| author | eberlm | 
| Tue, 24 May 2016 17:42:14 +0200 | |
| changeset 63132 | 8230358fab88 | 
| parent 62390 | 842917225d56 | 
| child 63167 | 0909deb8059b | 
| permissions | -rw-r--r-- | 
| 58889 | 1  | 
section {* Simply-typed lambda-calculus with let and tuple patterns *}
 | 
| 33189 | 2  | 
|
3  | 
theory Pattern  | 
|
| 44687 | 4  | 
imports "../Nominal"  | 
| 33189 | 5  | 
begin  | 
6  | 
||
7  | 
no_syntax  | 
|
| 61069 | 8  | 
  "_Map" :: "maplets => 'a \<rightharpoonup> 'b"  ("(1[_])")
 | 
| 33189 | 9  | 
|
10  | 
atom_decl name  | 
|
11  | 
||
12  | 
nominal_datatype ty =  | 
|
13  | 
Atom nat  | 
|
14  | 
| Arrow ty ty (infixr "\<rightarrow>" 200)  | 
|
15  | 
| TupleT ty ty (infixr "\<otimes>" 210)  | 
|
16  | 
||
17  | 
lemma fresh_type [simp]: "(a::name) \<sharp> (T::ty)"  | 
|
18  | 
by (induct T rule: ty.induct) (simp_all add: fresh_nat)  | 
|
19  | 
||
20  | 
lemma supp_type [simp]: "supp (T::ty) = ({} :: name set)"
 | 
|
21  | 
by (induct T rule: ty.induct) (simp_all add: ty.supp supp_nat)  | 
|
22  | 
||
23  | 
lemma perm_type: "(pi::name prm) \<bullet> (T::ty) = T"  | 
|
24  | 
by (induct T rule: ty.induct) (simp_all add: perm_nat_def)  | 
|
25  | 
||
26  | 
nominal_datatype trm =  | 
|
27  | 
Var name  | 
|
28  | 
  | Tuple trm trm  ("(1'\<langle>_,/ _'\<rangle>)")
 | 
|
29  | 
| Abs ty "\<guillemotleft>name\<guillemotright>trm"  | 
|
30  | 
| App trm trm (infixl "\<cdot>" 200)  | 
|
31  | 
| Let ty trm btrm  | 
|
32  | 
and btrm =  | 
|
33  | 
Base trm  | 
|
34  | 
| Bind ty "\<guillemotleft>name\<guillemotright>btrm"  | 
|
35  | 
||
36  | 
abbreviation  | 
|
37  | 
  Abs_syn :: "name \<Rightarrow> ty \<Rightarrow> trm \<Rightarrow> trm"  ("(3\<lambda>_:_./ _)" [0, 0, 10] 10) 
 | 
|
38  | 
where  | 
|
39  | 
"\<lambda>x:T. t \<equiv> Abs T x t"  | 
|
40  | 
||
| 58310 | 41  | 
datatype pat =  | 
| 33189 | 42  | 
PVar name ty  | 
43  | 
  | PTuple pat pat  ("(1'\<langle>\<langle>_,/ _'\<rangle>\<rangle>)")
 | 
|
44  | 
||
45  | 
(* FIXME: The following should be done automatically by the nominal package *)  | 
|
46  | 
overloading pat_perm \<equiv> "perm :: name prm \<Rightarrow> pat \<Rightarrow> pat" (unchecked)  | 
|
47  | 
begin  | 
|
48  | 
||
49  | 
primrec pat_perm  | 
|
50  | 
where  | 
|
51  | 
"pat_perm pi (PVar x ty) = PVar (pi \<bullet> x) (pi \<bullet> ty)"  | 
|
52  | 
| "pat_perm pi \<langle>\<langle>p, q\<rangle>\<rangle> = \<langle>\<langle>pat_perm pi p, pat_perm pi q\<rangle>\<rangle>"  | 
|
53  | 
||
54  | 
end  | 
|
55  | 
||
56  | 
declare pat_perm.simps [eqvt]  | 
|
57  | 
||
58  | 
lemma supp_PVar [simp]: "((supp (PVar x T))::name set) = supp x"  | 
|
59  | 
by (simp add: supp_def perm_fresh_fresh)  | 
|
60  | 
||
61  | 
lemma supp_PTuple [simp]: "((supp \<langle>\<langle>p, q\<rangle>\<rangle>)::name set) = supp p \<union> supp q"  | 
|
62  | 
by (simp add: supp_def Collect_disj_eq del: disj_not1)  | 
|
63  | 
||
64  | 
instance pat :: pt_name  | 
|
| 61169 | 65  | 
proof (standard, goal_cases)  | 
| 60580 | 66  | 
case (1 x)  | 
| 33189 | 67  | 
show ?case by (induct x) simp_all  | 
68  | 
next  | 
|
| 60580 | 69  | 
case (2 _ _ x)  | 
| 33189 | 70  | 
show ?case by (induct x) (simp_all add: pt_name2)  | 
71  | 
next  | 
|
| 60580 | 72  | 
case (3 _ _ x)  | 
| 33189 | 73  | 
then show ?case by (induct x) (simp_all add: pt_name3)  | 
74  | 
qed  | 
|
75  | 
||
76  | 
instance pat :: fs_name  | 
|
| 61169 | 77  | 
proof (standard, goal_cases)  | 
| 60580 | 78  | 
case (1 x)  | 
| 33189 | 79  | 
show ?case by (induct x) (simp_all add: fin_supp)  | 
80  | 
qed  | 
|
81  | 
||
82  | 
(* the following function cannot be defined using nominal_primrec, *)  | 
|
83  | 
(* since variable parameters are currently not allowed. *)  | 
|
84  | 
primrec abs_pat :: "pat \<Rightarrow> btrm \<Rightarrow> btrm" ("(3\<lambda>[_]./ _)" [0, 10] 10)
 | 
|
85  | 
where  | 
|
86  | 
"(\<lambda>[PVar x T]. t) = Bind T x t"  | 
|
87  | 
| "(\<lambda>[\<langle>\<langle>p, q\<rangle>\<rangle>]. t) = (\<lambda>[p]. \<lambda>[q]. t)"  | 
|
88  | 
||
89  | 
lemma abs_pat_eqvt [eqvt]:  | 
|
90  | 
"(pi :: name prm) \<bullet> (\<lambda>[p]. t) = (\<lambda>[pi \<bullet> p]. (pi \<bullet> t))"  | 
|
91  | 
by (induct p arbitrary: t) simp_all  | 
|
92  | 
||
93  | 
lemma abs_pat_fresh [simp]:  | 
|
94  | 
"(x::name) \<sharp> (\<lambda>[p]. t) = (x \<in> supp p \<or> x \<sharp> t)"  | 
|
95  | 
by (induct p arbitrary: t) (simp_all add: abs_fresh supp_atm)  | 
|
96  | 
||
97  | 
lemma abs_pat_alpha:  | 
|
98  | 
assumes fresh: "((pi::name prm) \<bullet> supp p::name set) \<sharp>* t"  | 
|
99  | 
and pi: "set pi \<subseteq> supp p \<times> pi \<bullet> supp p"  | 
|
100  | 
shows "(\<lambda>[p]. t) = (\<lambda>[pi \<bullet> p]. pi \<bullet> t)"  | 
|
101  | 
proof -  | 
|
102  | 
note pt_name_inst at_name_inst pi  | 
|
103  | 
moreover have "(supp p::name set) \<sharp>* (\<lambda>[p]. t)"  | 
|
104  | 
by (simp add: fresh_star_def)  | 
|
105  | 
moreover from fresh  | 
|
106  | 
have "(pi \<bullet> supp p::name set) \<sharp>* (\<lambda>[p]. t)"  | 
|
107  | 
by (simp add: fresh_star_def)  | 
|
108  | 
ultimately have "pi \<bullet> (\<lambda>[p]. t) = (\<lambda>[p]. t)"  | 
|
109  | 
by (rule pt_freshs_freshs)  | 
|
110  | 
then show ?thesis by (simp add: eqvts)  | 
|
111  | 
qed  | 
|
112  | 
||
113  | 
primrec pat_vars :: "pat \<Rightarrow> name list"  | 
|
114  | 
where  | 
|
115  | 
"pat_vars (PVar x T) = [x]"  | 
|
116  | 
| "pat_vars \<langle>\<langle>p, q\<rangle>\<rangle> = pat_vars q @ pat_vars p"  | 
|
117  | 
||
118  | 
lemma pat_vars_eqvt [eqvt]:  | 
|
119  | 
"(pi :: name prm) \<bullet> (pat_vars p) = pat_vars (pi \<bullet> p)"  | 
|
120  | 
by (induct p rule: pat.induct) (simp_all add: eqvts)  | 
|
121  | 
||
122  | 
lemma set_pat_vars_supp: "set (pat_vars p) = supp p"  | 
|
123  | 
by (induct p) (auto simp add: supp_atm)  | 
|
124  | 
||
125  | 
lemma distinct_eqvt [eqvt]:  | 
|
126  | 
"(pi :: name prm) \<bullet> (distinct (xs::name list)) = distinct (pi \<bullet> xs)"  | 
|
127  | 
by (induct xs) (simp_all add: eqvts)  | 
|
128  | 
||
129  | 
primrec pat_type :: "pat \<Rightarrow> ty"  | 
|
130  | 
where  | 
|
131  | 
"pat_type (PVar x T) = T"  | 
|
132  | 
| "pat_type \<langle>\<langle>p, q\<rangle>\<rangle> = pat_type p \<otimes> pat_type q"  | 
|
133  | 
||
134  | 
lemma pat_type_eqvt [eqvt]:  | 
|
135  | 
"(pi :: name prm) \<bullet> (pat_type p) = pat_type (pi \<bullet> p)"  | 
|
136  | 
by (induct p) simp_all  | 
|
137  | 
||
138  | 
lemma pat_type_perm_eq: "pat_type ((pi :: name prm) \<bullet> p) = pat_type p"  | 
|
139  | 
by (induct p) (simp_all add: perm_type)  | 
|
140  | 
||
| 41798 | 141  | 
type_synonym ctx = "(name \<times> ty) list"  | 
| 33189 | 142  | 
|
143  | 
inductive  | 
|
144  | 
  ptyping :: "pat \<Rightarrow> ty \<Rightarrow> ctx \<Rightarrow> bool"  ("\<turnstile> _ : _ \<Rightarrow> _" [60, 60, 60] 60)
 | 
|
145  | 
where  | 
|
146  | 
PVar: "\<turnstile> PVar x T : T \<Rightarrow> [(x, T)]"  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
147  | 
| PTuple: "\<turnstile> p : T \<Rightarrow> \<Delta>\<^sub>1 \<Longrightarrow> \<turnstile> q : U \<Rightarrow> \<Delta>\<^sub>2 \<Longrightarrow> \<turnstile> \<langle>\<langle>p, q\<rangle>\<rangle> : T \<otimes> U \<Rightarrow> \<Delta>\<^sub>2 @ \<Delta>\<^sub>1"  | 
| 33189 | 148  | 
|
149  | 
lemma pat_vars_ptyping:  | 
|
150  | 
assumes "\<turnstile> p : T \<Rightarrow> \<Delta>"  | 
|
151  | 
shows "pat_vars p = map fst \<Delta>" using assms  | 
|
152  | 
by induct simp_all  | 
|
153  | 
||
154  | 
inductive  | 
|
155  | 
valid :: "ctx \<Rightarrow> bool"  | 
|
156  | 
where  | 
|
157  | 
Nil [intro!]: "valid []"  | 
|
158  | 
| Cons [intro!]: "valid \<Gamma> \<Longrightarrow> x \<sharp> \<Gamma> \<Longrightarrow> valid ((x, T) # \<Gamma>)"  | 
|
159  | 
||
160  | 
inductive_cases validE[elim!]: "valid ((x, T) # \<Gamma>)"  | 
|
161  | 
||
162  | 
lemma fresh_ctxt_set_eq: "((x::name) \<sharp> (\<Gamma>::ctx)) = (x \<notin> fst ` set \<Gamma>)"  | 
|
163  | 
by (induct \<Gamma>) (auto simp add: fresh_list_nil fresh_list_cons fresh_prod fresh_atm)  | 
|
164  | 
||
165  | 
lemma valid_distinct: "valid \<Gamma> = distinct (map fst \<Gamma>)"  | 
|
166  | 
by (induct \<Gamma>) (auto simp add: fresh_ctxt_set_eq [symmetric])  | 
|
167  | 
||
168  | 
abbreviation  | 
|
169  | 
  "sub_ctx" :: "ctx \<Rightarrow> ctx \<Rightarrow> bool" ("_ \<sqsubseteq> _") 
 | 
|
170  | 
where  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
171  | 
"\<Gamma>\<^sub>1 \<sqsubseteq> \<Gamma>\<^sub>2 \<equiv> \<forall>x. x \<in> set \<Gamma>\<^sub>1 \<longrightarrow> x \<in> set \<Gamma>\<^sub>2"  | 
| 33189 | 172  | 
|
173  | 
abbreviation  | 
|
174  | 
  Let_syn :: "pat \<Rightarrow> trm \<Rightarrow> trm \<Rightarrow> trm"  ("(LET (_ =/ _)/ IN (_))" 10)
 | 
|
175  | 
where  | 
|
176  | 
"LET p = t IN u \<equiv> Let (pat_type p) t (\<lambda>[p]. Base u)"  | 
|
177  | 
||
178  | 
inductive typing :: "ctx \<Rightarrow> trm \<Rightarrow> ty \<Rightarrow> bool" ("_ \<turnstile> _ : _" [60, 60, 60] 60)
 | 
|
179  | 
where  | 
|
180  | 
Var [intro]: "valid \<Gamma> \<Longrightarrow> (x, T) \<in> set \<Gamma> \<Longrightarrow> \<Gamma> \<turnstile> Var x : T"  | 
|
181  | 
| Tuple [intro]: "\<Gamma> \<turnstile> t : T \<Longrightarrow> \<Gamma> \<turnstile> u : U \<Longrightarrow> \<Gamma> \<turnstile> \<langle>t, u\<rangle> : T \<otimes> U"  | 
|
182  | 
| Abs [intro]: "(x, T) # \<Gamma> \<turnstile> t : U \<Longrightarrow> \<Gamma> \<turnstile> (\<lambda>x:T. t) : T \<rightarrow> U"  | 
|
183  | 
| App [intro]: "\<Gamma> \<turnstile> t : T \<rightarrow> U \<Longrightarrow> \<Gamma> \<turnstile> u : T \<Longrightarrow> \<Gamma> \<turnstile> t \<cdot> u : U"  | 
|
184  | 
| Let: "((supp p)::name set) \<sharp>* t \<Longrightarrow>  | 
|
185  | 
\<Gamma> \<turnstile> t : T \<Longrightarrow> \<turnstile> p : T \<Rightarrow> \<Delta> \<Longrightarrow> \<Delta> @ \<Gamma> \<turnstile> u : U \<Longrightarrow>  | 
|
186  | 
\<Gamma> \<turnstile> (LET p = t IN u) : U"  | 
|
187  | 
||
188  | 
equivariance ptyping  | 
|
189  | 
||
190  | 
equivariance valid  | 
|
191  | 
||
192  | 
equivariance typing  | 
|
193  | 
||
194  | 
lemma valid_typing:  | 
|
195  | 
assumes "\<Gamma> \<turnstile> t : T"  | 
|
196  | 
shows "valid \<Gamma>" using assms  | 
|
197  | 
by induct auto  | 
|
198  | 
||
199  | 
lemma pat_var:  | 
|
200  | 
assumes "\<turnstile> p : T \<Rightarrow> \<Delta>"  | 
|
201  | 
shows "(supp p::name set) = supp \<Delta>" using assms  | 
|
202  | 
by induct (auto simp add: supp_list_nil supp_list_cons supp_prod supp_list_append)  | 
|
203  | 
||
204  | 
lemma valid_app_fresh:  | 
|
205  | 
assumes "valid (\<Delta> @ \<Gamma>)" and "(x::name) \<in> supp \<Delta>"  | 
|
206  | 
shows "x \<sharp> \<Gamma>" using assms  | 
|
207  | 
by (induct \<Delta>)  | 
|
208  | 
(auto simp add: supp_list_nil supp_list_cons supp_prod supp_atm fresh_list_append)  | 
|
209  | 
||
210  | 
lemma pat_freshs:  | 
|
211  | 
assumes "\<turnstile> p : T \<Rightarrow> \<Delta>"  | 
|
212  | 
shows "(supp p::name set) \<sharp>* c = (supp \<Delta>::name set) \<sharp>* c" using assms  | 
|
213  | 
by (auto simp add: fresh_star_def pat_var)  | 
|
214  | 
||
215  | 
lemma valid_app_mono:  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
216  | 
assumes "valid (\<Delta> @ \<Gamma>\<^sub>1)" and "(supp \<Delta>::name set) \<sharp>* \<Gamma>\<^sub>2" and "valid \<Gamma>\<^sub>2" and "\<Gamma>\<^sub>1 \<sqsubseteq> \<Gamma>\<^sub>2"  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
217  | 
shows "valid (\<Delta> @ \<Gamma>\<^sub>2)" using assms  | 
| 33189 | 218  | 
by (induct \<Delta>)  | 
219  | 
(auto simp add: supp_list_cons fresh_star_Un_elim supp_prod  | 
|
220  | 
fresh_list_append supp_atm fresh_star_insert_elim fresh_star_empty_elim)  | 
|
221  | 
||
222  | 
nominal_inductive2 typing  | 
|
223  | 
avoids  | 
|
224  | 
  Abs: "{x}"
 | 
|
225  | 
| Let: "(supp p)::name set"  | 
|
226  | 
by (auto simp add: fresh_star_def abs_fresh fin_supp pat_var  | 
|
227  | 
dest!: valid_typing valid_app_fresh)  | 
|
228  | 
||
229  | 
lemma better_T_Let [intro]:  | 
|
230  | 
assumes t: "\<Gamma> \<turnstile> t : T" and p: "\<turnstile> p : T \<Rightarrow> \<Delta>" and u: "\<Delta> @ \<Gamma> \<turnstile> u : U"  | 
|
231  | 
shows "\<Gamma> \<turnstile> (LET p = t IN u) : U"  | 
|
232  | 
proof -  | 
|
233  | 
obtain pi::"name prm" where pi: "(pi \<bullet> (supp p::name set)) \<sharp>* (t, Base u, \<Gamma>)"  | 
|
234  | 
and pi': "set pi \<subseteq> supp p \<times> (pi \<bullet> supp p)"  | 
|
235  | 
by (rule at_set_avoiding [OF at_name_inst fin_supp fin_supp])  | 
|
236  | 
from p u have p_fresh: "(supp p::name set) \<sharp>* \<Gamma>"  | 
|
237  | 
by (auto simp add: fresh_star_def pat_var dest!: valid_typing valid_app_fresh)  | 
|
238  | 
from pi have p_fresh': "(pi \<bullet> (supp p::name set)) \<sharp>* \<Gamma>"  | 
|
239  | 
by (simp add: fresh_star_prod_elim)  | 
|
240  | 
from pi have p_fresh'': "(pi \<bullet> (supp p::name set)) \<sharp>* Base u"  | 
|
241  | 
by (simp add: fresh_star_prod_elim)  | 
|
242  | 
from pi have "(supp (pi \<bullet> p)::name set) \<sharp>* t"  | 
|
243  | 
by (simp add: fresh_star_prod_elim eqvts)  | 
|
244  | 
moreover note t  | 
|
245  | 
moreover from p have "pi \<bullet> (\<turnstile> p : T \<Rightarrow> \<Delta>)" by (rule perm_boolI)  | 
|
246  | 
then have "\<turnstile> (pi \<bullet> p) : T \<Rightarrow> (pi \<bullet> \<Delta>)" by (simp add: eqvts perm_type)  | 
|
247  | 
moreover from u have "pi \<bullet> (\<Delta> @ \<Gamma> \<turnstile> u : U)" by (rule perm_boolI)  | 
|
248  | 
with pt_freshs_freshs [OF pt_name_inst at_name_inst pi' p_fresh p_fresh']  | 
|
249  | 
have "(pi \<bullet> \<Delta>) @ \<Gamma> \<turnstile> (pi \<bullet> u) : U" by (simp add: eqvts perm_type)  | 
|
250  | 
ultimately have "\<Gamma> \<turnstile> (LET (pi \<bullet> p) = t IN (pi \<bullet> u)) : U"  | 
|
251  | 
by (rule Let)  | 
|
252  | 
then show ?thesis by (simp add: abs_pat_alpha [OF p_fresh'' pi'] pat_type_perm_eq)  | 
|
253  | 
qed  | 
|
254  | 
||
255  | 
lemma weakening:  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
256  | 
assumes "\<Gamma>\<^sub>1 \<turnstile> t : T" and "valid \<Gamma>\<^sub>2" and "\<Gamma>\<^sub>1 \<sqsubseteq> \<Gamma>\<^sub>2"  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
257  | 
shows "\<Gamma>\<^sub>2 \<turnstile> t : T" using assms  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
258  | 
apply (nominal_induct \<Gamma>\<^sub>1 t T avoiding: \<Gamma>\<^sub>2 rule: typing.strong_induct)  | 
| 33189 | 259  | 
apply auto  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
260  | 
apply (drule_tac x="(x, T) # \<Gamma>\<^sub>2" in meta_spec)  | 
| 33189 | 261  | 
apply (auto intro: valid_typing)  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
262  | 
apply (drule_tac x="\<Gamma>\<^sub>2" in meta_spec)  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
263  | 
apply (drule_tac x="\<Delta> @ \<Gamma>\<^sub>2" in meta_spec)  | 
| 33189 | 264  | 
apply (auto intro: valid_typing)  | 
265  | 
apply (rule typing.Let)  | 
|
266  | 
apply assumption+  | 
|
267  | 
apply (drule meta_mp)  | 
|
268  | 
apply (rule valid_app_mono)  | 
|
269  | 
apply (rule valid_typing)  | 
|
270  | 
apply assumption  | 
|
271  | 
apply (auto simp add: pat_freshs)  | 
|
272  | 
done  | 
|
273  | 
||
274  | 
inductive  | 
|
275  | 
  match :: "pat \<Rightarrow> trm \<Rightarrow> (name \<times> trm) list \<Rightarrow> bool"  ("\<turnstile> _ \<rhd> _ \<Rightarrow> _" [50, 50, 50] 50)
 | 
|
276  | 
where  | 
|
277  | 
PVar: "\<turnstile> PVar x T \<rhd> t \<Rightarrow> [(x, t)]"  | 
|
278  | 
| PProd: "\<turnstile> p \<rhd> t \<Rightarrow> \<theta> \<Longrightarrow> \<turnstile> q \<rhd> u \<Rightarrow> \<theta>' \<Longrightarrow> \<turnstile> \<langle>\<langle>p, q\<rangle>\<rangle> \<rhd> \<langle>t, u\<rangle> \<Rightarrow> \<theta> @ \<theta>'"  | 
|
279  | 
||
280  | 
fun  | 
|
281  | 
lookup :: "(name \<times> trm) list \<Rightarrow> name \<Rightarrow> trm"  | 
|
282  | 
where  | 
|
283  | 
"lookup [] x = Var x"  | 
|
284  | 
| "lookup ((y, e) # \<theta>) x = (if x = y then e else lookup \<theta> x)"  | 
|
285  | 
||
286  | 
lemma lookup_eqvt[eqvt]:  | 
|
287  | 
fixes pi :: "name prm"  | 
|
288  | 
and \<theta> :: "(name \<times> trm) list"  | 
|
289  | 
and X :: "name"  | 
|
290  | 
shows "pi \<bullet> (lookup \<theta> X) = lookup (pi \<bullet> \<theta>) (pi \<bullet> X)"  | 
|
291  | 
by (induct \<theta>) (auto simp add: eqvts)  | 
|
292  | 
||
293  | 
nominal_primrec  | 
|
294  | 
  psubst :: "(name \<times> trm) list \<Rightarrow> trm \<Rightarrow> trm"  ("_\<lparr>_\<rparr>" [95,0] 210)
 | 
|
295  | 
  and psubstb :: "(name \<times> trm) list \<Rightarrow> btrm \<Rightarrow> btrm"  ("_\<lparr>_\<rparr>\<^sub>b" [95,0] 210)
 | 
|
296  | 
where  | 
|
297  | 
"\<theta>\<lparr>Var x\<rparr> = (lookup \<theta> x)"  | 
|
298  | 
| "\<theta>\<lparr>t \<cdot> u\<rparr> = \<theta>\<lparr>t\<rparr> \<cdot> \<theta>\<lparr>u\<rparr>"  | 
|
299  | 
| "\<theta>\<lparr>\<langle>t, u\<rangle>\<rparr> = \<langle>\<theta>\<lparr>t\<rparr>, \<theta>\<lparr>u\<rparr>\<rangle>"  | 
|
300  | 
| "\<theta>\<lparr>Let T t u\<rparr> = Let T (\<theta>\<lparr>t\<rparr>) (\<theta>\<lparr>u\<rparr>\<^sub>b)"  | 
|
301  | 
| "x \<sharp> \<theta> \<Longrightarrow> \<theta>\<lparr>\<lambda>x:T. t\<rparr> = (\<lambda>x:T. \<theta>\<lparr>t\<rparr>)"  | 
|
302  | 
| "\<theta>\<lparr>Base t\<rparr>\<^sub>b = Base (\<theta>\<lparr>t\<rparr>)"  | 
|
303  | 
| "x \<sharp> \<theta> \<Longrightarrow> \<theta>\<lparr>Bind T x t\<rparr>\<^sub>b = Bind T x (\<theta>\<lparr>t\<rparr>\<^sub>b)"  | 
|
304  | 
apply finite_guess+  | 
|
305  | 
apply (simp add: abs_fresh | fresh_guess)+  | 
|
306  | 
done  | 
|
307  | 
||
308  | 
lemma lookup_fresh:  | 
|
309  | 
"x = y \<longrightarrow> x \<in> set (map fst \<theta>) \<Longrightarrow> \<forall>(y, t)\<in>set \<theta>. x \<sharp> t \<Longrightarrow> x \<sharp> lookup \<theta> y"  | 
|
310  | 
apply (induct \<theta>)  | 
|
311  | 
apply (simp_all add: split_paired_all fresh_atm)  | 
|
312  | 
apply (case_tac "x = y")  | 
|
313  | 
apply (auto simp add: fresh_atm)  | 
|
314  | 
done  | 
|
315  | 
||
316  | 
lemma psubst_fresh:  | 
|
317  | 
assumes "x \<in> set (map fst \<theta>)" and "\<forall>(y, t)\<in>set \<theta>. x \<sharp> t"  | 
|
318  | 
shows "x \<sharp> \<theta>\<lparr>t\<rparr>" and "x \<sharp> \<theta>\<lparr>t'\<rparr>\<^sub>b" using assms  | 
|
319  | 
apply (nominal_induct t and t' avoiding: \<theta> rule: trm_btrm.strong_inducts)  | 
|
320  | 
apply simp  | 
|
321  | 
apply (rule lookup_fresh)  | 
|
322  | 
apply (rule impI)  | 
|
323  | 
apply (simp_all add: abs_fresh)  | 
|
324  | 
done  | 
|
325  | 
||
326  | 
lemma psubst_eqvt[eqvt]:  | 
|
327  | 
fixes pi :: "name prm"  | 
|
328  | 
shows "pi \<bullet> (\<theta>\<lparr>t\<rparr>) = (pi \<bullet> \<theta>)\<lparr>pi \<bullet> t\<rparr>"  | 
|
329  | 
and "pi \<bullet> (\<theta>\<lparr>t'\<rparr>\<^sub>b) = (pi \<bullet> \<theta>)\<lparr>pi \<bullet> t'\<rparr>\<^sub>b"  | 
|
330  | 
by (nominal_induct t and t' avoiding: \<theta> rule: trm_btrm.strong_inducts)  | 
|
331  | 
(simp_all add: eqvts fresh_bij)  | 
|
332  | 
||
333  | 
abbreviation  | 
|
334  | 
  subst :: "trm \<Rightarrow> name \<Rightarrow> trm \<Rightarrow> trm" ("_[_\<mapsto>_]" [100,0,0] 100)
 | 
|
335  | 
where  | 
|
336  | 
"t[x\<mapsto>t'] \<equiv> [(x,t')]\<lparr>t\<rparr>"  | 
|
337  | 
||
338  | 
abbreviation  | 
|
339  | 
  substb :: "btrm \<Rightarrow> name \<Rightarrow> trm \<Rightarrow> btrm" ("_[_\<mapsto>_]\<^sub>b" [100,0,0] 100)
 | 
|
340  | 
where  | 
|
341  | 
"t[x\<mapsto>t']\<^sub>b \<equiv> [(x,t')]\<lparr>t\<rparr>\<^sub>b"  | 
|
342  | 
||
343  | 
lemma lookup_forget:  | 
|
344  | 
"(supp (map fst \<theta>)::name set) \<sharp>* x \<Longrightarrow> lookup \<theta> x = Var x"  | 
|
345  | 
by (induct \<theta>) (auto simp add: split_paired_all fresh_star_def fresh_atm supp_list_cons supp_atm)  | 
|
346  | 
||
347  | 
lemma supp_fst: "(x::name) \<in> supp (map fst (\<theta>::(name \<times> trm) list)) \<Longrightarrow> x \<in> supp \<theta>"  | 
|
348  | 
by (induct \<theta>) (auto simp add: supp_list_nil supp_list_cons supp_prod)  | 
|
349  | 
||
350  | 
lemma psubst_forget:  | 
|
351  | 
"(supp (map fst \<theta>)::name set) \<sharp>* t \<Longrightarrow> \<theta>\<lparr>t\<rparr> = t"  | 
|
352  | 
"(supp (map fst \<theta>)::name set) \<sharp>* t' \<Longrightarrow> \<theta>\<lparr>t'\<rparr>\<^sub>b = t'"  | 
|
353  | 
apply (nominal_induct t and t' avoiding: \<theta> rule: trm_btrm.strong_inducts)  | 
|
354  | 
apply (auto simp add: fresh_star_def lookup_forget abs_fresh)  | 
|
355  | 
apply (drule_tac x=\<theta> in meta_spec)  | 
|
356  | 
apply (drule meta_mp)  | 
|
357  | 
apply (rule ballI)  | 
|
358  | 
apply (drule_tac x=x in bspec)  | 
|
359  | 
apply assumption  | 
|
360  | 
apply (drule supp_fst)  | 
|
361  | 
apply (auto simp add: fresh_def)  | 
|
362  | 
apply (drule_tac x=\<theta> in meta_spec)  | 
|
363  | 
apply (drule meta_mp)  | 
|
364  | 
apply (rule ballI)  | 
|
365  | 
apply (drule_tac x=x in bspec)  | 
|
366  | 
apply assumption  | 
|
367  | 
apply (drule supp_fst)  | 
|
368  | 
apply (auto simp add: fresh_def)  | 
|
369  | 
done  | 
|
370  | 
||
371  | 
lemma psubst_nil: "[]\<lparr>t\<rparr> = t" "[]\<lparr>t'\<rparr>\<^sub>b = t'"  | 
|
372  | 
by (induct t and t' rule: trm_btrm.inducts) (simp_all add: fresh_list_nil)  | 
|
373  | 
||
374  | 
lemma psubst_cons:  | 
|
375  | 
assumes "(supp (map fst \<theta>)::name set) \<sharp>* u"  | 
|
376  | 
shows "((x, u) # \<theta>)\<lparr>t\<rparr> = \<theta>\<lparr>t[x\<mapsto>u]\<rparr>" and "((x, u) # \<theta>)\<lparr>t'\<rparr>\<^sub>b = \<theta>\<lparr>t'[x\<mapsto>u]\<^sub>b\<rparr>\<^sub>b"  | 
|
377  | 
using assms  | 
|
378  | 
by (nominal_induct t and t' avoiding: x u \<theta> rule: trm_btrm.strong_inducts)  | 
|
379  | 
(simp_all add: fresh_list_nil fresh_list_cons psubst_forget)  | 
|
380  | 
||
381  | 
lemma psubst_append:  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
382  | 
"(supp (map fst (\<theta>\<^sub>1 @ \<theta>\<^sub>2))::name set) \<sharp>* map snd (\<theta>\<^sub>1 @ \<theta>\<^sub>2) \<Longrightarrow> (\<theta>\<^sub>1 @ \<theta>\<^sub>2)\<lparr>t\<rparr> = \<theta>\<^sub>2\<lparr>\<theta>\<^sub>1\<lparr>t\<rparr>\<rparr>"  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
383  | 
by (induct \<theta>\<^sub>1 arbitrary: t)  | 
| 33189 | 384  | 
(simp_all add: psubst_nil split_paired_all supp_list_cons psubst_cons fresh_star_def  | 
385  | 
fresh_list_cons fresh_list_append supp_list_append)  | 
|
386  | 
||
387  | 
lemma abs_pat_psubst [simp]:  | 
|
388  | 
"(supp p::name set) \<sharp>* \<theta> \<Longrightarrow> \<theta>\<lparr>\<lambda>[p]. t\<rparr>\<^sub>b = (\<lambda>[p]. \<theta>\<lparr>t\<rparr>\<^sub>b)"  | 
|
389  | 
by (induct p arbitrary: t) (auto simp add: fresh_star_def supp_atm)  | 
|
390  | 
||
391  | 
lemma valid_insert:  | 
|
392  | 
assumes "valid (\<Delta> @ [(x, T)] @ \<Gamma>)"  | 
|
393  | 
shows "valid (\<Delta> @ \<Gamma>)" using assms  | 
|
394  | 
by (induct \<Delta>)  | 
|
395  | 
(auto simp add: fresh_list_append fresh_list_cons)  | 
|
396  | 
||
397  | 
lemma fresh_set:  | 
|
398  | 
shows "y \<sharp> xs = (\<forall>x\<in>set xs. y \<sharp> x)"  | 
|
399  | 
by (induct xs) (simp_all add: fresh_list_nil fresh_list_cons)  | 
|
400  | 
||
401  | 
lemma context_unique:  | 
|
402  | 
assumes "valid \<Gamma>"  | 
|
403  | 
and "(x, T) \<in> set \<Gamma>"  | 
|
404  | 
and "(x, U) \<in> set \<Gamma>"  | 
|
405  | 
shows "T = U" using assms  | 
|
406  | 
by induct (auto simp add: fresh_set fresh_prod fresh_atm)  | 
|
407  | 
||
408  | 
lemma subst_type_aux:  | 
|
409  | 
assumes a: "\<Delta> @ [(x, U)] @ \<Gamma> \<turnstile> t : T"  | 
|
410  | 
and b: "\<Gamma> \<turnstile> u : U"  | 
|
411  | 
shows "\<Delta> @ \<Gamma> \<turnstile> t[x\<mapsto>u] : T" using a b  | 
|
412  | 
proof (nominal_induct \<Gamma>'\<equiv>"\<Delta> @ [(x, U)] @ \<Gamma>" t T avoiding: x u \<Delta> rule: typing.strong_induct)  | 
|
| 34915 | 413  | 
case (Var y T x u \<Delta>)  | 
414  | 
from `valid (\<Delta> @ [(x, U)] @ \<Gamma>)`  | 
|
415  | 
have valid: "valid (\<Delta> @ \<Gamma>)" by (rule valid_insert)  | 
|
| 33189 | 416  | 
show "\<Delta> @ \<Gamma> \<turnstile> Var y[x\<mapsto>u] : T"  | 
417  | 
proof cases  | 
|
418  | 
assume eq: "x = y"  | 
|
| 34915 | 419  | 
from Var eq have "T = U" by (auto intro: context_unique)  | 
420  | 
with Var eq valid show "\<Delta> @ \<Gamma> \<turnstile> Var y[x\<mapsto>u] : T" by (auto intro: weakening)  | 
|
| 33189 | 421  | 
next  | 
422  | 
assume ineq: "x \<noteq> y"  | 
|
| 34915 | 423  | 
from Var ineq have "(y, T) \<in> set (\<Delta> @ \<Gamma>)" by simp  | 
424  | 
then show "\<Delta> @ \<Gamma> \<turnstile> Var y[x\<mapsto>u] : T" using ineq valid by auto  | 
|
| 33189 | 425  | 
qed  | 
426  | 
next  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
427  | 
case (Tuple t\<^sub>1 T\<^sub>1 t\<^sub>2 T\<^sub>2)  | 
| 34915 | 428  | 
from refl `\<Gamma> \<turnstile> u : U`  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
429  | 
have "\<Delta> @ \<Gamma> \<turnstile> t\<^sub>1[x\<mapsto>u] : T\<^sub>1" by (rule Tuple)  | 
| 34915 | 430  | 
moreover from refl `\<Gamma> \<turnstile> u : U`  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
431  | 
have "\<Delta> @ \<Gamma> \<turnstile> t\<^sub>2[x\<mapsto>u] : T\<^sub>2" by (rule Tuple)  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
432  | 
ultimately have "\<Delta> @ \<Gamma> \<turnstile> \<langle>t\<^sub>1[x\<mapsto>u], t\<^sub>2[x\<mapsto>u]\<rangle> : T\<^sub>1 \<otimes> T\<^sub>2" ..  | 
| 33189 | 433  | 
then show ?case by simp  | 
434  | 
next  | 
|
| 34915 | 435  | 
case (Let p t T \<Delta>' s S)  | 
436  | 
from refl `\<Gamma> \<turnstile> u : U`  | 
|
| 33189 | 437  | 
have "\<Delta> @ \<Gamma> \<turnstile> t[x\<mapsto>u] : T" by (rule Let)  | 
438  | 
moreover note `\<turnstile> p : T \<Rightarrow> \<Delta>'`  | 
|
| 34915 | 439  | 
moreover have "\<Delta>' @ (\<Delta> @ [(x, U)] @ \<Gamma>) = (\<Delta>' @ \<Delta>) @ [(x, U)] @ \<Gamma>" by simp  | 
440  | 
then have "(\<Delta>' @ \<Delta>) @ \<Gamma> \<turnstile> s[x\<mapsto>u] : S" using `\<Gamma> \<turnstile> u : U` by (rule Let)  | 
|
| 33189 | 441  | 
then have "\<Delta>' @ \<Delta> @ \<Gamma> \<turnstile> s[x\<mapsto>u] : S" by simp  | 
442  | 
ultimately have "\<Delta> @ \<Gamma> \<turnstile> (LET p = t[x\<mapsto>u] IN s[x\<mapsto>u]) : S"  | 
|
443  | 
by (rule better_T_Let)  | 
|
444  | 
moreover from Let have "(supp p::name set) \<sharp>* [(x, u)]"  | 
|
445  | 
by (simp add: fresh_star_def fresh_list_nil fresh_list_cons)  | 
|
446  | 
ultimately show ?case by simp  | 
|
447  | 
next  | 
|
| 34915 | 448  | 
case (Abs y T t S)  | 
449  | 
have "(y, T) # \<Delta> @ [(x, U)] @ \<Gamma> = ((y, T) # \<Delta>) @ [(x, U)] @ \<Gamma>"  | 
|
| 33189 | 450  | 
by simp  | 
| 34915 | 451  | 
then have "((y, T) # \<Delta>) @ \<Gamma> \<turnstile> t[x\<mapsto>u] : S" using `\<Gamma> \<turnstile> u : U` by (rule Abs)  | 
| 33189 | 452  | 
then have "(y, T) # \<Delta> @ \<Gamma> \<turnstile> t[x\<mapsto>u] : S" by simp  | 
453  | 
then have "\<Delta> @ \<Gamma> \<turnstile> (\<lambda>y:T. t[x\<mapsto>u]) : T \<rightarrow> S"  | 
|
454  | 
by (rule typing.Abs)  | 
|
455  | 
moreover from Abs have "y \<sharp> [(x, u)]"  | 
|
456  | 
by (simp add: fresh_list_nil fresh_list_cons)  | 
|
457  | 
ultimately show ?case by simp  | 
|
458  | 
next  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
459  | 
case (App t\<^sub>1 T S t\<^sub>2)  | 
| 34915 | 460  | 
from refl `\<Gamma> \<turnstile> u : U`  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
461  | 
have "\<Delta> @ \<Gamma> \<turnstile> t\<^sub>1[x\<mapsto>u] : T \<rightarrow> S" by (rule App)  | 
| 34915 | 462  | 
moreover from refl `\<Gamma> \<turnstile> u : U`  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
463  | 
have "\<Delta> @ \<Gamma> \<turnstile> t\<^sub>2[x\<mapsto>u] : T" by (rule App)  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
464  | 
ultimately have "\<Delta> @ \<Gamma> \<turnstile> (t\<^sub>1[x\<mapsto>u]) \<cdot> (t\<^sub>2[x\<mapsto>u]) : S"  | 
| 33189 | 465  | 
by (rule typing.App)  | 
466  | 
then show ?case by simp  | 
|
467  | 
qed  | 
|
468  | 
||
469  | 
lemmas subst_type = subst_type_aux [of "[]", simplified]  | 
|
470  | 
||
471  | 
lemma match_supp_fst:  | 
|
472  | 
assumes "\<turnstile> p \<rhd> u \<Rightarrow> \<theta>" shows "(supp (map fst \<theta>)::name set) = supp p" using assms  | 
|
473  | 
by induct (simp_all add: supp_list_nil supp_list_cons supp_list_append)  | 
|
474  | 
||
475  | 
lemma match_supp_snd:  | 
|
476  | 
assumes "\<turnstile> p \<rhd> u \<Rightarrow> \<theta>" shows "(supp (map snd \<theta>)::name set) = supp u" using assms  | 
|
477  | 
by induct (simp_all add: supp_list_nil supp_list_cons supp_list_append trm.supp)  | 
|
478  | 
||
479  | 
lemma match_fresh: "\<turnstile> p \<rhd> u \<Rightarrow> \<theta> \<Longrightarrow> (supp p::name set) \<sharp>* u \<Longrightarrow>  | 
|
480  | 
(supp (map fst \<theta>)::name set) \<sharp>* map snd \<theta>"  | 
|
481  | 
by (simp add: fresh_star_def fresh_def match_supp_fst match_supp_snd)  | 
|
482  | 
||
483  | 
lemma match_type_aux:  | 
|
484  | 
assumes "\<turnstile> p : U \<Rightarrow> \<Delta>"  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
485  | 
and "\<Gamma>\<^sub>2 \<turnstile> u : U"  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
486  | 
and "\<Gamma>\<^sub>1 @ \<Delta> @ \<Gamma>\<^sub>2 \<turnstile> t : T"  | 
| 33189 | 487  | 
and "\<turnstile> p \<rhd> u \<Rightarrow> \<theta>"  | 
488  | 
and "(supp p::name set) \<sharp>* u"  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
489  | 
shows "\<Gamma>\<^sub>1 @ \<Gamma>\<^sub>2 \<turnstile> \<theta>\<lparr>t\<rparr> : T" using assms  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
490  | 
proof (induct arbitrary: \<Gamma>\<^sub>1 \<Gamma>\<^sub>2 t u T \<theta>)  | 
| 33189 | 491  | 
case (PVar x U)  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
492  | 
from `\<Gamma>\<^sub>1 @ [(x, U)] @ \<Gamma>\<^sub>2 \<turnstile> t : T` `\<Gamma>\<^sub>2 \<turnstile> u : U`  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
493  | 
have "\<Gamma>\<^sub>1 @ \<Gamma>\<^sub>2 \<turnstile> t[x\<mapsto>u] : T" by (rule subst_type_aux)  | 
| 33189 | 494  | 
moreover from `\<turnstile> PVar x U \<rhd> u \<Rightarrow> \<theta>` have "\<theta> = [(x, u)]"  | 
495  | 
by cases simp_all  | 
|
496  | 
ultimately show ?case by simp  | 
|
497  | 
next  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
498  | 
case (PTuple p S \<Delta>\<^sub>1 q U \<Delta>\<^sub>2)  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
499  | 
from `\<turnstile> \<langle>\<langle>p, q\<rangle>\<rangle> \<rhd> u \<Rightarrow> \<theta>` obtain u\<^sub>1 u\<^sub>2 \<theta>\<^sub>1 \<theta>\<^sub>2  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
500  | 
where u: "u = \<langle>u\<^sub>1, u\<^sub>2\<rangle>" and \<theta>: "\<theta> = \<theta>\<^sub>1 @ \<theta>\<^sub>2"  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
501  | 
and p: "\<turnstile> p \<rhd> u\<^sub>1 \<Rightarrow> \<theta>\<^sub>1" and q: "\<turnstile> q \<rhd> u\<^sub>2 \<Rightarrow> \<theta>\<^sub>2"  | 
| 33189 | 502  | 
by cases simp_all  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
503  | 
with PTuple have "\<Gamma>\<^sub>2 \<turnstile> \<langle>u\<^sub>1, u\<^sub>2\<rangle> : S \<otimes> U" by simp  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
504  | 
then obtain u\<^sub>1: "\<Gamma>\<^sub>2 \<turnstile> u\<^sub>1 : S" and u\<^sub>2: "\<Gamma>\<^sub>2 \<turnstile> u\<^sub>2 : U"  | 
| 33189 | 505  | 
by cases (simp_all add: ty.inject trm.inject)  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
506  | 
note u\<^sub>1  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
507  | 
moreover from `\<Gamma>\<^sub>1 @ (\<Delta>\<^sub>2 @ \<Delta>\<^sub>1) @ \<Gamma>\<^sub>2 \<turnstile> t : T`  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
508  | 
have "(\<Gamma>\<^sub>1 @ \<Delta>\<^sub>2) @ \<Delta>\<^sub>1 @ \<Gamma>\<^sub>2 \<turnstile> t : T" by simp  | 
| 33189 | 509  | 
moreover note p  | 
510  | 
moreover from `supp \<langle>\<langle>p, q\<rangle>\<rangle> \<sharp>* u` and u  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
511  | 
have "(supp p::name set) \<sharp>* u\<^sub>1" by (simp add: fresh_star_def)  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
512  | 
ultimately have \<theta>\<^sub>1: "(\<Gamma>\<^sub>1 @ \<Delta>\<^sub>2) @ \<Gamma>\<^sub>2 \<turnstile> \<theta>\<^sub>1\<lparr>t\<rparr> : T"  | 
| 33189 | 513  | 
by (rule PTuple)  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
514  | 
note u\<^sub>2  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
515  | 
moreover from \<theta>\<^sub>1  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
516  | 
have "\<Gamma>\<^sub>1 @ \<Delta>\<^sub>2 @ \<Gamma>\<^sub>2 \<turnstile> \<theta>\<^sub>1\<lparr>t\<rparr> : T" by simp  | 
| 33189 | 517  | 
moreover note q  | 
518  | 
moreover from `supp \<langle>\<langle>p, q\<rangle>\<rangle> \<sharp>* u` and u  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
519  | 
have "(supp q::name set) \<sharp>* u\<^sub>2" by (simp add: fresh_star_def)  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
520  | 
ultimately have "\<Gamma>\<^sub>1 @ \<Gamma>\<^sub>2 \<turnstile> \<theta>\<^sub>2\<lparr>\<theta>\<^sub>1\<lparr>t\<rparr>\<rparr> : T"  | 
| 33189 | 521  | 
by (rule PTuple)  | 
522  | 
moreover from `\<turnstile> \<langle>\<langle>p, q\<rangle>\<rangle> \<rhd> u \<Rightarrow> \<theta>` `supp \<langle>\<langle>p, q\<rangle>\<rangle> \<sharp>* u`  | 
|
523  | 
have "(supp (map fst \<theta>)::name set) \<sharp>* map snd \<theta>"  | 
|
524  | 
by (rule match_fresh)  | 
|
525  | 
ultimately show ?case using \<theta> by (simp add: psubst_append)  | 
|
526  | 
qed  | 
|
527  | 
||
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
528  | 
lemmas match_type = match_type_aux [where \<Gamma>\<^sub>1="[]", simplified]  | 
| 33189 | 529  | 
|
530  | 
inductive eval :: "trm \<Rightarrow> trm \<Rightarrow> bool" ("_ \<longmapsto> _" [60,60] 60)
 | 
|
531  | 
where  | 
|
532  | 
TupleL: "t \<longmapsto> t' \<Longrightarrow> \<langle>t, u\<rangle> \<longmapsto> \<langle>t', u\<rangle>"  | 
|
533  | 
| TupleR: "u \<longmapsto> u' \<Longrightarrow> \<langle>t, u\<rangle> \<longmapsto> \<langle>t, u'\<rangle>"  | 
|
534  | 
| Abs: "t \<longmapsto> t' \<Longrightarrow> (\<lambda>x:T. t) \<longmapsto> (\<lambda>x:T. t')"  | 
|
535  | 
| AppL: "t \<longmapsto> t' \<Longrightarrow> t \<cdot> u \<longmapsto> t' \<cdot> u"  | 
|
536  | 
| AppR: "u \<longmapsto> u' \<Longrightarrow> t \<cdot> u \<longmapsto> t \<cdot> u'"  | 
|
537  | 
| Beta: "x \<sharp> u \<Longrightarrow> (\<lambda>x:T. t) \<cdot> u \<longmapsto> t[x\<mapsto>u]"  | 
|
538  | 
| Let: "((supp p)::name set) \<sharp>* t \<Longrightarrow> distinct (pat_vars p) \<Longrightarrow>  | 
|
539  | 
\<turnstile> p \<rhd> t \<Rightarrow> \<theta> \<Longrightarrow> (LET p = t IN u) \<longmapsto> \<theta>\<lparr>u\<rparr>"  | 
|
540  | 
||
541  | 
equivariance match  | 
|
542  | 
||
543  | 
equivariance eval  | 
|
544  | 
||
545  | 
lemma match_vars:  | 
|
546  | 
assumes "\<turnstile> p \<rhd> t \<Rightarrow> \<theta>" and "x \<in> supp p"  | 
|
547  | 
shows "x \<in> set (map fst \<theta>)" using assms  | 
|
548  | 
by induct (auto simp add: supp_atm)  | 
|
549  | 
||
550  | 
lemma match_fresh_mono:  | 
|
551  | 
assumes "\<turnstile> p \<rhd> t \<Rightarrow> \<theta>" and "(x::name) \<sharp> t"  | 
|
552  | 
shows "\<forall>(y, t)\<in>set \<theta>. x \<sharp> t" using assms  | 
|
553  | 
by induct auto  | 
|
554  | 
||
555  | 
nominal_inductive2 eval  | 
|
556  | 
avoids  | 
|
557  | 
  Abs: "{x}"
 | 
|
558  | 
| Beta: "{x}"
 | 
|
559  | 
| Let: "(supp p)::name set"  | 
|
560  | 
apply (simp_all add: fresh_star_def abs_fresh fin_supp)  | 
|
561  | 
apply (rule psubst_fresh)  | 
|
562  | 
apply simp  | 
|
563  | 
apply simp  | 
|
564  | 
apply (rule ballI)  | 
|
565  | 
apply (rule psubst_fresh)  | 
|
566  | 
apply (rule match_vars)  | 
|
567  | 
apply assumption+  | 
|
568  | 
apply (rule match_fresh_mono)  | 
|
569  | 
apply auto  | 
|
570  | 
done  | 
|
571  | 
||
572  | 
lemma typing_case_Abs:  | 
|
573  | 
assumes ty: "\<Gamma> \<turnstile> (\<lambda>x:T. t) : S"  | 
|
574  | 
and fresh: "x \<sharp> \<Gamma>"  | 
|
575  | 
and R: "\<And>U. S = T \<rightarrow> U \<Longrightarrow> (x, T) # \<Gamma> \<turnstile> t : U \<Longrightarrow> P"  | 
|
576  | 
shows P using ty  | 
|
577  | 
proof cases  | 
|
| 34990 | 578  | 
case (Abs x' T' t' U)  | 
| 33189 | 579  | 
obtain y::name where y: "y \<sharp> (x, \<Gamma>, \<lambda>x':T'. t')"  | 
580  | 
by (rule exists_fresh) (auto intro: fin_supp)  | 
|
581  | 
from `(\<lambda>x:T. t) = (\<lambda>x':T'. t')` [symmetric]  | 
|
582  | 
have x: "x \<sharp> (\<lambda>x':T'. t')" by (simp add: abs_fresh)  | 
|
583  | 
have x': "x' \<sharp> (\<lambda>x':T'. t')" by (simp add: abs_fresh)  | 
|
| 34990 | 584  | 
from `(x', T') # \<Gamma> \<turnstile> t' : U` have x'': "x' \<sharp> \<Gamma>"  | 
| 33189 | 585  | 
by (auto dest: valid_typing)  | 
586  | 
have "(\<lambda>x:T. t) = (\<lambda>x':T'. t')" by fact  | 
|
587  | 
also from x x' y have "\<dots> = [(x, y)] \<bullet> [(x', y)] \<bullet> (\<lambda>x':T'. t')"  | 
|
588  | 
by (simp only: perm_fresh_fresh fresh_prod)  | 
|
589  | 
also have "\<dots> = (\<lambda>x:T'. [(x, y)] \<bullet> [(x', y)] \<bullet> t')"  | 
|
590  | 
by (simp add: swap_simps perm_fresh_fresh)  | 
|
591  | 
finally have "(\<lambda>x:T. t) = (\<lambda>x:T'. [(x, y)] \<bullet> [(x', y)] \<bullet> t')" .  | 
|
592  | 
then have T: "T = T'" and t: "[(x, y)] \<bullet> [(x', y)] \<bullet> t' = t"  | 
|
593  | 
by (simp_all add: trm.inject alpha)  | 
|
594  | 
from Abs T have "S = T \<rightarrow> U" by simp  | 
|
| 34990 | 595  | 
moreover from `(x', T') # \<Gamma> \<turnstile> t' : U`  | 
596  | 
have "[(x, y)] \<bullet> [(x', y)] \<bullet> ((x', T') # \<Gamma> \<turnstile> t' : U)"  | 
|
| 33189 | 597  | 
by (simp add: perm_bool)  | 
| 34990 | 598  | 
with T t y x'' fresh have "(x, T) # \<Gamma> \<turnstile> t : U"  | 
| 33189 | 599  | 
by (simp add: eqvts swap_simps perm_fresh_fresh fresh_prod)  | 
600  | 
ultimately show ?thesis by (rule R)  | 
|
601  | 
qed simp_all  | 
|
602  | 
||
603  | 
nominal_primrec ty_size :: "ty \<Rightarrow> nat"  | 
|
604  | 
where  | 
|
605  | 
"ty_size (Atom n) = 0"  | 
|
606  | 
| "ty_size (T \<rightarrow> U) = ty_size T + ty_size U + 1"  | 
|
607  | 
| "ty_size (T \<otimes> U) = ty_size T + ty_size U + 1"  | 
|
608  | 
by (rule TrueI)+  | 
|
609  | 
||
610  | 
lemma bind_tuple_ineq:  | 
|
611  | 
"ty_size (pat_type p) < ty_size U \<Longrightarrow> Bind U x t \<noteq> (\<lambda>[p]. u)"  | 
|
612  | 
by (induct p arbitrary: U x t u) (auto simp add: btrm.inject)  | 
|
613  | 
||
614  | 
lemma valid_appD: assumes "valid (\<Gamma> @ \<Delta>)"  | 
|
615  | 
shows "valid \<Gamma>" "valid \<Delta>" using assms  | 
|
616  | 
by (induct \<Gamma>'\<equiv>"\<Gamma> @ \<Delta>" arbitrary: \<Gamma> \<Delta>)  | 
|
617  | 
(auto simp add: Cons_eq_append_conv fresh_list_append)  | 
|
618  | 
||
619  | 
lemma valid_app_freshs: assumes "valid (\<Gamma> @ \<Delta>)"  | 
|
620  | 
shows "(supp \<Gamma>::name set) \<sharp>* \<Delta>" "(supp \<Delta>::name set) \<sharp>* \<Gamma>" using assms  | 
|
621  | 
by (induct \<Gamma>'\<equiv>"\<Gamma> @ \<Delta>" arbitrary: \<Gamma> \<Delta>)  | 
|
622  | 
(auto simp add: Cons_eq_append_conv fresh_star_def  | 
|
623  | 
fresh_list_nil fresh_list_cons supp_list_nil supp_list_cons fresh_list_append  | 
|
624  | 
supp_prod fresh_prod supp_atm fresh_atm  | 
|
| 44687 | 625  | 
dest: notE [OF iffD1 [OF fresh_def]])  | 
| 33189 | 626  | 
|
627  | 
lemma perm_mem_left: "(x::name) \<in> ((pi::name prm) \<bullet> A) \<Longrightarrow> (rev pi \<bullet> x) \<in> A"  | 
|
628  | 
by (drule perm_boolI [of _ "rev pi"]) (simp add: eqvts perm_pi_simp)  | 
|
629  | 
||
630  | 
lemma perm_mem_right: "(rev (pi::name prm) \<bullet> (x::name)) \<in> A \<Longrightarrow> x \<in> (pi \<bullet> A)"  | 
|
631  | 
by (drule perm_boolI [of _ pi]) (simp add: eqvts perm_pi_simp)  | 
|
632  | 
||
633  | 
lemma perm_cases:  | 
|
634  | 
assumes pi: "set pi \<subseteq> A \<times> A"  | 
|
635  | 
shows "((pi::name prm) \<bullet> B) \<subseteq> A \<union> B"  | 
|
636  | 
proof  | 
|
637  | 
fix x assume "x \<in> pi \<bullet> B"  | 
|
638  | 
then show "x \<in> A \<union> B" using pi  | 
|
639  | 
apply (induct pi arbitrary: x B rule: rev_induct)  | 
|
640  | 
apply simp  | 
|
641  | 
apply (simp add: split_paired_all supp_eqvt)  | 
|
642  | 
apply (drule perm_mem_left)  | 
|
| 62390 | 643  | 
apply (simp add: calc_atm split: if_split_asm)  | 
| 33189 | 644  | 
apply (auto dest: perm_mem_right)  | 
645  | 
done  | 
|
646  | 
qed  | 
|
647  | 
||
648  | 
lemma abs_pat_alpha':  | 
|
649  | 
assumes eq: "(\<lambda>[p]. t) = (\<lambda>[q]. u)"  | 
|
650  | 
and ty: "pat_type p = pat_type q"  | 
|
651  | 
and pv: "distinct (pat_vars p)"  | 
|
652  | 
and qv: "distinct (pat_vars q)"  | 
|
653  | 
shows "\<exists>pi::name prm. p = pi \<bullet> q \<and> t = pi \<bullet> u \<and>  | 
|
654  | 
set pi \<subseteq> (supp p \<union> supp q) \<times> (supp p \<union> supp q)"  | 
|
655  | 
using assms  | 
|
| 
45129
 
1fce03e3e8ad
tuned proofs -- eliminated vacuous "induct arbitrary: ..." situations;
 
wenzelm 
parents: 
44687 
diff
changeset
 | 
656  | 
proof (induct p arbitrary: q t u)  | 
| 33189 | 657  | 
case (PVar x T)  | 
658  | 
note PVar' = this  | 
|
659  | 
show ?case  | 
|
660  | 
proof (cases q)  | 
|
661  | 
case (PVar x' T')  | 
|
662  | 
with `(\<lambda>[PVar x T]. t) = (\<lambda>[q]. u)`  | 
|
663  | 
have "x = x' \<and> t = u \<or> x \<noteq> x' \<and> t = [(x, x')] \<bullet> u \<and> x \<sharp> u"  | 
|
664  | 
by (simp add: btrm.inject alpha)  | 
|
665  | 
then show ?thesis  | 
|
666  | 
proof  | 
|
667  | 
assume "x = x' \<and> t = u"  | 
|
668  | 
with PVar PVar' have "PVar x T = ([]::name prm) \<bullet> q \<and>  | 
|
| 
33268
 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
33189 
diff
changeset
 | 
669  | 
t = ([]::name prm) \<bullet> u \<and>  | 
| 
 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
33189 
diff
changeset
 | 
670  | 
set ([]::name prm) \<subseteq> (supp (PVar x T) \<union> supp q) \<times>  | 
| 33189 | 671  | 
(supp (PVar x T) \<union> supp q)" by simp  | 
672  | 
then show ?thesis ..  | 
|
673  | 
next  | 
|
674  | 
assume "x \<noteq> x' \<and> t = [(x, x')] \<bullet> u \<and> x \<sharp> u"  | 
|
675  | 
with PVar PVar' have "PVar x T = [(x, x')] \<bullet> q \<and>  | 
|
| 
33268
 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
33189 
diff
changeset
 | 
676  | 
t = [(x, x')] \<bullet> u \<and>  | 
| 
 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
33189 
diff
changeset
 | 
677  | 
set [(x, x')] \<subseteq> (supp (PVar x T) \<union> supp q) \<times>  | 
| 33189 | 678  | 
(supp (PVar x T) \<union> supp q)"  | 
| 
33268
 
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
33189 
diff
changeset
 | 
679  | 
by (simp add: perm_swap swap_simps supp_atm perm_type)  | 
| 33189 | 680  | 
then show ?thesis ..  | 
681  | 
qed  | 
|
682  | 
next  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
683  | 
case (PTuple p\<^sub>1 p\<^sub>2)  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
684  | 
with PVar have "ty_size (pat_type p\<^sub>1) < ty_size T" by simp  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
685  | 
then have "Bind T x t \<noteq> (\<lambda>[p\<^sub>1]. \<lambda>[p\<^sub>2]. u)"  | 
| 33189 | 686  | 
by (rule bind_tuple_ineq)  | 
687  | 
moreover from PTuple PVar  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
688  | 
have "Bind T x t = (\<lambda>[p\<^sub>1]. \<lambda>[p\<^sub>2]. u)" by simp  | 
| 33189 | 689  | 
ultimately show ?thesis ..  | 
690  | 
qed  | 
|
691  | 
next  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
692  | 
case (PTuple p\<^sub>1 p\<^sub>2)  | 
| 33189 | 693  | 
note PTuple' = this  | 
694  | 
show ?case  | 
|
695  | 
proof (cases q)  | 
|
696  | 
case (PVar x T)  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
697  | 
with PTuple have "ty_size (pat_type p\<^sub>1) < ty_size T" by auto  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
698  | 
then have "Bind T x u \<noteq> (\<lambda>[p\<^sub>1]. \<lambda>[p\<^sub>2]. t)"  | 
| 33189 | 699  | 
by (rule bind_tuple_ineq)  | 
700  | 
moreover from PTuple PVar  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
701  | 
have "Bind T x u = (\<lambda>[p\<^sub>1]. \<lambda>[p\<^sub>2]. t)" by simp  | 
| 33189 | 702  | 
ultimately show ?thesis ..  | 
703  | 
next  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
704  | 
case (PTuple p\<^sub>1' p\<^sub>2')  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
705  | 
with PTuple' have "(\<lambda>[p\<^sub>1]. \<lambda>[p\<^sub>2]. t) = (\<lambda>[p\<^sub>1']. \<lambda>[p\<^sub>2']. u)" by simp  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
706  | 
moreover from PTuple PTuple' have "pat_type p\<^sub>1 = pat_type p\<^sub>1'"  | 
| 33189 | 707  | 
by (simp add: ty.inject)  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
708  | 
moreover from PTuple' have "distinct (pat_vars p\<^sub>1)" by simp  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
709  | 
moreover from PTuple PTuple' have "distinct (pat_vars p\<^sub>1')" by simp  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
710  | 
ultimately have "\<exists>pi::name prm. p\<^sub>1 = pi \<bullet> p\<^sub>1' \<and>  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
711  | 
(\<lambda>[p\<^sub>2]. t) = pi \<bullet> (\<lambda>[p\<^sub>2']. u) \<and>  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
712  | 
set pi \<subseteq> (supp p\<^sub>1 \<union> supp p\<^sub>1') \<times> (supp p\<^sub>1 \<union> supp p\<^sub>1')"  | 
| 33189 | 713  | 
by (rule PTuple')  | 
714  | 
then obtain pi::"name prm" where  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
715  | 
"p\<^sub>1 = pi \<bullet> p\<^sub>1'" "(\<lambda>[p\<^sub>2]. t) = pi \<bullet> (\<lambda>[p\<^sub>2']. u)" and  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
716  | 
pi: "set pi \<subseteq> (supp p\<^sub>1 \<union> supp p\<^sub>1') \<times> (supp p\<^sub>1 \<union> supp p\<^sub>1')" by auto  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
717  | 
from `(\<lambda>[p\<^sub>2]. t) = pi \<bullet> (\<lambda>[p\<^sub>2']. u)`  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
718  | 
have "(\<lambda>[p\<^sub>2]. t) = (\<lambda>[pi \<bullet> p\<^sub>2']. pi \<bullet> u)"  | 
| 33189 | 719  | 
by (simp add: eqvts)  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
720  | 
moreover from PTuple PTuple' have "pat_type p\<^sub>2 = pat_type (pi \<bullet> p\<^sub>2')"  | 
| 33189 | 721  | 
by (simp add: ty.inject pat_type_perm_eq)  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
722  | 
moreover from PTuple' have "distinct (pat_vars p\<^sub>2)" by simp  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
723  | 
moreover from PTuple PTuple' have "distinct (pat_vars (pi \<bullet> p\<^sub>2'))"  | 
| 33189 | 724  | 
by (simp add: pat_vars_eqvt [symmetric] distinct_eqvt [symmetric])  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
725  | 
ultimately have "\<exists>pi'::name prm. p\<^sub>2 = pi' \<bullet> pi \<bullet> p\<^sub>2' \<and>  | 
| 33189 | 726  | 
t = pi' \<bullet> pi \<bullet> u \<and>  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
727  | 
set pi' \<subseteq> (supp p\<^sub>2 \<union> supp (pi \<bullet> p\<^sub>2')) \<times> (supp p\<^sub>2 \<union> supp (pi \<bullet> p\<^sub>2'))"  | 
| 33189 | 728  | 
by (rule PTuple')  | 
729  | 
then obtain pi'::"name prm" where  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
730  | 
"p\<^sub>2 = pi' \<bullet> pi \<bullet> p\<^sub>2'" "t = pi' \<bullet> pi \<bullet> u" and  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
731  | 
pi': "set pi' \<subseteq> (supp p\<^sub>2 \<union> supp (pi \<bullet> p\<^sub>2')) \<times>  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
732  | 
(supp p\<^sub>2 \<union> supp (pi \<bullet> p\<^sub>2'))" by auto  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
733  | 
from PTuple PTuple' have "pi \<bullet> distinct (pat_vars \<langle>\<langle>p\<^sub>1', p\<^sub>2'\<rangle>\<rangle>)" by simp  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
734  | 
then have "distinct (pat_vars \<langle>\<langle>pi \<bullet> p\<^sub>1', pi \<bullet> p\<^sub>2'\<rangle>\<rangle>)" by (simp only: eqvts)  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
735  | 
with `p\<^sub>1 = pi \<bullet> p\<^sub>1'` PTuple'  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
736  | 
have fresh: "(supp p\<^sub>2 \<union> supp (pi \<bullet> p\<^sub>2') :: name set) \<sharp>* p\<^sub>1"  | 
| 33189 | 737  | 
by (auto simp add: set_pat_vars_supp fresh_star_def fresh_def eqvts)  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
738  | 
from `p\<^sub>1 = pi \<bullet> p\<^sub>1'` have "pi' \<bullet> (p\<^sub>1 = pi \<bullet> p\<^sub>1')" by (rule perm_boolI)  | 
| 33189 | 739  | 
with pt_freshs_freshs [OF pt_name_inst at_name_inst pi' fresh fresh]  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
740  | 
have "p\<^sub>1 = pi' \<bullet> pi \<bullet> p\<^sub>1'" by (simp add: eqvts)  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
741  | 
with `p\<^sub>2 = pi' \<bullet> pi \<bullet> p\<^sub>2'` have "\<langle>\<langle>p\<^sub>1, p\<^sub>2\<rangle>\<rangle> = (pi' @ pi) \<bullet> \<langle>\<langle>p\<^sub>1', p\<^sub>2'\<rangle>\<rangle>"  | 
| 33189 | 742  | 
by (simp add: pt_name2)  | 
743  | 
moreover  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
744  | 
have "((supp p\<^sub>2 \<union> (pi \<bullet> supp p\<^sub>2')) \<times> (supp p\<^sub>2 \<union> (pi \<bullet> supp p\<^sub>2'))::(name \<times> name) set) \<subseteq>  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
745  | 
(supp p\<^sub>2 \<union> (supp p\<^sub>1 \<union> supp p\<^sub>1' \<union> supp p\<^sub>2')) \<times> (supp p\<^sub>2 \<union> (supp p\<^sub>1 \<union> supp p\<^sub>1' \<union> supp p\<^sub>2'))"  | 
| 33189 | 746  | 
by (rule subset_refl Sigma_mono Un_mono perm_cases [OF pi])+  | 
747  | 
with pi' have "set pi' \<subseteq> \<dots>" by (simp add: supp_eqvt [symmetric])  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
748  | 
with pi have "set (pi' @ pi) \<subseteq> (supp \<langle>\<langle>p\<^sub>1, p\<^sub>2\<rangle>\<rangle> \<union> supp \<langle>\<langle>p\<^sub>1', p\<^sub>2'\<rangle>\<rangle>) \<times>  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
749  | 
(supp \<langle>\<langle>p\<^sub>1, p\<^sub>2\<rangle>\<rangle> \<union> supp \<langle>\<langle>p\<^sub>1', p\<^sub>2'\<rangle>\<rangle>)"  | 
| 33189 | 750  | 
by (simp add: Sigma_Un_distrib1 Sigma_Un_distrib2 Un_ac) blast  | 
751  | 
moreover note `t = pi' \<bullet> pi \<bullet> u`  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
752  | 
ultimately have "\<langle>\<langle>p\<^sub>1, p\<^sub>2\<rangle>\<rangle> = (pi' @ pi) \<bullet> q \<and> t = (pi' @ pi) \<bullet> u \<and>  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
753  | 
set (pi' @ pi) \<subseteq> (supp \<langle>\<langle>p\<^sub>1, p\<^sub>2\<rangle>\<rangle> \<union> supp q) \<times>  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
754  | 
(supp \<langle>\<langle>p\<^sub>1, p\<^sub>2\<rangle>\<rangle> \<union> supp q)" using PTuple  | 
| 33189 | 755  | 
by (simp add: pt_name2)  | 
756  | 
then show ?thesis ..  | 
|
757  | 
qed  | 
|
758  | 
qed  | 
|
759  | 
||
760  | 
lemma typing_case_Let:  | 
|
761  | 
assumes ty: "\<Gamma> \<turnstile> (LET p = t IN u) : U"  | 
|
762  | 
and fresh: "(supp p::name set) \<sharp>* \<Gamma>"  | 
|
763  | 
and distinct: "distinct (pat_vars p)"  | 
|
764  | 
and R: "\<And>T \<Delta>. \<Gamma> \<turnstile> t : T \<Longrightarrow> \<turnstile> p : T \<Rightarrow> \<Delta> \<Longrightarrow> \<Delta> @ \<Gamma> \<turnstile> u : U \<Longrightarrow> P"  | 
|
765  | 
shows P using ty  | 
|
766  | 
proof cases  | 
|
| 34990 | 767  | 
case (Let p' t' T \<Delta> u')  | 
| 33189 | 768  | 
then have "(supp \<Delta>::name set) \<sharp>* \<Gamma>"  | 
769  | 
by (auto intro: valid_typing valid_app_freshs)  | 
|
770  | 
with Let have "(supp p'::name set) \<sharp>* \<Gamma>"  | 
|
771  | 
by (simp add: pat_var)  | 
|
772  | 
with fresh have fresh': "(supp p \<union> supp p' :: name set) \<sharp>* \<Gamma>"  | 
|
773  | 
by (auto simp add: fresh_star_def)  | 
|
774  | 
from Let have "(\<lambda>[p]. Base u) = (\<lambda>[p']. Base u')"  | 
|
775  | 
by (simp add: trm.inject)  | 
|
776  | 
moreover from Let have "pat_type p = pat_type p'"  | 
|
777  | 
by (simp add: trm.inject)  | 
|
778  | 
moreover note distinct  | 
|
| 34990 | 779  | 
moreover from `\<Delta> @ \<Gamma> \<turnstile> u' : U` have "valid (\<Delta> @ \<Gamma>)"  | 
| 33189 | 780  | 
by (rule valid_typing)  | 
781  | 
then have "valid \<Delta>" by (rule valid_appD)  | 
|
782  | 
with `\<turnstile> p' : T \<Rightarrow> \<Delta>` have "distinct (pat_vars p')"  | 
|
783  | 
by (simp add: valid_distinct pat_vars_ptyping)  | 
|
784  | 
ultimately have "\<exists>pi::name prm. p = pi \<bullet> p' \<and> Base u = pi \<bullet> Base u' \<and>  | 
|
785  | 
set pi \<subseteq> (supp p \<union> supp p') \<times> (supp p \<union> supp p')"  | 
|
786  | 
by (rule abs_pat_alpha')  | 
|
787  | 
then obtain pi::"name prm" where pi: "p = pi \<bullet> p'" "u = pi \<bullet> u'"  | 
|
788  | 
and pi': "set pi \<subseteq> (supp p \<union> supp p') \<times> (supp p \<union> supp p')"  | 
|
789  | 
by (auto simp add: btrm.inject)  | 
|
790  | 
from Let have "\<Gamma> \<turnstile> t : T" by (simp add: trm.inject)  | 
|
791  | 
moreover from `\<turnstile> p' : T \<Rightarrow> \<Delta>` have "\<turnstile> (pi \<bullet> p') : (pi \<bullet> T) \<Rightarrow> (pi \<bullet> \<Delta>)"  | 
|
792  | 
by (simp add: ptyping.eqvt)  | 
|
793  | 
with pi have "\<turnstile> p : T \<Rightarrow> (pi \<bullet> \<Delta>)" by (simp add: perm_type)  | 
|
794  | 
moreover from Let  | 
|
795  | 
have "(pi \<bullet> \<Delta>) @ (pi \<bullet> \<Gamma>) \<turnstile> (pi \<bullet> u') : (pi \<bullet> U)"  | 
|
796  | 
by (simp add: append_eqvt [symmetric] typing.eqvt)  | 
|
797  | 
with pi have "(pi \<bullet> \<Delta>) @ \<Gamma> \<turnstile> u : U"  | 
|
798  | 
by (simp add: perm_type pt_freshs_freshs  | 
|
799  | 
[OF pt_name_inst at_name_inst pi' fresh' fresh'])  | 
|
800  | 
ultimately show ?thesis by (rule R)  | 
|
801  | 
qed simp_all  | 
|
802  | 
||
803  | 
lemma preservation:  | 
|
804  | 
assumes "t \<longmapsto> t'" and "\<Gamma> \<turnstile> t : T"  | 
|
805  | 
shows "\<Gamma> \<turnstile> t' : T" using assms  | 
|
806  | 
proof (nominal_induct avoiding: \<Gamma> T rule: eval.strong_induct)  | 
|
807  | 
case (TupleL t t' u)  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
808  | 
from `\<Gamma> \<turnstile> \<langle>t, u\<rangle> : T` obtain T\<^sub>1 T\<^sub>2  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
809  | 
where "T = T\<^sub>1 \<otimes> T\<^sub>2" "\<Gamma> \<turnstile> t : T\<^sub>1" "\<Gamma> \<turnstile> u : T\<^sub>2"  | 
| 33189 | 810  | 
by cases (simp_all add: trm.inject)  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
811  | 
from `\<Gamma> \<turnstile> t : T\<^sub>1` have "\<Gamma> \<turnstile> t' : T\<^sub>1" by (rule TupleL)  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
812  | 
then have "\<Gamma> \<turnstile> \<langle>t', u\<rangle> : T\<^sub>1 \<otimes> T\<^sub>2" using `\<Gamma> \<turnstile> u : T\<^sub>2`  | 
| 33189 | 813  | 
by (rule Tuple)  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
814  | 
with `T = T\<^sub>1 \<otimes> T\<^sub>2` show ?case by simp  | 
| 33189 | 815  | 
next  | 
816  | 
case (TupleR u u' t)  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
817  | 
from `\<Gamma> \<turnstile> \<langle>t, u\<rangle> : T` obtain T\<^sub>1 T\<^sub>2  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
818  | 
where "T = T\<^sub>1 \<otimes> T\<^sub>2" "\<Gamma> \<turnstile> t : T\<^sub>1" "\<Gamma> \<turnstile> u : T\<^sub>2"  | 
| 33189 | 819  | 
by cases (simp_all add: trm.inject)  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
820  | 
from `\<Gamma> \<turnstile> u : T\<^sub>2` have "\<Gamma> \<turnstile> u' : T\<^sub>2" by (rule TupleR)  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
821  | 
with `\<Gamma> \<turnstile> t : T\<^sub>1` have "\<Gamma> \<turnstile> \<langle>t, u'\<rangle> : T\<^sub>1 \<otimes> T\<^sub>2"  | 
| 33189 | 822  | 
by (rule Tuple)  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
45129 
diff
changeset
 | 
823  | 
with `T = T\<^sub>1 \<otimes> T\<^sub>2` show ?case by simp  | 
| 33189 | 824  | 
next  | 
825  | 
case (Abs t t' x S)  | 
|
826  | 
from `\<Gamma> \<turnstile> (\<lambda>x:S. t) : T` `x \<sharp> \<Gamma>` obtain U where  | 
|
827  | 
T: "T = S \<rightarrow> U" and U: "(x, S) # \<Gamma> \<turnstile> t : U"  | 
|
828  | 
by (rule typing_case_Abs)  | 
|
829  | 
from U have "(x, S) # \<Gamma> \<turnstile> t' : U" by (rule Abs)  | 
|
830  | 
then have "\<Gamma> \<turnstile> (\<lambda>x:S. t') : S \<rightarrow> U"  | 
|
831  | 
by (rule typing.Abs)  | 
|
832  | 
with T show ?case by simp  | 
|
833  | 
next  | 
|
834  | 
case (Beta x u S t)  | 
|
835  | 
from `\<Gamma> \<turnstile> (\<lambda>x:S. t) \<cdot> u : T` `x \<sharp> \<Gamma>`  | 
|
836  | 
obtain "(x, S) # \<Gamma> \<turnstile> t : T" and "\<Gamma> \<turnstile> u : S"  | 
|
837  | 
by cases (auto simp add: trm.inject ty.inject elim: typing_case_Abs)  | 
|
838  | 
then show ?case by (rule subst_type)  | 
|
839  | 
next  | 
|
840  | 
case (Let p t \<theta> u)  | 
|
841  | 
from `\<Gamma> \<turnstile> (LET p = t IN u) : T` `supp p \<sharp>* \<Gamma>` `distinct (pat_vars p)`  | 
|
842  | 
obtain U \<Delta> where "\<turnstile> p : U \<Rightarrow> \<Delta>" "\<Gamma> \<turnstile> t : U" "\<Delta> @ \<Gamma> \<turnstile> u : T"  | 
|
843  | 
by (rule typing_case_Let)  | 
|
844  | 
then show ?case using `\<turnstile> p \<rhd> t \<Rightarrow> \<theta>` `supp p \<sharp>* t`  | 
|
845  | 
by (rule match_type)  | 
|
846  | 
next  | 
|
847  | 
case (AppL t t' u)  | 
|
848  | 
from `\<Gamma> \<turnstile> t \<cdot> u : T` obtain U where  | 
|
849  | 
t: "\<Gamma> \<turnstile> t : U \<rightarrow> T" and u: "\<Gamma> \<turnstile> u : U"  | 
|
850  | 
by cases (auto simp add: trm.inject)  | 
|
851  | 
from t have "\<Gamma> \<turnstile> t' : U \<rightarrow> T" by (rule AppL)  | 
|
852  | 
then show ?case using u by (rule typing.App)  | 
|
853  | 
next  | 
|
854  | 
case (AppR u u' t)  | 
|
855  | 
from `\<Gamma> \<turnstile> t \<cdot> u : T` obtain U where  | 
|
856  | 
t: "\<Gamma> \<turnstile> t : U \<rightarrow> T" and u: "\<Gamma> \<turnstile> u : U"  | 
|
857  | 
by cases (auto simp add: trm.inject)  | 
|
858  | 
from u have "\<Gamma> \<turnstile> u' : U" by (rule AppR)  | 
|
859  | 
with t show ?case by (rule typing.App)  | 
|
860  | 
qed  | 
|
861  | 
||
862  | 
end  |