp: Nats_altdef1) |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
100 |
hence "-n \<le> 0" "x = of_int (-n)" by (simp_all add: eq_commute minus_equation_iff[of x]) |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
101 |
thus "x \<in> \<int>\<^sub>\<le>\<^sub>0" unfolding nonpos_Ints_def by blast |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
102 |
next |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
103 |
assume "x \<in> \<int>\<^sub>\<le>\<^sub>0" |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
104 |
then obtain n where "n \<le> 0" "x = of_int n" by (auto simp: nonpos_Ints_def) |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
105 |
hence "-n \<ge> 0" "-x = of_int (-n)" by (simp_all add: eq_commute minus_equation_iff[of x]) |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
106 |
thus "-x \<in> \<nat>" unfolding Nats_altdef1 by blast |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
107 |
qed |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
108 |
|
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
109 |
lemma uminus_in_nonpos_Ints_iff: "-x \<in> \<int>\<^sub>\<le>\<^sub>0 \<longleftrightarrow> x \<in> \<nat>" |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
110 |
using uminus_in_Nats_iff[of "-x"] by simp |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
111 |
|
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
112 |
lemma nonpos_Ints_mult: "x \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> y \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> x * y \<in> \<nat>" |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
113 |
using Nats_mult[of "-x" "-y"] by (simp add: uminus_in_Nats_iff) |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
114 |
|
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
115 |
lemma Nats_mult_nonpos_Ints: "x \<in> \<nat> \<Longrightarrow> y \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> x * y \<in> \<int>\<^sub>\<le>\<^sub>0" |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
116 |
using Nats_mult[of x "-y"] by (simp add: uminus_in_Nats_iff) |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
117 |
|
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
118 |
lemma nonpos_Ints_mult_Nats: |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
119 |
"x \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> y \<in> \<nat> \<Longrightarrow> x * y \<in> \<int>\<^sub>\<le>\<^sub>0" |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
120 |
using Nats_mult[of "-x" y] by (simp add: uminus_in_Nats_iff) |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
121 |
|
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
122 |
lemma nonpos_Ints_add: |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
123 |
"x \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> y \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> x + y \<in> \<int>\<^sub>\<le>\<^sub>0" |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
124 |
using Nats_add[of "-x" "-y"] uminus_in_Nats_iff[of "y+x", simplified minus_add] |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
125 |
by (simp add: uminus_in_Nats_iff add.commute) |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
126 |
|
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
127 |
lemma nonpos_Ints_diff_Nats: |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
128 |
"x \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> y \<in> \<nat> \<Longrightarrow> x - y \<in> \<int>\<^sub>\<le>\<^sub>0" |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
129 |
using Nats_add[of "-x" "y"] uminus_in_Nats_iff[of "x-y", simplified minus_add] |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
130 |
by (simp add: uminus_in_Nats_iff add.commute) |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
131 |
|
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
132 |
lemma Nats_diff_nonpos_Ints: |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
133 |
"x \<in> \<nat> \<Longrightarrow> y \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> x - y \<in> \<nat>" |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
134 |
using Nats_add[of "x" "-y"] by (simp add: uminus_in_Nats_iff add.commute) |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
135 |
|
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
136 |
lemma plus_of_nat_eq_0_imp: "z + of_nat n = 0 \<Longrightarrow> z \<in> \<int>\<^sub>\<le>\<^sub>0" |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
137 |
proof - |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
138 |
assume "z + of_nat n = 0" |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
139 |
hence A: "z = - of_nat n" by (simp add: eq_neg_iff_add_eq_0) |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
140 |
show "z \<in> \<int>\<^sub>\<le>\<^sub>0" by (subst A) simp |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
141 |
qed |
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff
changeset
|
142 |
|
62131
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
143 |
|
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
144 |
subsection\<open>Non-negative reals\<close> |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
145 |
|
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
146 |
definition nonneg_Reals :: "'a::real_algebra_1 set" ("\<real>\<^sub>\<ge>\<^sub>0") |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
147 |
where "\<real>\<^sub>\<ge>\<^sub>0 = {of_real r | r. r \<ge> 0}" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
148 |
|
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
149 |
lemma nonneg_Reals_of_real_iff [simp]: "of_real r \<in> \<real>\<^sub>\<ge>\<^sub>0 \<longleftrightarrow> r \<ge> 0" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
150 |
by (force simp add: nonneg_Reals_def) |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
151 |
|
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
152 |
lemma nonneg_Reals_subset_Reals: "\<real>\<^sub>\<ge>\<^sub>0 \<subseteq> \<real>" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
153 |
unfolding nonneg_Reals_def Reals_def by blast |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
154 |
|
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
155 |
lemma nonneg_Reals_Real [dest]: "x \<in> \<real>\<^sub>\<ge>\<^sub>0 \<Longrightarrow> x \<in> \<real>" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
156 |
unfolding nonneg_Reals_def Reals_def by blast |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
157 |
|
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
158 |
lemma nonneg_Reals_of_nat_I [simp]: "of_nat n \<in> \<real>\<^sub>\<ge>\<^sub>0" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
159 |
by (metis nonneg_Reals_of_real_iff of_nat_0_le_iff of_real_of_nat_eq) |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
160 |
|
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
161 |
lemma nonneg_Reals_cases: |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
162 |
assumes "x \<in> \<real>\<^sub>\<ge>\<^sub>0" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
163 |
obtains r where "x = of_real r" "r \<ge> 0" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
164 |
using assms unfolding nonneg_Reals_def by (auto elim!: Reals_cases) |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
165 |
|
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
166 |
lemma nonneg_Reals_zero_I [simp]: "0 \<in> \<real>\<^sub>\<ge>\<^sub>0" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
167 |
unfolding nonneg_Reals_def by auto |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
168 |
|
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
169 |
lemma nonneg_Reals_one_I [simp]: "1 \<in> \<real>\<^sub>\<ge>\<^sub>0" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
170 |
by (metis (mono_tags, lifting) nonneg_Reals_of_nat_I of_nat_1) |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
171 |
|
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
172 |
lemma nonneg_Reals_minus_one_I [simp]: "-1 \<notin> \<real>\<^sub>\<ge>\<^sub>0" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
173 |
by (metis nonneg_Reals_of_real_iff le_minus_one_simps(3) of_real_1 of_real_def real_vector.scale_minus_left) |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
174 |
|
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
175 |
lemma nonneg_Reals_numeral_I [simp]: "numeral w \<in> \<real>\<^sub>\<ge>\<^sub>0" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
176 |
by (metis (no_types) nonneg_Reals_of_nat_I of_nat_numeral) |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
177 |
|
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
178 |
lemma nonneg_Reals_minus_numeral_I [simp]: "- numeral w \<notin> \<real>\<^sub>\<ge>\<^sub>0" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
179 |
using nonneg_Reals_of_real_iff not_zero_le_neg_numeral by fastforce |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
180 |
|
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
181 |
lemma nonneg_Reals_add_I [simp]: "\<lbrakk>a \<in> \<real>\<^sub>\<ge>\<^sub>0; b \<in> \<real>\<^sub>\<ge>\<^sub>0\<rbrakk> \<Longrightarrow> a + b \<in> \<real>\<^sub>\<ge>\<^sub>0" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
182 |
apply (simp add: nonneg_Reals_def) |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
183 |
apply clarify |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
184 |
apply (rename_tac r s) |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
185 |
apply (rule_tac x="r+s" in exI, auto) |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
186 |
done |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
187 |
|
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
188 |
lemma nonneg_Reals_mult_I [simp]: "\<lbrakk>a \<in> \<real>\<^sub>\<ge>\<^sub>0; b \<in> \<real>\<^sub>\<ge>\<^sub>0\<rbrakk> \<Longrightarrow> a * b \<in> \<real>\<^sub>\<ge>\<^sub>0" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
189 |
unfolding nonneg_Reals_def by (auto simp: of_real_def) |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
190 |
|
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
191 |
lemma nonneg_Reals_inverse_I [simp]: |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
192 |
fixes a :: "'a::real_div_algebra" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
193 |
shows "a \<in> \<real>\<^sub>\<ge>\<^sub>0 \<Longrightarrow> inverse a \<in> \<real>\<^sub>\<ge>\<^sub>0" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
194 |
by (simp add: nonneg_Reals_def image_iff) (metis inverse_nonnegative_iff_nonnegative of_real_inverse) |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
195 |
|
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
196 |
lemma nonneg_Reals_divide_I [simp]: |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
197 |
fixes a :: "'a::real_div_algebra" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
198 |
shows "\<lbrakk>a \<in> \<real>\<^sub>\<ge>\<^sub>0; b \<in> \<real>\<^sub>\<ge>\<^sub>0\<rbrakk> \<Longrightarrow> a / b \<in> \<real>\<^sub>\<ge>\<^sub>0" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
199 |
by (simp add: divide_inverse) |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
200 |
|
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
201 |
lemma nonneg_Reals_pow_I [simp]: "a \<in> \<real>\<^sub>\<ge>\<^sub>0 \<Longrightarrow> a^n \<in> \<real>\<^sub>\<ge>\<^sub>0" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
202 |
by (induction n) auto |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
203 |
|
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
204 |
lemma complex_nonneg_Reals_iff: "z \<in> \<real>\<^sub>\<ge>\<^sub>0 \<longleftrightarrow> Re z \<ge> 0 \<and> Im z = 0" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
205 |
by (auto simp: nonneg_Reals_def) (metis complex_of_real_def complex_surj) |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
206 |
|
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
207 |
lemma ii_not_nonneg_Reals [iff]: "\<i> \<notin> \<real>\<^sub>\<ge>\<^sub>0" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
208 |
by (simp add: complex_nonneg_Reals_iff) |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
209 |
|
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
210 |
|
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
211 |
subsection\<open>Non-positive reals\<close> |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
212 |
|
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
213 |
definition nonpos_Reals :: "'a::real_algebra_1 set" ("\<real>\<^sub>\<le>\<^sub>0") |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
214 |
where "\<real>\<^sub>\<le>\<^sub>0 = {of_real r | r. r \<le> 0}" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
215 |
|
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
216 |
lemma nonpos_Reals_of_real_iff [simp]: "of_real r \<in> \<real>\<^sub>\<le>\<^sub>0 \<longleftrightarrow> r \<le> 0" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
217 |
by (force simp add: nonpos_Reals_def) |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
218 |
|
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
219 |
lemma nonpos_Reals_subset_Reals: "\<real>\<^sub>\<le>\<^sub>0 \<subseteq> \<real>" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
220 |
unfolding nonpos_Reals_def Reals_def by blast |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
221 |
|
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
222 |
lemma nonpos_Ints_subset_nonpos_Reals: "\<int>\<^sub>\<le>\<^sub>0 \<subseteq> \<real>\<^sub>\<le>\<^sub>0" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
223 |
by (metis nonpos_Ints_cases nonpos_Ints_nonpos nonpos_Ints_of_int |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
224 |
nonpos_Reals_of_real_iff of_real_of_int_eq subsetI) |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
225 |
|
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
226 |
lemma nonpos_Reals_of_nat_iff [simp]: "of_nat n \<in> \<real>\<^sub>\<le>\<^sub>0 \<longleftrightarrow> n=0" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
227 |
by (metis nonpos_Reals_of_real_iff of_nat_le_0_iff of_real_of_nat_eq) |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
228 |
|
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
229 |
lemma nonpos_Reals_Real [dest]: "x \<in> \<real>\<^sub>\<le>\<^sub>0 \<Longrightarrow> x \<in> \<real>" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
230 |
unfolding nonpos_Reals_def Reals_def by blast |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
231 |
|
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
232 |
lemma nonpos_Reals_cases: |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
233 |
assumes "x \<in> \<real>\<^sub>\<le>\<^sub>0" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
234 |
obtains r where "x = of_real r" "r \<le> 0" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
235 |
using assms unfolding nonpos_Reals_def by (auto elim!: Reals_cases) |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
236 |
|
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
237 |
lemma uminus_nonneg_Reals_iff [simp]: "-x \<in> \<real>\<^sub>\<ge>\<^sub>0 \<longleftrightarrow> x \<in> \<real>\<^sub>\<le>\<^sub>0" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
238 |
apply (auto simp: nonpos_Reals_def nonneg_Reals_def) |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
239 |
apply (metis nonpos_Reals_of_real_iff minus_minus neg_le_0_iff_le of_real_minus) |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
240 |
done |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
241 |
|
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
242 |
lemma uminus_nonpos_Reals_iff [simp]: "-x \<in> \<real>\<^sub>\<le>\<^sub>0 \<longleftrightarrow> x \<in> \<real>\<^sub>\<ge>\<^sub>0" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
243 |
by (metis (no_types) minus_minus uminus_nonneg_Reals_iff) |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
244 |
|
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
245 |
lemma nonpos_Reals_zero_I [simp]: "0 \<in> \<real>\<^sub>\<le>\<^sub>0" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
246 |
unfolding nonpos_Reals_def by force |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
247 |
|
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
248 |
lemma nonpos_Reals_one_I [simp]: "1 \<notin> \<real>\<^sub>\<le>\<^sub>0" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
249 |
using nonneg_Reals_minus_one_I uminus_nonneg_Reals_iff by blast |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
250 |
|
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
251 |
lemma nonpos_Reals_numeral_I [simp]: "numeral w \<notin> \<real>\<^sub>\<le>\<^sub>0" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
252 |
using nonneg_Reals_minus_numeral_I uminus_nonneg_Reals_iff by blast |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
253 |
|
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
254 |
lemma nonpos_Reals_add_I [simp]: "\<lbrakk>a \<in> \<real>\<^sub>\<le>\<^sub>0; b \<in> \<real>\<^sub>\<le>\<^sub>0\<rbrakk> \<Longrightarrow> a + b \<in> \<real>\<^sub>\<le>\<^sub>0" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
255 |
by (metis nonneg_Reals_add_I add_uminus_conv_diff minus_diff_eq minus_minus uminus_nonpos_Reals_iff) |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
256 |
|
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
257 |
lemma nonpos_Reals_mult_I1: "\<lbrakk>a \<in> \<real>\<^sub>\<ge>\<^sub>0; b \<in> \<real>\<^sub>\<le>\<^sub>0\<rbrakk> \<Longrightarrow> a * b \<in> \<real>\<^sub>\<le>\<^sub>0" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
258 |
by (metis nonneg_Reals_mult_I mult_minus_right uminus_nonneg_Reals_iff) |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
259 |
|
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
260 |
lemma nonpos_Reals_mult_I2: "\<lbrakk>a \<in> \<real>\<^sub>\<le>\<^sub>0; b \<in> \<real>\<^sub>\<ge>\<^sub>0\<rbrakk> \<Longrightarrow> a * b \<in> \<real>\<^sub>\<le>\<^sub>0" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
261 |
by (metis nonneg_Reals_mult_I mult_minus_left uminus_nonneg_Reals_iff) |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
262 |
|
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
263 |
lemma nonpos_Reals_mult_of_nat_iff: |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
264 |
fixes a:: "'a :: real_div_algebra" shows "a * of_nat n \<in> \<real>\<^sub>\<le>\<^sub>0 \<longleftrightarrow> a \<in> \<real>\<^sub>\<le>\<^sub>0 \<or> n=0" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
265 |
apply (auto intro: nonpos_Reals_mult_I2) |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
266 |
apply (auto simp: nonpos_Reals_def) |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
267 |
apply (rule_tac x="r/n" in exI) |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
268 |
apply (auto simp: divide_simps) |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
269 |
done |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
270 |
|
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
271 |
lemma nonpos_Reals_inverse_I: |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
272 |
fixes a :: "'a::real_div_algebra" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
273 |
shows "a \<in> \<real>\<^sub>\<le>\<^sub>0 \<Longrightarrow> inverse a \<in> \<real>\<^sub>\<le>\<^sub>0" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
274 |
using nonneg_Reals_inverse_I uminus_nonneg_Reals_iff by fastforce |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
275 |
|
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
276 |
lemma nonpos_Reals_divide_I1: |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
277 |
fixes a :: "'a::real_div_algebra" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
278 |
shows "\<lbrakk>a \<in> \<real>\<^sub>\<ge>\<^sub>0; b \<in> \<real>\<^sub>\<le>\<^sub>0\<rbrakk> \<Longrightarrow> a / b \<in> \<real>\<^sub>\<le>\<^sub>0" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
279 |
by (simp add: nonpos_Reals_inverse_I nonpos_Reals_mult_I1 divide_inverse) |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
280 |
|
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
281 |
lemma nonpos_Reals_divide_I2: |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
282 |
fixes a :: "'a::real_div_algebra" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
283 |
shows "\<lbrakk>a \<in> \<real>\<^sub>\<le>\<^sub>0; b \<in> \<real>\<^sub>\<ge>\<^sub>0\<rbrakk> \<Longrightarrow> a / b \<in> \<real>\<^sub>\<le>\<^sub>0" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
284 |
by (metis nonneg_Reals_divide_I minus_divide_left uminus_nonneg_Reals_iff) |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
285 |
|
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
286 |
lemma nonpos_Reals_divide_of_nat_iff: |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
287 |
fixes a:: "'a :: real_div_algebra" shows "a / of_nat n \<in> \<real>\<^sub>\<le>\<^sub>0 \<longleftrightarrow> a \<in> \<real>\<^sub>\<le>\<^sub>0 \<or> n=0" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
288 |
apply (auto intro: nonpos_Reals_divide_I2) |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
289 |
apply (auto simp: nonpos_Reals_def) |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
290 |
apply (rule_tac x="r*n" in exI) |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
291 |
apply (auto simp: divide_simps mult_le_0_iff) |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
292 |
done |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
293 |
|
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
294 |
lemma nonpos_Reals_pow_I: "\<lbrakk>a \<in> \<real>\<^sub>\<le>\<^sub>0; odd n\<rbrakk> \<Longrightarrow> a^n \<in> \<real>\<^sub>\<le>\<^sub>0" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
295 |
by (metis nonneg_Reals_pow_I power_minus_odd uminus_nonneg_Reals_iff) |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
296 |
|
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
297 |
lemma complex_nonpos_Reals_iff: "z \<in> \<real>\<^sub>\<le>\<^sub>0 \<longleftrightarrow> Re z \<le> 0 \<and> Im z = 0" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
298 |
using complex_is_Real_iff by (force simp add: nonpos_Reals_def) |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
299 |
|
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
300 |
lemma ii_not_nonpos_Reals [iff]: "\<i> \<notin> \<real>\<^sub>\<le>\<^sub>0" |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
301 |
by (simp add: complex_nonpos_Reals_iff) |
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents:
62072
diff
changeset
|
302 |
|
62390 | 303 |
end |