author | nipkow |
Thu, 21 Dec 2000 19:19:18 +0100 | |
changeset 10724 | 819ee80305a8 |
parent 10198 | 2b255b772585 |
permissions | -rw-r--r-- |
9508
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
1 |
(* Title: IntPowerFact.ML |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
2 |
ID: $Id$ |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
3 |
Author: Thomas M. Rasmussen |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
4 |
Copyright 2000 University of Cambridge |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
5 |
|
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
6 |
Factorial on integers. |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
7 |
Product of finite set. |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
8 |
Recursively defined set including all Integers from 2 up to a. |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
9 |
*) |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
10 |
|
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
11 |
|
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
12 |
(*---- setprod ----*) |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
13 |
|
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
14 |
Goalw [setprod_def] "setprod {} = #1"; |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
15 |
by (Simp_tac 1); |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
16 |
qed "setprod_empty"; |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
17 |
Addsimps [setprod_empty]; |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
18 |
|
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
19 |
Goalw [setprod_def] |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
20 |
"[| finite A; a ~: A |] ==> setprod (insert a A) = a * setprod A"; |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
21 |
by (asm_simp_tac (simpset() addsimps [zmult_left_commute, |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
22 |
export fold_insert]) 1); |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
23 |
qed "setprod_insert"; |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
24 |
Addsimps [setprod_insert]; |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
25 |
|
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
26 |
(*---- IntFact ----*) |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
27 |
|
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
28 |
val [d22set_eq] = d22set.simps; |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
29 |
Delsimps d22set.simps; |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
30 |
|
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
31 |
val [prem1,prem2] = |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
32 |
Goal "[| !!a. P {} a; \ |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
33 |
\ !!a. [| #1<(a::int); P (d22set (a-#1)) (a-#1) |] \ |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
34 |
\ ==> P (d22set a) a |] \ |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
35 |
\ ==> P (d22set u) u"; |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
36 |
by (rtac d22set.induct 1); |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
37 |
by Safe_tac; |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
38 |
by (case_tac "#1<a" 2); |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
39 |
by (rtac prem2 2); |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
40 |
by (ALLGOALS Asm_simp_tac); |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
41 |
by (ALLGOALS (asm_simp_tac (simpset() addsimps [d22set_eq,prem1]))); |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
42 |
qed "d22set_induct"; |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
43 |
|
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
44 |
Goal "b:(d22set a) --> #1<b"; |
9747 | 45 |
by (induct_thm_tac d22set_induct "a" 1); |
9508
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
46 |
by (stac d22set_eq 2); |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
47 |
by Auto_tac; |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
48 |
qed_spec_mp "d22set_g_1"; |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
49 |
|
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
50 |
Goal "b:(d22set a) --> b<=a"; |
9747 | 51 |
by (induct_thm_tac d22set_induct "a" 1); |
9508
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
52 |
by (stac d22set_eq 2); |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
53 |
by Auto_tac; |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
54 |
qed_spec_mp "d22set_le"; |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
55 |
|
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
56 |
Goal "a<b ==> b~:(d22set a)"; |
10198 | 57 |
by (auto_tac (claset() addDs [d22set_le], simpset())); |
9508
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
58 |
qed "d22set_le_swap"; |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
59 |
|
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
60 |
Goal "#1<b --> b<=a --> b:(d22set a)"; |
9747 | 61 |
by (induct_thm_tac d22set.induct "a" 1); |
9508
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
62 |
by Auto_tac; |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
63 |
by (ALLGOALS (asm_full_simp_tac (simpset() addsimps [d22set_eq]))); |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
64 |
qed_spec_mp "d22set_mem"; |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
65 |
|
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
66 |
Goal "finite (d22set a)"; |
9747 | 67 |
by (induct_thm_tac d22set_induct "a" 1); |
9508
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
68 |
by (stac d22set_eq 2); |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
69 |
by Auto_tac; |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
70 |
qed "d22set_fin"; |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
71 |
|
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
72 |
val [zfact_eq] = zfact.simps; |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
73 |
Delsimps zfact.simps; |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
74 |
|
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
75 |
Goal "setprod(d22set a) = zfact a"; |
9747 | 76 |
by (induct_thm_tac d22set.induct "a" 1); |
9508
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
77 |
by Safe_tac; |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
78 |
by (asm_full_simp_tac (simpset() addsimps [d22set_eq,zfact_eq]) 1); |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
79 |
by (stac d22set_eq 1); |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
80 |
by (stac zfact_eq 1); |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
81 |
by (case_tac "#1<a" 1); |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
82 |
by (asm_full_simp_tac (simpset() addsimps [d22set_eq,zfact_eq]) 2); |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
83 |
by (asm_full_simp_tac (simpset() addsimps [d22set_fin,d22set_le_swap]) 1); |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
84 |
qed "d22set_prod_zfact"; |
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
paulson
parents:
diff
changeset
|
85 |