author | wenzelm |
Mon, 26 Nov 2012 17:13:44 +0100 | |
changeset 50231 | 81a067b188b8 |
parent 47040 | 78e88d26f19d |
child 50705 | 0e943b33d907 |
permissions | -rw-r--r-- |
41141
ad923cdd4a5d
added example to exercise higher-order reasoning with Sledgehammer and Metis
blanchet
parents:
38991
diff
changeset
|
1 |
(* Title: HOL/Metis_Examples/Tarski.thy |
43197 | 2 |
Author: Lawrence C. Paulson, Cambridge University Computer Laboratory |
41144 | 3 |
Author: Jasmin Blanchette, TU Muenchen |
23449 | 4 |
|
43197 | 5 |
Metis example featuring the full theorem of Tarski. |
23449 | 6 |
*) |
7 |
||
43197 | 8 |
header {* Metis Example Featuring the Full Theorem of Tarski *} |
23449 | 9 |
|
27368 | 10 |
theory Tarski |
41413
64cd30d6b0b8
explicit file specifications -- avoid secondary load path;
wenzelm
parents:
41144
diff
changeset
|
11 |
imports Main "~~/src/HOL/Library/FuncSet" |
27368 | 12 |
begin |
23449 | 13 |
|
42103
6066a35f6678
Metis examples use the new Skolemizer to test it
blanchet
parents:
41413
diff
changeset
|
14 |
declare [[metis_new_skolemizer]] |
6066a35f6678
Metis examples use the new Skolemizer to test it
blanchet
parents:
41413
diff
changeset
|
15 |
|
23449 | 16 |
(*Many of these higher-order problems appear to be impossible using the |
17 |
current linkup. They often seem to need either higher-order unification |
|
18 |
or explicit reasoning about connectives such as conjunction. The numerous |
|
19 |
set comprehensions are to blame.*) |
|
20 |
||
21 |
record 'a potype = |
|
22 |
pset :: "'a set" |
|
23 |
order :: "('a * 'a) set" |
|
24 |
||
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
35054
diff
changeset
|
25 |
definition monotone :: "['a => 'a, 'a set, ('a *'a)set] => bool" where |
23449 | 26 |
"monotone f A r == \<forall>x\<in>A. \<forall>y\<in>A. (x, y): r --> ((f x), (f y)) : r" |
27 |
||
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
35054
diff
changeset
|
28 |
definition least :: "['a => bool, 'a potype] => 'a" where |
23449 | 29 |
"least P po == @ x. x: pset po & P x & |
30 |
(\<forall>y \<in> pset po. P y --> (x,y): order po)" |
|
31 |
||
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
35054
diff
changeset
|
32 |
definition greatest :: "['a => bool, 'a potype] => 'a" where |
23449 | 33 |
"greatest P po == @ x. x: pset po & P x & |
34 |
(\<forall>y \<in> pset po. P y --> (y,x): order po)" |
|
35 |
||
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
35054
diff
changeset
|
36 |
definition lub :: "['a set, 'a potype] => 'a" where |
23449 | 37 |
"lub S po == least (%x. \<forall>y\<in>S. (y,x): order po) po" |
38 |
||
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
35054
diff
changeset
|
39 |
definition glb :: "['a set, 'a potype] => 'a" where |
23449 | 40 |
"glb S po == greatest (%x. \<forall>y\<in>S. (x,y): order po) po" |
41 |
||
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
35054
diff
changeset
|
42 |
definition isLub :: "['a set, 'a potype, 'a] => bool" where |
23449 | 43 |
"isLub S po == %L. (L: pset po & (\<forall>y\<in>S. (y,L): order po) & |
44 |
(\<forall>z\<in>pset po. (\<forall>y\<in>S. (y,z): order po) --> (L,z): order po))" |
|
45 |
||
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
35054
diff
changeset
|
46 |
definition isGlb :: "['a set, 'a potype, 'a] => bool" where |
23449 | 47 |
"isGlb S po == %G. (G: pset po & (\<forall>y\<in>S. (G,y): order po) & |
48 |
(\<forall>z \<in> pset po. (\<forall>y\<in>S. (z,y): order po) --> (z,G): order po))" |
|
49 |
||
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
35054
diff
changeset
|
50 |
definition "fix" :: "[('a => 'a), 'a set] => 'a set" where |
23449 | 51 |
"fix f A == {x. x: A & f x = x}" |
52 |
||
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
35054
diff
changeset
|
53 |
definition interval :: "[('a*'a) set,'a, 'a ] => 'a set" where |
23449 | 54 |
"interval r a b == {x. (a,x): r & (x,b): r}" |
55 |
||
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
35054
diff
changeset
|
56 |
definition Bot :: "'a potype => 'a" where |
23449 | 57 |
"Bot po == least (%x. True) po" |
58 |
||
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
35054
diff
changeset
|
59 |
definition Top :: "'a potype => 'a" where |
23449 | 60 |
"Top po == greatest (%x. True) po" |
61 |
||
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
35054
diff
changeset
|
62 |
definition PartialOrder :: "('a potype) set" where |
30198 | 63 |
"PartialOrder == {P. refl_on (pset P) (order P) & antisym (order P) & |
23449 | 64 |
trans (order P)}" |
65 |
||
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
35054
diff
changeset
|
66 |
definition CompleteLattice :: "('a potype) set" where |
23449 | 67 |
"CompleteLattice == {cl. cl: PartialOrder & |
68 |
(\<forall>S. S \<subseteq> pset cl --> (\<exists>L. isLub S cl L)) & |
|
69 |
(\<forall>S. S \<subseteq> pset cl --> (\<exists>G. isGlb S cl G))}" |
|
70 |
||
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
35054
diff
changeset
|
71 |
definition induced :: "['a set, ('a * 'a) set] => ('a *'a)set" where |
23449 | 72 |
"induced A r == {(a,b). a : A & b: A & (a,b): r}" |
73 |
||
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
35054
diff
changeset
|
74 |
definition sublattice :: "('a potype * 'a set)set" where |
23449 | 75 |
"sublattice == |
76 |
SIGMA cl: CompleteLattice. |
|
77 |
{S. S \<subseteq> pset cl & |
|
78 |
(| pset = S, order = induced S (order cl) |): CompleteLattice }" |
|
79 |
||
35054 | 80 |
abbreviation |
81 |
sublattice_syntax :: "['a set, 'a potype] => bool" ("_ <<= _" [51, 50] 50) |
|
82 |
where "S <<= cl \<equiv> S : sublattice `` {cl}" |
|
23449 | 83 |
|
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
35054
diff
changeset
|
84 |
definition dual :: "'a potype => 'a potype" where |
23449 | 85 |
"dual po == (| pset = pset po, order = converse (order po) |)" |
86 |
||
27681 | 87 |
locale PO = |
23449 | 88 |
fixes cl :: "'a potype" |
89 |
and A :: "'a set" |
|
90 |
and r :: "('a * 'a) set" |
|
91 |
assumes cl_po: "cl : PartialOrder" |
|
92 |
defines A_def: "A == pset cl" |
|
93 |
and r_def: "r == order cl" |
|
94 |
||
27681 | 95 |
locale CL = PO + |
23449 | 96 |
assumes cl_co: "cl : CompleteLattice" |
97 |
||
27681 | 98 |
definition CLF_set :: "('a potype * ('a => 'a)) set" where |
99 |
"CLF_set = (SIGMA cl: CompleteLattice. |
|
100 |
{f. f: pset cl -> pset cl & monotone f (pset cl) (order cl)})" |
|
101 |
||
102 |
locale CLF = CL + |
|
23449 | 103 |
fixes f :: "'a => 'a" |
104 |
and P :: "'a set" |
|
27681 | 105 |
assumes f_cl: "(cl,f) : CLF_set" (*was the equivalent "f : CLF``{cl}"*) |
23449 | 106 |
defines P_def: "P == fix f A" |
107 |
||
27681 | 108 |
locale Tarski = CLF + |
23449 | 109 |
fixes Y :: "'a set" |
110 |
and intY1 :: "'a set" |
|
111 |
and v :: "'a" |
|
112 |
assumes |
|
113 |
Y_ss: "Y \<subseteq> P" |
|
114 |
defines |
|
115 |
intY1_def: "intY1 == interval r (lub Y cl) (Top cl)" |
|
116 |
and v_def: "v == glb {x. ((%x: intY1. f x) x, x): induced intY1 r & |
|
117 |
x: intY1} |
|
118 |
(| pset=intY1, order=induced intY1 r|)" |
|
119 |
||
120 |
subsection {* Partial Order *} |
|
121 |
||
30198 | 122 |
lemma (in PO) PO_imp_refl_on: "refl_on A r" |
23449 | 123 |
apply (insert cl_po) |
124 |
apply (simp add: PartialOrder_def A_def r_def) |
|
125 |
done |
|
126 |
||
127 |
lemma (in PO) PO_imp_sym: "antisym r" |
|
128 |
apply (insert cl_po) |
|
129 |
apply (simp add: PartialOrder_def r_def) |
|
130 |
done |
|
131 |
||
132 |
lemma (in PO) PO_imp_trans: "trans r" |
|
133 |
apply (insert cl_po) |
|
134 |
apply (simp add: PartialOrder_def r_def) |
|
135 |
done |
|
136 |
||
137 |
lemma (in PO) reflE: "x \<in> A ==> (x, x) \<in> r" |
|
138 |
apply (insert cl_po) |
|
30198 | 139 |
apply (simp add: PartialOrder_def refl_on_def A_def r_def) |
23449 | 140 |
done |
141 |
||
142 |
lemma (in PO) antisymE: "[| (a, b) \<in> r; (b, a) \<in> r |] ==> a = b" |
|
143 |
apply (insert cl_po) |
|
144 |
apply (simp add: PartialOrder_def antisym_def r_def) |
|
145 |
done |
|
146 |
||
147 |
lemma (in PO) transE: "[| (a, b) \<in> r; (b, c) \<in> r|] ==> (a,c) \<in> r" |
|
148 |
apply (insert cl_po) |
|
149 |
apply (simp add: PartialOrder_def r_def) |
|
150 |
apply (unfold trans_def, fast) |
|
151 |
done |
|
152 |
||
153 |
lemma (in PO) monotoneE: |
|
154 |
"[| monotone f A r; x \<in> A; y \<in> A; (x, y) \<in> r |] ==> (f x, f y) \<in> r" |
|
155 |
by (simp add: monotone_def) |
|
156 |
||
157 |
lemma (in PO) po_subset_po: |
|
158 |
"S \<subseteq> A ==> (| pset = S, order = induced S r |) \<in> PartialOrder" |
|
159 |
apply (simp (no_asm) add: PartialOrder_def) |
|
160 |
apply auto |
|
161 |
-- {* refl *} |
|
30198 | 162 |
apply (simp add: refl_on_def induced_def) |
23449 | 163 |
apply (blast intro: reflE) |
164 |
-- {* antisym *} |
|
165 |
apply (simp add: antisym_def induced_def) |
|
166 |
apply (blast intro: antisymE) |
|
167 |
-- {* trans *} |
|
168 |
apply (simp add: trans_def induced_def) |
|
169 |
apply (blast intro: transE) |
|
170 |
done |
|
171 |
||
172 |
lemma (in PO) indE: "[| (x, y) \<in> induced S r; S \<subseteq> A |] ==> (x, y) \<in> r" |
|
173 |
by (simp add: add: induced_def) |
|
174 |
||
175 |
lemma (in PO) indI: "[| (x, y) \<in> r; x \<in> S; y \<in> S |] ==> (x, y) \<in> induced S r" |
|
176 |
by (simp add: add: induced_def) |
|
177 |
||
178 |
lemma (in CL) CL_imp_ex_isLub: "S \<subseteq> A ==> \<exists>L. isLub S cl L" |
|
179 |
apply (insert cl_co) |
|
180 |
apply (simp add: CompleteLattice_def A_def) |
|
181 |
done |
|
182 |
||
183 |
declare (in CL) cl_co [simp] |
|
184 |
||
185 |
lemma isLub_lub: "(\<exists>L. isLub S cl L) = isLub S cl (lub S cl)" |
|
186 |
by (simp add: lub_def least_def isLub_def some_eq_ex [symmetric]) |
|
187 |
||
188 |
lemma isGlb_glb: "(\<exists>G. isGlb S cl G) = isGlb S cl (glb S cl)" |
|
189 |
by (simp add: glb_def greatest_def isGlb_def some_eq_ex [symmetric]) |
|
190 |
||
191 |
lemma isGlb_dual_isLub: "isGlb S cl = isLub S (dual cl)" |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
45970
diff
changeset
|
192 |
by (simp add: isLub_def isGlb_def dual_def converse_unfold) |
23449 | 193 |
|
194 |
lemma isLub_dual_isGlb: "isLub S cl = isGlb S (dual cl)" |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
45970
diff
changeset
|
195 |
by (simp add: isLub_def isGlb_def dual_def converse_unfold) |
23449 | 196 |
|
197 |
lemma (in PO) dualPO: "dual cl \<in> PartialOrder" |
|
198 |
apply (insert cl_po) |
|
45970
b6d0cff57d96
adjusted to set/pred distinction by means of type constructor `set`
haftmann
parents:
45705
diff
changeset
|
199 |
apply (simp add: PartialOrder_def dual_def) |
23449 | 200 |
done |
201 |
||
202 |
lemma Rdual: |
|
203 |
"\<forall>S. (S \<subseteq> A -->( \<exists>L. isLub S (| pset = A, order = r|) L)) |
|
204 |
==> \<forall>S. (S \<subseteq> A --> (\<exists>G. isGlb S (| pset = A, order = r|) G))" |
|
205 |
apply safe |
|
206 |
apply (rule_tac x = "lub {y. y \<in> A & (\<forall>k \<in> S. (y, k) \<in> r)} |
|
207 |
(|pset = A, order = r|) " in exI) |
|
208 |
apply (drule_tac x = "{y. y \<in> A & (\<forall>k \<in> S. (y,k) \<in> r) }" in spec) |
|
209 |
apply (drule mp, fast) |
|
210 |
apply (simp add: isLub_lub isGlb_def) |
|
211 |
apply (simp add: isLub_def, blast) |
|
212 |
done |
|
213 |
||
214 |
lemma lub_dual_glb: "lub S cl = glb S (dual cl)" |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
45970
diff
changeset
|
215 |
by (simp add: lub_def glb_def least_def greatest_def dual_def converse_unfold) |
23449 | 216 |
|
217 |
lemma glb_dual_lub: "glb S cl = lub S (dual cl)" |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
45970
diff
changeset
|
218 |
by (simp add: lub_def glb_def least_def greatest_def dual_def converse_unfold) |
23449 | 219 |
|
220 |
lemma CL_subset_PO: "CompleteLattice \<subseteq> PartialOrder" |
|
221 |
by (simp add: PartialOrder_def CompleteLattice_def, fast) |
|
222 |
||
223 |
lemmas CL_imp_PO = CL_subset_PO [THEN subsetD] |
|
224 |
||
30198 | 225 |
declare PO.PO_imp_refl_on [OF PO.intro [OF CL_imp_PO], simp] |
27681 | 226 |
declare PO.PO_imp_sym [OF PO.intro [OF CL_imp_PO], simp] |
227 |
declare PO.PO_imp_trans [OF PO.intro [OF CL_imp_PO], simp] |
|
23449 | 228 |
|
30198 | 229 |
lemma (in CL) CO_refl_on: "refl_on A r" |
230 |
by (rule PO_imp_refl_on) |
|
23449 | 231 |
|
232 |
lemma (in CL) CO_antisym: "antisym r" |
|
233 |
by (rule PO_imp_sym) |
|
234 |
||
235 |
lemma (in CL) CO_trans: "trans r" |
|
236 |
by (rule PO_imp_trans) |
|
237 |
||
238 |
lemma CompleteLatticeI: |
|
239 |
"[| po \<in> PartialOrder; (\<forall>S. S \<subseteq> pset po --> (\<exists>L. isLub S po L)); |
|
240 |
(\<forall>S. S \<subseteq> pset po --> (\<exists>G. isGlb S po G))|] |
|
241 |
==> po \<in> CompleteLattice" |
|
242 |
apply (unfold CompleteLattice_def, blast) |
|
243 |
done |
|
244 |
||
245 |
lemma (in CL) CL_dualCL: "dual cl \<in> CompleteLattice" |
|
246 |
apply (insert cl_co) |
|
247 |
apply (simp add: CompleteLattice_def dual_def) |
|
248 |
apply (fold dual_def) |
|
249 |
apply (simp add: isLub_dual_isGlb [symmetric] isGlb_dual_isLub [symmetric] |
|
250 |
dualPO) |
|
251 |
done |
|
252 |
||
253 |
lemma (in PO) dualA_iff: "pset (dual cl) = pset cl" |
|
254 |
by (simp add: dual_def) |
|
255 |
||
256 |
lemma (in PO) dualr_iff: "((x, y) \<in> (order(dual cl))) = ((y, x) \<in> order cl)" |
|
257 |
by (simp add: dual_def) |
|
258 |
||
259 |
lemma (in PO) monotone_dual: |
|
43197 | 260 |
"monotone f (pset cl) (order cl) |
23449 | 261 |
==> monotone f (pset (dual cl)) (order(dual cl))" |
262 |
by (simp add: monotone_def dualA_iff dualr_iff) |
|
263 |
||
264 |
lemma (in PO) interval_dual: |
|
265 |
"[| x \<in> A; y \<in> A|] ==> interval r x y = interval (order(dual cl)) y x" |
|
266 |
apply (simp add: interval_def dualr_iff) |
|
267 |
apply (fold r_def, fast) |
|
268 |
done |
|
269 |
||
270 |
lemma (in PO) interval_not_empty: |
|
271 |
"[| trans r; interval r a b \<noteq> {} |] ==> (a, b) \<in> r" |
|
272 |
apply (simp add: interval_def) |
|
273 |
apply (unfold trans_def, blast) |
|
274 |
done |
|
275 |
||
276 |
lemma (in PO) interval_imp_mem: "x \<in> interval r a b ==> (a, x) \<in> r" |
|
277 |
by (simp add: interval_def) |
|
278 |
||
279 |
lemma (in PO) left_in_interval: |
|
280 |
"[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |] ==> a \<in> interval r a b" |
|
281 |
apply (simp (no_asm_simp) add: interval_def) |
|
282 |
apply (simp add: PO_imp_trans interval_not_empty) |
|
283 |
apply (simp add: reflE) |
|
284 |
done |
|
285 |
||
286 |
lemma (in PO) right_in_interval: |
|
287 |
"[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |] ==> b \<in> interval r a b" |
|
288 |
apply (simp (no_asm_simp) add: interval_def) |
|
289 |
apply (simp add: PO_imp_trans interval_not_empty) |
|
290 |
apply (simp add: reflE) |
|
291 |
done |
|
292 |
||
293 |
subsection {* sublattice *} |
|
294 |
||
295 |
lemma (in PO) sublattice_imp_CL: |
|
296 |
"S <<= cl ==> (| pset = S, order = induced S r |) \<in> CompleteLattice" |
|
297 |
by (simp add: sublattice_def CompleteLattice_def A_def r_def) |
|
298 |
||
299 |
lemma (in CL) sublatticeI: |
|
300 |
"[| S \<subseteq> A; (| pset = S, order = induced S r |) \<in> CompleteLattice |] |
|
301 |
==> S <<= cl" |
|
302 |
by (simp add: sublattice_def A_def r_def) |
|
303 |
||
304 |
subsection {* lub *} |
|
305 |
||
306 |
lemma (in CL) lub_unique: "[| S \<subseteq> A; isLub S cl x; isLub S cl L|] ==> x = L" |
|
307 |
apply (rule antisymE) |
|
308 |
apply (auto simp add: isLub_def r_def) |
|
309 |
done |
|
310 |
||
311 |
lemma (in CL) lub_upper: "[|S \<subseteq> A; x \<in> S|] ==> (x, lub S cl) \<in> r" |
|
312 |
apply (rule CL_imp_ex_isLub [THEN exE], assumption) |
|
313 |
apply (unfold lub_def least_def) |
|
314 |
apply (rule some_equality [THEN ssubst]) |
|
315 |
apply (simp add: isLub_def) |
|
316 |
apply (simp add: lub_unique A_def isLub_def) |
|
317 |
apply (simp add: isLub_def r_def) |
|
318 |
done |
|
319 |
||
320 |
lemma (in CL) lub_least: |
|
321 |
"[| S \<subseteq> A; L \<in> A; \<forall>x \<in> S. (x,L) \<in> r |] ==> (lub S cl, L) \<in> r" |
|
322 |
apply (rule CL_imp_ex_isLub [THEN exE], assumption) |
|
323 |
apply (unfold lub_def least_def) |
|
324 |
apply (rule_tac s=x in some_equality [THEN ssubst]) |
|
325 |
apply (simp add: isLub_def) |
|
326 |
apply (simp add: lub_unique A_def isLub_def) |
|
327 |
apply (simp add: isLub_def r_def A_def) |
|
328 |
done |
|
329 |
||
330 |
lemma (in CL) lub_in_lattice: "S \<subseteq> A ==> lub S cl \<in> A" |
|
331 |
apply (rule CL_imp_ex_isLub [THEN exE], assumption) |
|
332 |
apply (unfold lub_def least_def) |
|
333 |
apply (subst some_equality) |
|
334 |
apply (simp add: isLub_def) |
|
335 |
prefer 2 apply (simp add: isLub_def A_def) |
|
336 |
apply (simp add: lub_unique A_def isLub_def) |
|
337 |
done |
|
338 |
||
339 |
lemma (in CL) lubI: |
|
340 |
"[| S \<subseteq> A; L \<in> A; \<forall>x \<in> S. (x,L) \<in> r; |
|
341 |
\<forall>z \<in> A. (\<forall>y \<in> S. (y,z) \<in> r) --> (L,z) \<in> r |] ==> L = lub S cl" |
|
342 |
apply (rule lub_unique, assumption) |
|
343 |
apply (simp add: isLub_def A_def r_def) |
|
344 |
apply (unfold isLub_def) |
|
345 |
apply (rule conjI) |
|
346 |
apply (fold A_def r_def) |
|
347 |
apply (rule lub_in_lattice, assumption) |
|
348 |
apply (simp add: lub_upper lub_least) |
|
349 |
done |
|
350 |
||
351 |
lemma (in CL) lubIa: "[| S \<subseteq> A; isLub S cl L |] ==> L = lub S cl" |
|
352 |
by (simp add: lubI isLub_def A_def r_def) |
|
353 |
||
354 |
lemma (in CL) isLub_in_lattice: "isLub S cl L ==> L \<in> A" |
|
355 |
by (simp add: isLub_def A_def) |
|
356 |
||
357 |
lemma (in CL) isLub_upper: "[|isLub S cl L; y \<in> S|] ==> (y, L) \<in> r" |
|
358 |
by (simp add: isLub_def r_def) |
|
359 |
||
360 |
lemma (in CL) isLub_least: |
|
361 |
"[| isLub S cl L; z \<in> A; \<forall>y \<in> S. (y, z) \<in> r|] ==> (L, z) \<in> r" |
|
362 |
by (simp add: isLub_def A_def r_def) |
|
363 |
||
364 |
lemma (in CL) isLubI: |
|
365 |
"[| L \<in> A; \<forall>y \<in> S. (y, L) \<in> r; |
|
366 |
(\<forall>z \<in> A. (\<forall>y \<in> S. (y, z):r) --> (L, z) \<in> r)|] ==> isLub S cl L" |
|
367 |
by (simp add: isLub_def A_def r_def) |
|
368 |
||
369 |
subsection {* glb *} |
|
370 |
||
371 |
lemma (in CL) glb_in_lattice: "S \<subseteq> A ==> glb S cl \<in> A" |
|
372 |
apply (subst glb_dual_lub) |
|
373 |
apply (simp add: A_def) |
|
374 |
apply (rule dualA_iff [THEN subst]) |
|
375 |
apply (rule CL.lub_in_lattice) |
|
27681 | 376 |
apply (rule CL.intro) |
377 |
apply (rule PO.intro) |
|
23449 | 378 |
apply (rule dualPO) |
27681 | 379 |
apply (rule CL_axioms.intro) |
23449 | 380 |
apply (rule CL_dualCL) |
381 |
apply (simp add: dualA_iff) |
|
382 |
done |
|
383 |
||
384 |
lemma (in CL) glb_lower: "[|S \<subseteq> A; x \<in> S|] ==> (glb S cl, x) \<in> r" |
|
385 |
apply (subst glb_dual_lub) |
|
386 |
apply (simp add: r_def) |
|
387 |
apply (rule dualr_iff [THEN subst]) |
|
388 |
apply (rule CL.lub_upper) |
|
27681 | 389 |
apply (rule CL.intro) |
390 |
apply (rule PO.intro) |
|
23449 | 391 |
apply (rule dualPO) |
27681 | 392 |
apply (rule CL_axioms.intro) |
23449 | 393 |
apply (rule CL_dualCL) |
394 |
apply (simp add: dualA_iff A_def, assumption) |
|
395 |
done |
|
396 |
||
397 |
text {* |
|
398 |
Reduce the sublattice property by using substructural properties; |
|
399 |
abandoned see @{text "Tarski_4.ML"}. |
|
400 |
*} |
|
401 |
||
402 |
declare (in CLF) f_cl [simp] |
|
403 |
||
404 |
lemma (in CLF) [simp]: |
|
42762
0b3c3cf28218
prove one more lemma using Sledgehammer, with some guidance, and replace clumsy old proof that relied on old extensionality behavior
blanchet
parents:
42103
diff
changeset
|
405 |
"f: pset cl -> pset cl & monotone f (pset cl) (order cl)" |
0b3c3cf28218
prove one more lemma using Sledgehammer, with some guidance, and replace clumsy old proof that relied on old extensionality behavior
blanchet
parents:
42103
diff
changeset
|
406 |
proof - |
0b3c3cf28218
prove one more lemma using Sledgehammer, with some guidance, and replace clumsy old proof that relied on old extensionality behavior
blanchet
parents:
42103
diff
changeset
|
407 |
have "\<forall>u v. (v, u) \<in> CLF_set \<longrightarrow> u \<in> {R \<in> pset v \<rightarrow> pset v. monotone R (pset v) (order v)}" |
0b3c3cf28218
prove one more lemma using Sledgehammer, with some guidance, and replace clumsy old proof that relied on old extensionality behavior
blanchet
parents:
42103
diff
changeset
|
408 |
unfolding CLF_set_def using SigmaE2 by blast |
0b3c3cf28218
prove one more lemma using Sledgehammer, with some guidance, and replace clumsy old proof that relied on old extensionality behavior
blanchet
parents:
42103
diff
changeset
|
409 |
hence F1: "\<forall>u v. (v, u) \<in> CLF_set \<longrightarrow> u \<in> pset v \<rightarrow> pset v \<and> monotone u (pset v) (order v)" |
0b3c3cf28218
prove one more lemma using Sledgehammer, with some guidance, and replace clumsy old proof that relied on old extensionality behavior
blanchet
parents:
42103
diff
changeset
|
410 |
using CollectE by blast |
0b3c3cf28218
prove one more lemma using Sledgehammer, with some guidance, and replace clumsy old proof that relied on old extensionality behavior
blanchet
parents:
42103
diff
changeset
|
411 |
hence "Tarski.monotone f (pset cl) (order cl)" by (metis f_cl) |
0b3c3cf28218
prove one more lemma using Sledgehammer, with some guidance, and replace clumsy old proof that relied on old extensionality behavior
blanchet
parents:
42103
diff
changeset
|
412 |
hence "(cl, f) \<in> CLF_set \<and> Tarski.monotone f (pset cl) (order cl)" |
0b3c3cf28218
prove one more lemma using Sledgehammer, with some guidance, and replace clumsy old proof that relied on old extensionality behavior
blanchet
parents:
42103
diff
changeset
|
413 |
by (metis f_cl) |
0b3c3cf28218
prove one more lemma using Sledgehammer, with some guidance, and replace clumsy old proof that relied on old extensionality behavior
blanchet
parents:
42103
diff
changeset
|
414 |
thus "f \<in> pset cl \<rightarrow> pset cl \<and> Tarski.monotone f (pset cl) (order cl)" |
0b3c3cf28218
prove one more lemma using Sledgehammer, with some guidance, and replace clumsy old proof that relied on old extensionality behavior
blanchet
parents:
42103
diff
changeset
|
415 |
using F1 by metis |
0b3c3cf28218
prove one more lemma using Sledgehammer, with some guidance, and replace clumsy old proof that relied on old extensionality behavior
blanchet
parents:
42103
diff
changeset
|
416 |
qed |
23449 | 417 |
|
418 |
lemma (in CLF) f_in_funcset: "f \<in> A -> A" |
|
419 |
by (simp add: A_def) |
|
420 |
||
421 |
lemma (in CLF) monotone_f: "monotone f A r" |
|
422 |
by (simp add: A_def r_def) |
|
423 |
||
424 |
(*never proved, 2007-01-22*) |
|
45705 | 425 |
|
27681 | 426 |
declare (in CLF) CLF_set_def [simp] CL_dualCL [simp] monotone_dual [simp] dualA_iff [simp] |
427 |
||
42762
0b3c3cf28218
prove one more lemma using Sledgehammer, with some guidance, and replace clumsy old proof that relied on old extensionality behavior
blanchet
parents:
42103
diff
changeset
|
428 |
lemma (in CLF) CLF_dual: "(dual cl, f) \<in> CLF_set" |
23449 | 429 |
apply (simp del: dualA_iff) |
430 |
apply (simp) |
|
43197 | 431 |
done |
27681 | 432 |
|
433 |
declare (in CLF) CLF_set_def[simp del] CL_dualCL[simp del] monotone_dual[simp del] |
|
23449 | 434 |
dualA_iff[simp del] |
435 |
||
436 |
subsection {* fixed points *} |
|
437 |
||
438 |
lemma fix_subset: "fix f A \<subseteq> A" |
|
439 |
by (simp add: fix_def, fast) |
|
440 |
||
441 |
lemma fix_imp_eq: "x \<in> fix f A ==> f x = x" |
|
442 |
by (simp add: fix_def) |
|
443 |
||
444 |
lemma fixf_subset: |
|
445 |
"[| A \<subseteq> B; x \<in> fix (%y: A. f y) A |] ==> x \<in> fix f B" |
|
446 |
by (simp add: fix_def, auto) |
|
447 |
||
448 |
subsection {* lemmas for Tarski, lub *} |
|
449 |
||
450 |
(*never proved, 2007-01-22*) |
|
45705 | 451 |
|
452 |
declare CL.lub_least[intro] CLF.f_in_funcset[intro] funcset_mem[intro] CL.lub_in_lattice[intro] PO.transE[intro] PO.monotoneE[intro] CLF.monotone_f[intro] CL.lub_upper[intro] |
|
453 |
||
23449 | 454 |
lemma (in CLF) lubH_le_flubH: |
455 |
"H = {x. (x, f x) \<in> r & x \<in> A} ==> (lub H cl, f (lub H cl)) \<in> r" |
|
456 |
apply (rule lub_least, fast) |
|
457 |
apply (rule f_in_funcset [THEN funcset_mem]) |
|
458 |
apply (rule lub_in_lattice, fast) |
|
459 |
-- {* @{text "\<forall>x:H. (x, f (lub H r)) \<in> r"} *} |
|
460 |
apply (rule ballI) |
|
461 |
(*never proved, 2007-01-22*) |
|
462 |
apply (rule transE) |
|
463 |
-- {* instantiates @{text "(x, ?z) \<in> order cl to (x, f x)"}, *} |
|
464 |
-- {* because of the def of @{text H} *} |
|
465 |
apply fast |
|
466 |
-- {* so it remains to show @{text "(f x, f (lub H cl)) \<in> r"} *} |
|
467 |
apply (rule_tac f = "f" in monotoneE) |
|
468 |
apply (rule monotone_f, fast) |
|
469 |
apply (rule lub_in_lattice, fast) |
|
470 |
apply (rule lub_upper, fast) |
|
471 |
apply assumption |
|
472 |
done |
|
45705 | 473 |
|
474 |
declare CL.lub_least[rule del] CLF.f_in_funcset[rule del] |
|
475 |
funcset_mem[rule del] CL.lub_in_lattice[rule del] |
|
476 |
PO.transE[rule del] PO.monotoneE[rule del] |
|
477 |
CLF.monotone_f[rule del] CL.lub_upper[rule del] |
|
23449 | 478 |
|
479 |
(*never proved, 2007-01-22*) |
|
45705 | 480 |
|
481 |
declare CLF.f_in_funcset[intro] funcset_mem[intro] CL.lub_in_lattice[intro] |
|
482 |
PO.monotoneE[intro] CLF.monotone_f[intro] CL.lub_upper[intro] |
|
483 |
CLF.lubH_le_flubH[simp] |
|
484 |
||
23449 | 485 |
lemma (in CLF) flubH_le_lubH: |
486 |
"[| H = {x. (x, f x) \<in> r & x \<in> A} |] ==> (f (lub H cl), lub H cl) \<in> r" |
|
487 |
apply (rule lub_upper, fast) |
|
488 |
apply (rule_tac t = "H" in ssubst, assumption) |
|
489 |
apply (rule CollectI) |
|
47040 | 490 |
by (metis (lifting) CO_refl_on lubH_le_flubH monotone_def monotone_f refl_onD1 refl_onD2) |
23449 | 491 |
|
45705 | 492 |
declare CLF.f_in_funcset[rule del] funcset_mem[rule del] |
493 |
CL.lub_in_lattice[rule del] PO.monotoneE[rule del] |
|
494 |
CLF.monotone_f[rule del] CL.lub_upper[rule del] |
|
495 |
CLF.lubH_le_flubH[simp del] |
|
23449 | 496 |
|
497 |
(*never proved, 2007-01-22*) |
|
45705 | 498 |
|
37622 | 499 |
(* Single-step version fails. The conjecture clauses refer to local abstraction |
500 |
functions (Frees). *) |
|
23449 | 501 |
lemma (in CLF) lubH_is_fixp: |
502 |
"H = {x. (x, f x) \<in> r & x \<in> A} ==> lub H cl \<in> fix f A" |
|
503 |
apply (simp add: fix_def) |
|
504 |
apply (rule conjI) |
|
36554
2673979cb54d
more neg_clausify proofs that get replaced by direct proofs
blanchet
parents:
35416
diff
changeset
|
505 |
proof - |
2673979cb54d
more neg_clausify proofs that get replaced by direct proofs
blanchet
parents:
35416
diff
changeset
|
506 |
assume A1: "H = {x. (x, f x) \<in> r \<and> x \<in> A}" |
42762
0b3c3cf28218
prove one more lemma using Sledgehammer, with some guidance, and replace clumsy old proof that relied on old extensionality behavior
blanchet
parents:
42103
diff
changeset
|
507 |
have F1: "\<forall>u v. v \<inter> u \<subseteq> u" by (metis Int_commute Int_lower1) |
0b3c3cf28218
prove one more lemma using Sledgehammer, with some guidance, and replace clumsy old proof that relied on old extensionality behavior
blanchet
parents:
42103
diff
changeset
|
508 |
have "{R. (R, f R) \<in> r} \<inter> {R. R \<in> A} = H" using A1 by (metis Collect_conj_eq) |
0b3c3cf28218
prove one more lemma using Sledgehammer, with some guidance, and replace clumsy old proof that relied on old extensionality behavior
blanchet
parents:
42103
diff
changeset
|
509 |
hence "H \<subseteq> {R. R \<in> A}" using F1 by metis |
0b3c3cf28218
prove one more lemma using Sledgehammer, with some guidance, and replace clumsy old proof that relied on old extensionality behavior
blanchet
parents:
42103
diff
changeset
|
510 |
hence "H \<subseteq> A" by (metis Collect_mem_eq) |
0b3c3cf28218
prove one more lemma using Sledgehammer, with some guidance, and replace clumsy old proof that relied on old extensionality behavior
blanchet
parents:
42103
diff
changeset
|
511 |
hence "lub H cl \<in> A" by (metis lub_in_lattice) |
0b3c3cf28218
prove one more lemma using Sledgehammer, with some guidance, and replace clumsy old proof that relied on old extensionality behavior
blanchet
parents:
42103
diff
changeset
|
512 |
thus "lub {x. (x, f x) \<in> r \<and> x \<in> A} cl \<in> A" using A1 by metis |
36554
2673979cb54d
more neg_clausify proofs that get replaced by direct proofs
blanchet
parents:
35416
diff
changeset
|
513 |
next |
2673979cb54d
more neg_clausify proofs that get replaced by direct proofs
blanchet
parents:
35416
diff
changeset
|
514 |
assume A1: "H = {x. (x, f x) \<in> r \<and> x \<in> A}" |
45970
b6d0cff57d96
adjusted to set/pred distinction by means of type constructor `set`
haftmann
parents:
45705
diff
changeset
|
515 |
have F1: "\<forall>v. {R. R \<in> v} = v" by (metis Collect_mem_eq) |
b6d0cff57d96
adjusted to set/pred distinction by means of type constructor `set`
haftmann
parents:
45705
diff
changeset
|
516 |
have F2: "\<forall>w u. {R. R \<in> u \<and> R \<in> w} = u \<inter> w" |
b6d0cff57d96
adjusted to set/pred distinction by means of type constructor `set`
haftmann
parents:
45705
diff
changeset
|
517 |
by (metis Collect_conj_eq Collect_mem_eq) |
b6d0cff57d96
adjusted to set/pred distinction by means of type constructor `set`
haftmann
parents:
45705
diff
changeset
|
518 |
have F3: "\<forall>x v. {R. v R \<in> x} = v -` x" by (metis vimage_def) |
36554
2673979cb54d
more neg_clausify proofs that get replaced by direct proofs
blanchet
parents:
35416
diff
changeset
|
519 |
hence F4: "A \<inter> (\<lambda>R. (R, f R)) -` r = H" using A1 by auto |
45970
b6d0cff57d96
adjusted to set/pred distinction by means of type constructor `set`
haftmann
parents:
45705
diff
changeset
|
520 |
hence F5: "(f (lub H cl), lub H cl) \<in> r" |
b6d0cff57d96
adjusted to set/pred distinction by means of type constructor `set`
haftmann
parents:
45705
diff
changeset
|
521 |
by (metis A1 flubH_le_lubH) |
36554
2673979cb54d
more neg_clausify proofs that get replaced by direct proofs
blanchet
parents:
35416
diff
changeset
|
522 |
have F6: "(lub H cl, f (lub H cl)) \<in> r" |
45970
b6d0cff57d96
adjusted to set/pred distinction by means of type constructor `set`
haftmann
parents:
45705
diff
changeset
|
523 |
by (metis A1 lubH_le_flubH) |
36554
2673979cb54d
more neg_clausify proofs that get replaced by direct proofs
blanchet
parents:
35416
diff
changeset
|
524 |
have "(lub H cl, f (lub H cl)) \<in> r \<longrightarrow> f (lub H cl) = lub H cl" |
2673979cb54d
more neg_clausify proofs that get replaced by direct proofs
blanchet
parents:
35416
diff
changeset
|
525 |
using F5 by (metis antisymE) |
2673979cb54d
more neg_clausify proofs that get replaced by direct proofs
blanchet
parents:
35416
diff
changeset
|
526 |
hence "f (lub H cl) = lub H cl" using F6 by metis |
2673979cb54d
more neg_clausify proofs that get replaced by direct proofs
blanchet
parents:
35416
diff
changeset
|
527 |
thus "H = {x. (x, f x) \<in> r \<and> x \<in> A} |
2673979cb54d
more neg_clausify proofs that get replaced by direct proofs
blanchet
parents:
35416
diff
changeset
|
528 |
\<Longrightarrow> f (lub {x. (x, f x) \<in> r \<and> x \<in> A} cl) = |
2673979cb54d
more neg_clausify proofs that get replaced by direct proofs
blanchet
parents:
35416
diff
changeset
|
529 |
lub {x. (x, f x) \<in> r \<and> x \<in> A} cl" |
45970
b6d0cff57d96
adjusted to set/pred distinction by means of type constructor `set`
haftmann
parents:
45705
diff
changeset
|
530 |
by metis |
24827 | 531 |
qed |
23449 | 532 |
|
25710
4cdf7de81e1b
Replaced refs by config params; finer critical section in mets method
paulson
parents:
24855
diff
changeset
|
533 |
lemma (in CLF) (*lubH_is_fixp:*) |
23449 | 534 |
"H = {x. (x, f x) \<in> r & x \<in> A} ==> lub H cl \<in> fix f A" |
535 |
apply (simp add: fix_def) |
|
536 |
apply (rule conjI) |
|
30198 | 537 |
apply (metis CO_refl_on lubH_le_flubH refl_onD1) |
23449 | 538 |
apply (metis antisymE flubH_le_lubH lubH_le_flubH) |
539 |
done |
|
540 |
||
541 |
lemma (in CLF) fix_in_H: |
|
542 |
"[| H = {x. (x, f x) \<in> r & x \<in> A}; x \<in> P |] ==> x \<in> H" |
|
30198 | 543 |
by (simp add: P_def fix_imp_eq [of _ f A] reflE CO_refl_on |
23449 | 544 |
fix_subset [of f A, THEN subsetD]) |
545 |
||
546 |
lemma (in CLF) fixf_le_lubH: |
|
547 |
"H = {x. (x, f x) \<in> r & x \<in> A} ==> \<forall>x \<in> fix f A. (x, lub H cl) \<in> r" |
|
548 |
apply (rule ballI) |
|
549 |
apply (rule lub_upper, fast) |
|
550 |
apply (rule fix_in_H) |
|
551 |
apply (simp_all add: P_def) |
|
552 |
done |
|
553 |
||
554 |
lemma (in CLF) lubH_least_fixf: |
|
555 |
"H = {x. (x, f x) \<in> r & x \<in> A} |
|
556 |
==> \<forall>L. (\<forall>y \<in> fix f A. (y,L) \<in> r) --> (lub H cl, L) \<in> r" |
|
557 |
apply (metis P_def lubH_is_fixp) |
|
558 |
done |
|
559 |
||
560 |
subsection {* Tarski fixpoint theorem 1, first part *} |
|
45705 | 561 |
|
562 |
declare CL.lubI[intro] fix_subset[intro] CL.lub_in_lattice[intro] |
|
563 |
CLF.fixf_le_lubH[simp] CLF.lubH_least_fixf[simp] |
|
564 |
||
23449 | 565 |
lemma (in CLF) T_thm_1_lub: "lub P cl = lub {x. (x, f x) \<in> r & x \<in> A} cl" |
566 |
(*sledgehammer;*) |
|
567 |
apply (rule sym) |
|
568 |
apply (simp add: P_def) |
|
569 |
apply (rule lubI) |
|
43197 | 570 |
apply (metis P_def fix_subset) |
24827 | 571 |
apply (metis Collect_conj_eq Collect_mem_eq Int_commute Int_lower1 lub_in_lattice vimage_def) |
47040 | 572 |
apply (metis P_def fixf_le_lubH) |
573 |
by (metis P_def lubH_least_fixf) |
|
23449 | 574 |
|
45705 | 575 |
declare CL.lubI[rule del] fix_subset[rule del] CL.lub_in_lattice[rule del] |
576 |
CLF.fixf_le_lubH[simp del] CLF.lubH_least_fixf[simp del] |
|
23449 | 577 |
|
578 |
(*never proved, 2007-01-22*) |
|
45705 | 579 |
|
580 |
declare glb_dual_lub[simp] PO.dualA_iff[intro] CLF.lubH_is_fixp[intro] |
|
581 |
PO.dualPO[intro] CL.CL_dualCL[intro] PO.dualr_iff[simp] |
|
582 |
||
23449 | 583 |
lemma (in CLF) glbH_is_fixp: "H = {x. (f x, x) \<in> r & x \<in> A} ==> glb H cl \<in> P" |
584 |
-- {* Tarski for glb *} |
|
585 |
(*sledgehammer;*) |
|
586 |
apply (simp add: glb_dual_lub P_def A_def r_def) |
|
587 |
apply (rule dualA_iff [THEN subst]) |
|
588 |
apply (rule CLF.lubH_is_fixp) |
|
27681 | 589 |
apply (rule CLF.intro) |
590 |
apply (rule CL.intro) |
|
591 |
apply (rule PO.intro) |
|
23449 | 592 |
apply (rule dualPO) |
27681 | 593 |
apply (rule CL_axioms.intro) |
23449 | 594 |
apply (rule CL_dualCL) |
27681 | 595 |
apply (rule CLF_axioms.intro) |
23449 | 596 |
apply (rule CLF_dual) |
597 |
apply (simp add: dualr_iff dualA_iff) |
|
598 |
done |
|
599 |
||
45705 | 600 |
declare glb_dual_lub[simp del] PO.dualA_iff[rule del] CLF.lubH_is_fixp[rule del] |
601 |
PO.dualPO[rule del] CL.CL_dualCL[rule del] PO.dualr_iff[simp del] |
|
23449 | 602 |
|
603 |
(*never proved, 2007-01-22*) |
|
45705 | 604 |
|
23449 | 605 |
lemma (in CLF) T_thm_1_glb: "glb P cl = glb {x. (f x, x) \<in> r & x \<in> A} cl" |
606 |
(*sledgehammer;*) |
|
607 |
apply (simp add: glb_dual_lub P_def A_def r_def) |
|
608 |
apply (rule dualA_iff [THEN subst]) |
|
609 |
(*never proved, 2007-01-22*) |
|
610 |
(*sledgehammer;*) |
|
27681 | 611 |
apply (simp add: CLF.T_thm_1_lub [of _ f, OF CLF.intro, OF CL.intro CLF_axioms.intro, OF PO.intro CL_axioms.intro, |
612 |
OF dualPO CL_dualCL] dualPO CL_dualCL CLF_dual dualr_iff) |
|
23449 | 613 |
done |
614 |
||
615 |
subsection {* interval *} |
|
616 |
||
45705 | 617 |
declare (in CLF) CO_refl_on[simp] refl_on_def [simp] |
23449 | 618 |
|
619 |
lemma (in CLF) rel_imp_elem: "(x, y) \<in> r ==> x \<in> A" |
|
30198 | 620 |
by (metis CO_refl_on refl_onD1) |
45705 | 621 |
|
622 |
declare (in CLF) CO_refl_on[simp del] refl_on_def [simp del] |
|
23449 | 623 |
|
45705 | 624 |
declare (in CLF) rel_imp_elem[intro] |
625 |
declare interval_def [simp] |
|
626 |
||
23449 | 627 |
lemma (in CLF) interval_subset: "[| a \<in> A; b \<in> A |] ==> interval r a b \<subseteq> A" |
30198 | 628 |
by (metis CO_refl_on interval_imp_mem refl_onD refl_onD2 rel_imp_elem subset_eq) |
23449 | 629 |
|
45705 | 630 |
declare (in CLF) rel_imp_elem[rule del] |
631 |
declare interval_def [simp del] |
|
23449 | 632 |
|
633 |
lemma (in CLF) intervalI: |
|
634 |
"[| (a, x) \<in> r; (x, b) \<in> r |] ==> x \<in> interval r a b" |
|
635 |
by (simp add: interval_def) |
|
636 |
||
637 |
lemma (in CLF) interval_lemma1: |
|
638 |
"[| S \<subseteq> interval r a b; x \<in> S |] ==> (a, x) \<in> r" |
|
639 |
by (unfold interval_def, fast) |
|
640 |
||
641 |
lemma (in CLF) interval_lemma2: |
|
642 |
"[| S \<subseteq> interval r a b; x \<in> S |] ==> (x, b) \<in> r" |
|
643 |
by (unfold interval_def, fast) |
|
644 |
||
645 |
lemma (in CLF) a_less_lub: |
|
646 |
"[| S \<subseteq> A; S \<noteq> {}; |
|
647 |
\<forall>x \<in> S. (a,x) \<in> r; \<forall>y \<in> S. (y, L) \<in> r |] ==> (a,L) \<in> r" |
|
648 |
by (blast intro: transE) |
|
649 |
||
650 |
lemma (in CLF) glb_less_b: |
|
651 |
"[| S \<subseteq> A; S \<noteq> {}; |
|
652 |
\<forall>x \<in> S. (x,b) \<in> r; \<forall>y \<in> S. (G, y) \<in> r |] ==> (G,b) \<in> r" |
|
653 |
by (blast intro: transE) |
|
654 |
||
655 |
lemma (in CLF) S_intv_cl: |
|
656 |
"[| a \<in> A; b \<in> A; S \<subseteq> interval r a b |]==> S \<subseteq> A" |
|
657 |
by (simp add: subset_trans [OF _ interval_subset]) |
|
658 |
||
45705 | 659 |
|
23449 | 660 |
lemma (in CLF) L_in_interval: |
661 |
"[| a \<in> A; b \<in> A; S \<subseteq> interval r a b; |
|
43197 | 662 |
S \<noteq> {}; isLub S cl L; interval r a b \<noteq> {} |] ==> L \<in> interval r a b" |
23449 | 663 |
(*WON'T TERMINATE |
664 |
apply (metis CO_trans intervalI interval_lemma1 interval_lemma2 isLub_least isLub_upper subset_empty subset_iff trans_def) |
|
665 |
*) |
|
666 |
apply (rule intervalI) |
|
667 |
apply (rule a_less_lub) |
|
668 |
prefer 2 apply assumption |
|
669 |
apply (simp add: S_intv_cl) |
|
670 |
apply (rule ballI) |
|
671 |
apply (simp add: interval_lemma1) |
|
672 |
apply (simp add: isLub_upper) |
|
673 |
-- {* @{text "(L, b) \<in> r"} *} |
|
674 |
apply (simp add: isLub_least interval_lemma2) |
|
675 |
done |
|
676 |
||
677 |
(*never proved, 2007-01-22*) |
|
45705 | 678 |
|
23449 | 679 |
lemma (in CLF) G_in_interval: |
680 |
"[| a \<in> A; b \<in> A; interval r a b \<noteq> {}; S \<subseteq> interval r a b; isGlb S cl G; |
|
681 |
S \<noteq> {} |] ==> G \<in> interval r a b" |
|
682 |
apply (simp add: interval_dual) |
|
27681 | 683 |
apply (simp add: CLF.L_in_interval [of _ f, OF CLF.intro, OF CL.intro CLF_axioms.intro, OF PO.intro CL_axioms.intro] |
23449 | 684 |
dualA_iff A_def dualPO CL_dualCL CLF_dual isGlb_dual_isLub) |
685 |
done |
|
686 |
||
45705 | 687 |
|
23449 | 688 |
lemma (in CLF) intervalPO: |
689 |
"[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |] |
|
690 |
==> (| pset = interval r a b, order = induced (interval r a b) r |) |
|
691 |
\<in> PartialOrder" |
|
36554
2673979cb54d
more neg_clausify proofs that get replaced by direct proofs
blanchet
parents:
35416
diff
changeset
|
692 |
proof - |
2673979cb54d
more neg_clausify proofs that get replaced by direct proofs
blanchet
parents:
35416
diff
changeset
|
693 |
assume A1: "a \<in> A" |
2673979cb54d
more neg_clausify proofs that get replaced by direct proofs
blanchet
parents:
35416
diff
changeset
|
694 |
assume "b \<in> A" |
2673979cb54d
more neg_clausify proofs that get replaced by direct proofs
blanchet
parents:
35416
diff
changeset
|
695 |
hence "\<forall>u. u \<in> A \<longrightarrow> interval r u b \<subseteq> A" by (metis interval_subset) |
2673979cb54d
more neg_clausify proofs that get replaced by direct proofs
blanchet
parents:
35416
diff
changeset
|
696 |
hence "interval r a b \<subseteq> A" using A1 by metis |
2673979cb54d
more neg_clausify proofs that get replaced by direct proofs
blanchet
parents:
35416
diff
changeset
|
697 |
hence "interval r a b \<subseteq> A" by metis |
2673979cb54d
more neg_clausify proofs that get replaced by direct proofs
blanchet
parents:
35416
diff
changeset
|
698 |
thus ?thesis by (metis po_subset_po) |
23449 | 699 |
qed |
700 |
||
701 |
lemma (in CLF) intv_CL_lub: |
|
702 |
"[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |] |
|
703 |
==> \<forall>S. S \<subseteq> interval r a b --> |
|
704 |
(\<exists>L. isLub S (| pset = interval r a b, |
|
705 |
order = induced (interval r a b) r |) L)" |
|
706 |
apply (intro strip) |
|
707 |
apply (frule S_intv_cl [THEN CL_imp_ex_isLub]) |
|
708 |
prefer 2 apply assumption |
|
709 |
apply assumption |
|
710 |
apply (erule exE) |
|
711 |
-- {* define the lub for the interval as *} |
|
712 |
apply (rule_tac x = "if S = {} then a else L" in exI) |
|
713 |
apply (simp (no_asm_simp) add: isLub_def split del: split_if) |
|
714 |
apply (intro impI conjI) |
|
715 |
-- {* @{text "(if S = {} then a else L) \<in> interval r a b"} *} |
|
716 |
apply (simp add: CL_imp_PO L_in_interval) |
|
717 |
apply (simp add: left_in_interval) |
|
718 |
-- {* lub prop 1 *} |
|
719 |
apply (case_tac "S = {}") |
|
720 |
-- {* @{text "S = {}, y \<in> S = False => everything"} *} |
|
721 |
apply fast |
|
722 |
-- {* @{text "S \<noteq> {}"} *} |
|
723 |
apply simp |
|
724 |
-- {* @{text "\<forall>y:S. (y, L) \<in> induced (interval r a b) r"} *} |
|
725 |
apply (rule ballI) |
|
726 |
apply (simp add: induced_def L_in_interval) |
|
727 |
apply (rule conjI) |
|
728 |
apply (rule subsetD) |
|
729 |
apply (simp add: S_intv_cl, assumption) |
|
730 |
apply (simp add: isLub_upper) |
|
731 |
-- {* @{text "\<forall>z:interval r a b. (\<forall>y:S. (y, z) \<in> induced (interval r a b) r \<longrightarrow> (if S = {} then a else L, z) \<in> induced (interval r a b) r"} *} |
|
732 |
apply (rule ballI) |
|
733 |
apply (rule impI) |
|
734 |
apply (case_tac "S = {}") |
|
735 |
-- {* @{text "S = {}"} *} |
|
736 |
apply simp |
|
737 |
apply (simp add: induced_def interval_def) |
|
738 |
apply (rule conjI) |
|
739 |
apply (rule reflE, assumption) |
|
740 |
apply (rule interval_not_empty) |
|
741 |
apply (rule CO_trans) |
|
742 |
apply (simp add: interval_def) |
|
743 |
-- {* @{text "S \<noteq> {}"} *} |
|
744 |
apply simp |
|
745 |
apply (simp add: induced_def L_in_interval) |
|
746 |
apply (rule isLub_least, assumption) |
|
747 |
apply (rule subsetD) |
|
748 |
prefer 2 apply assumption |
|
749 |
apply (simp add: S_intv_cl, fast) |
|
750 |
done |
|
751 |
||
752 |
lemmas (in CLF) intv_CL_glb = intv_CL_lub [THEN Rdual] |
|
753 |
||
754 |
(*never proved, 2007-01-22*) |
|
45705 | 755 |
|
23449 | 756 |
lemma (in CLF) interval_is_sublattice: |
757 |
"[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |] |
|
758 |
==> interval r a b <<= cl" |
|
759 |
(*sledgehammer *) |
|
760 |
apply (rule sublatticeI) |
|
761 |
apply (simp add: interval_subset) |
|
762 |
(*never proved, 2007-01-22*) |
|
763 |
(*sledgehammer *) |
|
764 |
apply (rule CompleteLatticeI) |
|
765 |
apply (simp add: intervalPO) |
|
766 |
apply (simp add: intv_CL_lub) |
|
767 |
apply (simp add: intv_CL_glb) |
|
768 |
done |
|
769 |
||
770 |
lemmas (in CLF) interv_is_compl_latt = |
|
771 |
interval_is_sublattice [THEN sublattice_imp_CL] |
|
772 |
||
773 |
subsection {* Top and Bottom *} |
|
774 |
lemma (in CLF) Top_dual_Bot: "Top cl = Bot (dual cl)" |
|
775 |
by (simp add: Top_def Bot_def least_def greatest_def dualA_iff dualr_iff) |
|
776 |
||
777 |
lemma (in CLF) Bot_dual_Top: "Bot cl = Top (dual cl)" |
|
778 |
by (simp add: Top_def Bot_def least_def greatest_def dualA_iff dualr_iff) |
|
779 |
||
45705 | 780 |
|
23449 | 781 |
lemma (in CLF) Bot_in_lattice: "Bot cl \<in> A" |
782 |
(*sledgehammer; *) |
|
783 |
apply (simp add: Bot_def least_def) |
|
784 |
apply (rule_tac a="glb A cl" in someI2) |
|
43197 | 785 |
apply (simp_all add: glb_in_lattice glb_lower |
23449 | 786 |
r_def [symmetric] A_def [symmetric]) |
787 |
done |
|
788 |
||
789 |
(*first proved 2007-01-25 after relaxing relevance*) |
|
45705 | 790 |
|
23449 | 791 |
lemma (in CLF) Top_in_lattice: "Top cl \<in> A" |
792 |
(*sledgehammer;*) |
|
793 |
apply (simp add: Top_dual_Bot A_def) |
|
794 |
(*first proved 2007-01-25 after relaxing relevance*) |
|
795 |
(*sledgehammer*) |
|
796 |
apply (rule dualA_iff [THEN subst]) |
|
27681 | 797 |
apply (blast intro!: CLF.Bot_in_lattice [OF CLF.intro, OF CL.intro CLF_axioms.intro, OF PO.intro CL_axioms.intro] dualPO CL_dualCL CLF_dual) |
23449 | 798 |
done |
799 |
||
800 |
lemma (in CLF) Top_prop: "x \<in> A ==> (x, Top cl) \<in> r" |
|
801 |
apply (simp add: Top_def greatest_def) |
|
802 |
apply (rule_tac a="lub A cl" in someI2) |
|
803 |
apply (rule someI2) |
|
43197 | 804 |
apply (simp_all add: lub_in_lattice lub_upper |
23449 | 805 |
r_def [symmetric] A_def [symmetric]) |
806 |
done |
|
807 |
||
808 |
(*never proved, 2007-01-22*) |
|
45705 | 809 |
|
23449 | 810 |
lemma (in CLF) Bot_prop: "x \<in> A ==> (Bot cl, x) \<in> r" |
43197 | 811 |
(*sledgehammer*) |
23449 | 812 |
apply (simp add: Bot_dual_Top r_def) |
813 |
apply (rule dualr_iff [THEN subst]) |
|
27681 | 814 |
apply (simp add: CLF.Top_prop [of _ f, OF CLF.intro, OF CL.intro CLF_axioms.intro, OF PO.intro CL_axioms.intro] |
23449 | 815 |
dualA_iff A_def dualPO CL_dualCL CLF_dual) |
816 |
done |
|
817 |
||
45705 | 818 |
|
43197 | 819 |
lemma (in CLF) Top_intv_not_empty: "x \<in> A ==> interval r x (Top cl) \<noteq> {}" |
23449 | 820 |
apply (metis Top_in_lattice Top_prop empty_iff intervalI reflE) |
821 |
done |
|
822 |
||
45705 | 823 |
|
43197 | 824 |
lemma (in CLF) Bot_intv_not_empty: "x \<in> A ==> interval r (Bot cl) x \<noteq> {}" |
23449 | 825 |
apply (metis Bot_prop ex_in_conv intervalI reflE rel_imp_elem) |
826 |
done |
|
827 |
||
828 |
subsection {* fixed points form a partial order *} |
|
829 |
||
830 |
lemma (in CLF) fixf_po: "(| pset = P, order = induced P r|) \<in> PartialOrder" |
|
831 |
by (simp add: P_def fix_subset po_subset_po) |
|
832 |
||
833 |
(*first proved 2007-01-25 after relaxing relevance*) |
|
45705 | 834 |
|
835 |
declare (in Tarski) P_def[simp] Y_ss [simp] |
|
836 |
declare fix_subset [intro] subset_trans [intro] |
|
837 |
||
23449 | 838 |
lemma (in Tarski) Y_subset_A: "Y \<subseteq> A" |
43197 | 839 |
(*sledgehammer*) |
23449 | 840 |
apply (rule subset_trans [OF _ fix_subset]) |
841 |
apply (rule Y_ss [simplified P_def]) |
|
842 |
done |
|
843 |
||
45705 | 844 |
declare (in Tarski) P_def[simp del] Y_ss [simp del] |
845 |
declare fix_subset [rule del] subset_trans [rule del] |
|
23449 | 846 |
|
847 |
lemma (in Tarski) lubY_in_A: "lub Y cl \<in> A" |
|
848 |
by (rule Y_subset_A [THEN lub_in_lattice]) |
|
849 |
||
850 |
(*never proved, 2007-01-22*) |
|
45705 | 851 |
|
23449 | 852 |
lemma (in Tarski) lubY_le_flubY: "(lub Y cl, f (lub Y cl)) \<in> r" |
43197 | 853 |
(*sledgehammer*) |
23449 | 854 |
apply (rule lub_least) |
855 |
apply (rule Y_subset_A) |
|
856 |
apply (rule f_in_funcset [THEN funcset_mem]) |
|
857 |
apply (rule lubY_in_A) |
|
858 |
-- {* @{text "Y \<subseteq> P ==> f x = x"} *} |
|
859 |
apply (rule ballI) |
|
860 |
(*sledgehammer *) |
|
861 |
apply (rule_tac t = "x" in fix_imp_eq [THEN subst]) |
|
862 |
apply (erule Y_ss [simplified P_def, THEN subsetD]) |
|
863 |
-- {* @{text "reduce (f x, f (lub Y cl)) \<in> r to (x, lub Y cl) \<in> r"} by monotonicity *} |
|
864 |
(*sledgehammer*) |
|
865 |
apply (rule_tac f = "f" in monotoneE) |
|
866 |
apply (rule monotone_f) |
|
867 |
apply (simp add: Y_subset_A [THEN subsetD]) |
|
868 |
apply (rule lubY_in_A) |
|
869 |
apply (simp add: lub_upper Y_subset_A) |
|
870 |
done |
|
871 |
||
872 |
(*first proved 2007-01-25 after relaxing relevance*) |
|
45705 | 873 |
|
23449 | 874 |
lemma (in Tarski) intY1_subset: "intY1 \<subseteq> A" |
43197 | 875 |
(*sledgehammer*) |
23449 | 876 |
apply (unfold intY1_def) |
877 |
apply (rule interval_subset) |
|
878 |
apply (rule lubY_in_A) |
|
879 |
apply (rule Top_in_lattice) |
|
880 |
done |
|
881 |
||
882 |
lemmas (in Tarski) intY1_elem = intY1_subset [THEN subsetD] |
|
883 |
||
884 |
(*never proved, 2007-01-22*) |
|
45705 | 885 |
|
23449 | 886 |
lemma (in Tarski) intY1_f_closed: "x \<in> intY1 \<Longrightarrow> f x \<in> intY1" |
43197 | 887 |
(*sledgehammer*) |
23449 | 888 |
apply (simp add: intY1_def interval_def) |
889 |
apply (rule conjI) |
|
890 |
apply (rule transE) |
|
891 |
apply (rule lubY_le_flubY) |
|
892 |
-- {* @{text "(f (lub Y cl), f x) \<in> r"} *} |
|
893 |
(*sledgehammer [has been proved before now...]*) |
|
894 |
apply (rule_tac f=f in monotoneE) |
|
895 |
apply (rule monotone_f) |
|
896 |
apply (rule lubY_in_A) |
|
897 |
apply (simp add: intY1_def interval_def intY1_elem) |
|
898 |
apply (simp add: intY1_def interval_def) |
|
43197 | 899 |
-- {* @{text "(f x, Top cl) \<in> r"} *} |
23449 | 900 |
apply (rule Top_prop) |
901 |
apply (rule f_in_funcset [THEN funcset_mem]) |
|
902 |
apply (simp add: intY1_def interval_def intY1_elem) |
|
903 |
done |
|
904 |
||
45705 | 905 |
|
27368 | 906 |
lemma (in Tarski) intY1_func: "(%x: intY1. f x) \<in> intY1 -> intY1" |
907 |
apply (rule restrict_in_funcset) |
|
908 |
apply (metis intY1_f_closed restrict_in_funcset) |
|
909 |
done |
|
23449 | 910 |
|
45705 | 911 |
|
24855 | 912 |
lemma (in Tarski) intY1_mono: |
23449 | 913 |
"monotone (%x: intY1. f x) intY1 (induced intY1 r)" |
914 |
(*sledgehammer *) |
|
915 |
apply (auto simp add: monotone_def induced_def intY1_f_closed) |
|
916 |
apply (blast intro: intY1_elem monotone_f [THEN monotoneE]) |
|
917 |
done |
|
918 |
||
919 |
(*proof requires relaxing relevance: 2007-01-25*) |
|
45705 | 920 |
|
23449 | 921 |
lemma (in Tarski) intY1_is_cl: |
922 |
"(| pset = intY1, order = induced intY1 r |) \<in> CompleteLattice" |
|
43197 | 923 |
(*sledgehammer*) |
23449 | 924 |
apply (unfold intY1_def) |
925 |
apply (rule interv_is_compl_latt) |
|
926 |
apply (rule lubY_in_A) |
|
927 |
apply (rule Top_in_lattice) |
|
928 |
apply (rule Top_intv_not_empty) |
|
929 |
apply (rule lubY_in_A) |
|
930 |
done |
|
931 |
||
932 |
(*never proved, 2007-01-22*) |
|
45705 | 933 |
|
23449 | 934 |
lemma (in Tarski) v_in_P: "v \<in> P" |
43197 | 935 |
(*sledgehammer*) |
23449 | 936 |
apply (unfold P_def) |
937 |
apply (rule_tac A = "intY1" in fixf_subset) |
|
938 |
apply (rule intY1_subset) |
|
27681 | 939 |
apply (simp add: CLF.glbH_is_fixp [OF CLF.intro, OF CL.intro CLF_axioms.intro, OF PO.intro CL_axioms.intro, OF _ intY1_is_cl, simplified] |
940 |
v_def CL_imp_PO intY1_is_cl CLF_set_def intY1_func intY1_mono) |
|
23449 | 941 |
done |
942 |
||
45705 | 943 |
|
23449 | 944 |
lemma (in Tarski) z_in_interval: |
945 |
"[| z \<in> P; \<forall>y\<in>Y. (y, z) \<in> induced P r |] ==> z \<in> intY1" |
|
946 |
(*sledgehammer *) |
|
947 |
apply (unfold intY1_def P_def) |
|
948 |
apply (rule intervalI) |
|
949 |
prefer 2 |
|
950 |
apply (erule fix_subset [THEN subsetD, THEN Top_prop]) |
|
951 |
apply (rule lub_least) |
|
952 |
apply (rule Y_subset_A) |
|
953 |
apply (fast elim!: fix_subset [THEN subsetD]) |
|
954 |
apply (simp add: induced_def) |
|
955 |
done |
|
956 |
||
45705 | 957 |
|
23449 | 958 |
lemma (in Tarski) f'z_in_int_rel: "[| z \<in> P; \<forall>y\<in>Y. (y, z) \<in> induced P r |] |
43197 | 959 |
==> ((%x: intY1. f x) z, z) \<in> induced intY1 r" |
26806 | 960 |
apply (metis P_def acc_def fix_imp_eq fix_subset indI reflE restrict_apply subset_eq z_in_interval) |
23449 | 961 |
done |
962 |
||
963 |
(*never proved, 2007-01-22*) |
|
45705 | 964 |
|
23449 | 965 |
lemma (in Tarski) tarski_full_lemma: |
966 |
"\<exists>L. isLub Y (| pset = P, order = induced P r |) L" |
|
967 |
apply (rule_tac x = "v" in exI) |
|
968 |
apply (simp add: isLub_def) |
|
969 |
-- {* @{text "v \<in> P"} *} |
|
970 |
apply (simp add: v_in_P) |
|
971 |
apply (rule conjI) |
|
43197 | 972 |
(*sledgehammer*) |
23449 | 973 |
-- {* @{text v} is lub *} |
974 |
-- {* @{text "1. \<forall>y:Y. (y, v) \<in> induced P r"} *} |
|
975 |
apply (rule ballI) |
|
976 |
apply (simp add: induced_def subsetD v_in_P) |
|
977 |
apply (rule conjI) |
|
978 |
apply (erule Y_ss [THEN subsetD]) |
|
979 |
apply (rule_tac b = "lub Y cl" in transE) |
|
980 |
apply (rule lub_upper) |
|
981 |
apply (rule Y_subset_A, assumption) |
|
982 |
apply (rule_tac b = "Top cl" in interval_imp_mem) |
|
983 |
apply (simp add: v_def) |
|
984 |
apply (fold intY1_def) |
|
27681 | 985 |
apply (rule CL.glb_in_lattice [OF CL.intro, OF PO.intro CL_axioms.intro, OF _ intY1_is_cl, simplified]) |
23449 | 986 |
apply (simp add: CL_imp_PO intY1_is_cl, force) |
987 |
-- {* @{text v} is LEAST ub *} |
|
988 |
apply clarify |
|
989 |
apply (rule indI) |
|
990 |
prefer 3 apply assumption |
|
991 |
prefer 2 apply (simp add: v_in_P) |
|
992 |
apply (unfold v_def) |
|
993 |
(*never proved, 2007-01-22*) |
|
43197 | 994 |
(*sledgehammer*) |
23449 | 995 |
apply (rule indE) |
996 |
apply (rule_tac [2] intY1_subset) |
|
997 |
(*never proved, 2007-01-22*) |
|
43197 | 998 |
(*sledgehammer*) |
27681 | 999 |
apply (rule CL.glb_lower [OF CL.intro, OF PO.intro CL_axioms.intro, OF _ intY1_is_cl, simplified]) |
23449 | 1000 |
apply (simp add: CL_imp_PO intY1_is_cl) |
1001 |
apply force |
|
1002 |
apply (simp add: induced_def intY1_f_closed z_in_interval) |
|
1003 |
apply (simp add: P_def fix_imp_eq [of _ f A] reflE |
|
1004 |
fix_subset [of f A, THEN subsetD]) |
|
1005 |
done |
|
1006 |
||
1007 |
lemma CompleteLatticeI_simp: |
|
1008 |
"[| (| pset = A, order = r |) \<in> PartialOrder; |
|
1009 |
\<forall>S. S \<subseteq> A --> (\<exists>L. isLub S (| pset = A, order = r |) L) |] |
|
1010 |
==> (| pset = A, order = r |) \<in> CompleteLattice" |
|
1011 |
by (simp add: CompleteLatticeI Rdual) |
|
1012 |
||
45705 | 1013 |
(*never proved, 2007-01-22*) |
23449 | 1014 |
|
45705 | 1015 |
declare (in CLF) fixf_po[intro] P_def [simp] A_def [simp] r_def [simp] |
1016 |
Tarski.tarski_full_lemma [intro] cl_po [intro] cl_co [intro] |
|
1017 |
CompleteLatticeI_simp [intro] |
|
1018 |
||
23449 | 1019 |
theorem (in CLF) Tarski_full: |
1020 |
"(| pset = P, order = induced P r|) \<in> CompleteLattice" |
|
43197 | 1021 |
(*sledgehammer*) |
23449 | 1022 |
apply (rule CompleteLatticeI_simp) |
1023 |
apply (rule fixf_po, clarify) |
|
1024 |
(*never proved, 2007-01-22*) |
|
43197 | 1025 |
(*sledgehammer*) |
23449 | 1026 |
apply (simp add: P_def A_def r_def) |
27681 | 1027 |
apply (blast intro!: Tarski.tarski_full_lemma [OF Tarski.intro, OF CLF.intro Tarski_axioms.intro, |
1028 |
OF CL.intro CLF_axioms.intro, OF PO.intro CL_axioms.intro] cl_po cl_co f_cl) |
|
23449 | 1029 |
done |
36554
2673979cb54d
more neg_clausify proofs that get replaced by direct proofs
blanchet
parents:
35416
diff
changeset
|
1030 |
|
2673979cb54d
more neg_clausify proofs that get replaced by direct proofs
blanchet
parents:
35416
diff
changeset
|
1031 |
declare (in CLF) fixf_po [rule del] P_def [simp del] A_def [simp del] r_def [simp del] |
23449 | 1032 |
Tarski.tarski_full_lemma [rule del] cl_po [rule del] cl_co [rule del] |
1033 |
CompleteLatticeI_simp [rule del] |
|
1034 |
||
1035 |
end |