44603
|
1 |
(* Title: HOL/ex/Abstract_NAT.thy
|
19087
|
2 |
Author: Makarius
|
|
3 |
*)
|
|
4 |
|
23253
|
5 |
header {* Abstract Natural Numbers primitive recursion *}
|
19087
|
6 |
|
|
7 |
theory Abstract_NAT
|
|
8 |
imports Main
|
|
9 |
begin
|
|
10 |
|
|
11 |
text {* Axiomatic Natural Numbers (Peano) -- a monomorphic theory. *}
|
|
12 |
|
|
13 |
locale NAT =
|
|
14 |
fixes zero :: 'n
|
|
15 |
and succ :: "'n \<Rightarrow> 'n"
|
|
16 |
assumes succ_inject [simp]: "(succ m = succ n) = (m = n)"
|
|
17 |
and succ_neq_zero [simp]: "succ m \<noteq> zero"
|
|
18 |
and induct [case_names zero succ, induct type: 'n]:
|
|
19 |
"P zero \<Longrightarrow> (\<And>n. P n \<Longrightarrow> P (succ n)) \<Longrightarrow> P n"
|
21368
|
20 |
begin
|
19087
|
21 |
|
21368
|
22 |
lemma zero_neq_succ [simp]: "zero \<noteq> succ m"
|
19087
|
23 |
by (rule succ_neq_zero [symmetric])
|
|
24 |
|
|
25 |
|
21368
|
26 |
text {* \medskip Primitive recursion as a (functional) relation -- polymorphic! *}
|
19087
|
27 |
|
44603
|
28 |
inductive Rec :: "'a \<Rightarrow> ('n \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> 'n \<Rightarrow> 'a \<Rightarrow> bool"
|
21368
|
29 |
for e :: 'a and r :: "'n \<Rightarrow> 'a \<Rightarrow> 'a"
|
|
30 |
where
|
|
31 |
Rec_zero: "Rec e r zero e"
|
|
32 |
| Rec_succ: "Rec e r m n \<Longrightarrow> Rec e r (succ m) (r m n)"
|
19087
|
33 |
|
21368
|
34 |
lemma Rec_functional:
|
19087
|
35 |
fixes x :: 'n
|
21368
|
36 |
shows "\<exists>!y::'a. Rec e r x y"
|
|
37 |
proof -
|
|
38 |
let ?R = "Rec e r"
|
|
39 |
show ?thesis
|
|
40 |
proof (induct x)
|
|
41 |
case zero
|
|
42 |
show "\<exists>!y. ?R zero y"
|
|
43 |
proof
|
21392
|
44 |
show "?R zero e" ..
|
21368
|
45 |
fix y assume "?R zero y"
|
|
46 |
then show "y = e" by cases simp_all
|
|
47 |
qed
|
|
48 |
next
|
|
49 |
case (succ m)
|
|
50 |
from `\<exists>!y. ?R m y`
|
|
51 |
obtain y where y: "?R m y"
|
|
52 |
and yy': "\<And>y'. ?R m y' \<Longrightarrow> y = y'" by blast
|
|
53 |
show "\<exists>!z. ?R (succ m) z"
|
|
54 |
proof
|
21392
|
55 |
from y show "?R (succ m) (r m y)" ..
|
21368
|
56 |
fix z assume "?R (succ m) z"
|
|
57 |
then obtain u where "z = r m u" and "?R m u" by cases simp_all
|
|
58 |
with yy' show "z = r m y" by (simp only:)
|
|
59 |
qed
|
19087
|
60 |
qed
|
|
61 |
qed
|
|
62 |
|
|
63 |
|
21368
|
64 |
text {* \medskip The recursion operator -- polymorphic! *}
|
19087
|
65 |
|
44603
|
66 |
definition rec :: "'a \<Rightarrow> ('n \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> 'n \<Rightarrow> 'a"
|
|
67 |
where "rec e r x = (THE y. Rec e r x y)"
|
19087
|
68 |
|
21368
|
69 |
lemma rec_eval:
|
|
70 |
assumes Rec: "Rec e r x y"
|
19087
|
71 |
shows "rec e r x = y"
|
|
72 |
unfolding rec_def
|
|
73 |
using Rec_functional and Rec by (rule the1_equality)
|
|
74 |
|
21368
|
75 |
lemma rec_zero [simp]: "rec e r zero = e"
|
19087
|
76 |
proof (rule rec_eval)
|
21392
|
77 |
show "Rec e r zero e" ..
|
19087
|
78 |
qed
|
|
79 |
|
21368
|
80 |
lemma rec_succ [simp]: "rec e r (succ m) = r m (rec e r m)"
|
19087
|
81 |
proof (rule rec_eval)
|
21368
|
82 |
let ?R = "Rec e r"
|
|
83 |
have "?R m (rec e r m)"
|
|
84 |
unfolding rec_def using Rec_functional by (rule theI')
|
21392
|
85 |
then show "?R (succ m) (r m (rec e r m))" ..
|
19087
|
86 |
qed
|
|
87 |
|
|
88 |
|
21368
|
89 |
text {* \medskip Example: addition (monomorphic) *}
|
|
90 |
|
44603
|
91 |
definition add :: "'n \<Rightarrow> 'n \<Rightarrow> 'n"
|
|
92 |
where "add m n = rec n (\<lambda>_ k. succ k) m"
|
21368
|
93 |
|
|
94 |
lemma add_zero [simp]: "add zero n = n"
|
|
95 |
and add_succ [simp]: "add (succ m) n = succ (add m n)"
|
|
96 |
unfolding add_def by simp_all
|
|
97 |
|
|
98 |
lemma add_assoc: "add (add k m) n = add k (add m n)"
|
|
99 |
by (induct k) simp_all
|
|
100 |
|
|
101 |
lemma add_zero_right: "add m zero = m"
|
|
102 |
by (induct m) simp_all
|
|
103 |
|
|
104 |
lemma add_succ_right: "add m (succ n) = succ (add m n)"
|
|
105 |
by (induct m) simp_all
|
|
106 |
|
21392
|
107 |
lemma "add (succ (succ (succ zero))) (succ (succ zero)) =
|
|
108 |
succ (succ (succ (succ (succ zero))))"
|
|
109 |
by simp
|
|
110 |
|
21368
|
111 |
|
|
112 |
text {* \medskip Example: replication (polymorphic) *}
|
|
113 |
|
44603
|
114 |
definition repl :: "'n \<Rightarrow> 'a \<Rightarrow> 'a list"
|
|
115 |
where "repl n x = rec [] (\<lambda>_ xs. x # xs) n"
|
21368
|
116 |
|
|
117 |
lemma repl_zero [simp]: "repl zero x = []"
|
|
118 |
and repl_succ [simp]: "repl (succ n) x = x # repl n x"
|
|
119 |
unfolding repl_def by simp_all
|
|
120 |
|
|
121 |
lemma "repl (succ (succ (succ zero))) True = [True, True, True]"
|
|
122 |
by simp
|
|
123 |
|
|
124 |
end
|
|
125 |
|
|
126 |
|
|
127 |
text {* \medskip Just see that our abstract specification makes sense \dots *}
|
19087
|
128 |
|
29234
|
129 |
interpretation NAT 0 Suc
|
19087
|
130 |
proof (rule NAT.intro)
|
|
131 |
fix m n
|
|
132 |
show "(Suc m = Suc n) = (m = n)" by simp
|
|
133 |
show "Suc m \<noteq> 0" by simp
|
|
134 |
fix P
|
|
135 |
assume zero: "P 0"
|
|
136 |
and succ: "\<And>n. P n \<Longrightarrow> P (Suc n)"
|
|
137 |
show "P n"
|
|
138 |
proof (induct n)
|
44603
|
139 |
case 0
|
|
140 |
show ?case by (rule zero)
|
19087
|
141 |
next
|
44603
|
142 |
case Suc
|
|
143 |
then show ?case by (rule succ)
|
19087
|
144 |
qed
|
|
145 |
qed
|
|
146 |
|
|
147 |
end
|