src/HOL/Analysis/Infinite_Sum.thy
author wenzelm
Fri, 15 Oct 2021 22:00:28 +0200
changeset 74530 823ccd84b879
parent 74475 409ca22dee4c
child 74639 f831b6e589dc
permissions -rw-r--r--
revert bbfed17243af, breaks HOL-Proofs extraction;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
74475
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
     1
(*
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
     2
  Title:    HOL/Analysis/Infinite_Sum.thy
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
     3
  Author:   Dominique Unruh, University of Tartu
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
     4
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
     5
  A theory of sums over possible infinite sets.
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
     6
*)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
     7
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
     8
section \<open>Infinite sums\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
     9
\<^latex>\<open>\label{section:Infinite_Sum}\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    10
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    11
text \<open>In this theory, we introduce the definition of infinite sums, i.e., sums ranging over an
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    12
infinite, potentially uncountable index set with no particular ordering.
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    13
(This is different from series. Those are sums indexed by natural numbers,
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    14
and the order of the index set matters.)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    15
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    16
Our definition is quite standard: $s:=\sum_{x\in A} f(x)$ is the limit of finite sums $s_F:=\sum_{x\in F} f(x)$ for increasing $F$.
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    17
That is, $s$ is the limit of the net $s_F$ where $F$ are finite subsets of $A$ ordered by inclusion.
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    18
We believe that this is the standard definition for such sums.
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    19
See, e.g., Definition 4.11 in \cite{conway2013course}.
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    20
This definition is quite general: it is well-defined whenever $f$ takes values in some
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    21
commutative monoid endowed with a Hausdorff topology.
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    22
(Examples are reals, complex numbers, normed vector spaces, and more.)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    23
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    24
theory Infinite_Sum
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    25
  imports
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    26
    "HOL-Analysis.Elementary_Topology"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    27
    "HOL-Library.Extended_Nonnegative_Real"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    28
    "HOL-Library.Complex_Order"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    29
begin
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    30
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    31
subsection \<open>Definition and syntax\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    32
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    33
definition has_sum :: \<open>('a \<Rightarrow> 'b :: {comm_monoid_add, topological_space}) \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> bool\<close> where
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    34
  \<open>has_sum f A x \<longleftrightarrow> (sum f \<longlongrightarrow> x) (finite_subsets_at_top A)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    35
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    36
definition summable_on :: "('a \<Rightarrow> 'b::{comm_monoid_add, topological_space}) \<Rightarrow> 'a set \<Rightarrow> bool" (infixr "summable'_on" 46) where
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    37
  "f summable_on A \<longleftrightarrow> (\<exists>x. has_sum f A x)"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    38
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    39
definition infsum :: "('a \<Rightarrow> 'b::{comm_monoid_add,t2_space}) \<Rightarrow> 'a set \<Rightarrow> 'b" where
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    40
  "infsum f A = (if f summable_on A then Lim (finite_subsets_at_top A) (sum f) else 0)"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    41
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    42
abbreviation abs_summable_on :: "('a \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'a set \<Rightarrow> bool" (infixr "abs'_summable'_on" 46) where
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    43
  "f abs_summable_on A \<equiv> (\<lambda>x. norm (f x)) summable_on A"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    44
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    45
syntax (ASCII)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    46
  "_infsum" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b::topological_comm_monoid_add"  ("(3INFSUM (_/:_)./ _)" [0, 51, 10] 10)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    47
syntax
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    48
  "_infsum" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b::topological_comm_monoid_add"  ("(2\<Sum>\<^sub>\<infinity>(_/\<in>_)./ _)" [0, 51, 10] 10)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    49
translations \<comment> \<open>Beware of argument permutation!\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    50
  "\<Sum>\<^sub>\<infinity>i\<in>A. b" \<rightleftharpoons> "CONST infsum (\<lambda>i. b) A"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    51
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    52
syntax (ASCII)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    53
  "_univinfsum" :: "pttrn \<Rightarrow> 'a \<Rightarrow> 'a"  ("(3INFSUM _./ _)" [0, 10] 10)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    54
syntax
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    55
  "_univinfsum" :: "pttrn \<Rightarrow> 'a \<Rightarrow> 'a"  ("(2\<Sum>\<^sub>\<infinity>_./ _)" [0, 10] 10)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    56
translations
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    57
  "\<Sum>\<^sub>\<infinity>x. t" \<rightleftharpoons> "CONST infsum (\<lambda>x. t) (CONST UNIV)"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    58
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    59
syntax (ASCII)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    60
  "_qinfsum" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a"  ("(3INFSUM _ |/ _./ _)" [0, 0, 10] 10)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    61
syntax
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    62
  "_qinfsum" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a"  ("(2\<Sum>\<^sub>\<infinity>_ | (_)./ _)" [0, 0, 10] 10)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    63
translations
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    64
  "\<Sum>\<^sub>\<infinity>x|P. t" => "CONST infsum (\<lambda>x. t) {x. P}"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    65
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    66
print_translation \<open>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    67
let
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    68
  fun sum_tr' [Abs (x, Tx, t), Const (@{const_syntax Collect}, _) $ Abs (y, Ty, P)] =
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    69
        if x <> y then raise Match
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    70
        else
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    71
          let
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    72
            val x' = Syntax_Trans.mark_bound_body (x, Tx);
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    73
            val t' = subst_bound (x', t);
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    74
            val P' = subst_bound (x', P);
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    75
          in
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    76
            Syntax.const @{syntax_const "_qinfsum"} $ Syntax_Trans.mark_bound_abs (x, Tx) $ P' $ t'
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    77
          end
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    78
    | sum_tr' _ = raise Match;
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    79
in [(@{const_syntax infsum}, K sum_tr')] end
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    80
\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    81
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    82
subsection \<open>General properties\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    83
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    84
lemma infsumI:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    85
  fixes f g :: \<open>'a \<Rightarrow> 'b::{comm_monoid_add, t2_space}\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    86
  assumes \<open>has_sum f A x\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    87
  shows \<open>infsum f A = x\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    88
  by (metis assms finite_subsets_at_top_neq_bot infsum_def summable_on_def has_sum_def tendsto_Lim)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    89
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    90
lemma infsum_eqI:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    91
  fixes f g :: \<open>'a \<Rightarrow> 'b::{comm_monoid_add, t2_space}\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    92
  assumes \<open>x = y\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    93
  assumes \<open>has_sum f A x\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    94
  assumes \<open>has_sum g B y\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    95
  shows \<open>infsum f A = infsum g B\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    96
  by (metis assms(1) assms(2) assms(3) finite_subsets_at_top_neq_bot infsum_def summable_on_def has_sum_def tendsto_Lim)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    97
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    98
lemma infsum_eqI':
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    99
  fixes f g :: \<open>'a \<Rightarrow> 'b::{comm_monoid_add, t2_space}\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   100
  assumes \<open>\<And>x. has_sum f A x \<longleftrightarrow> has_sum g B x\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   101
  shows \<open>infsum f A = infsum g B\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   102
  by (metis assms infsum_def infsum_eqI summable_on_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   103
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   104
lemma infsum_not_exists:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   105
  fixes f :: \<open>'a \<Rightarrow> 'b::{comm_monoid_add, t2_space}\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   106
  assumes \<open>\<not> f summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   107
  shows \<open>infsum f A = 0\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   108
  by (simp add: assms infsum_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   109
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   110
lemma has_sum_cong_neutral:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   111
  fixes f g :: \<open>'a \<Rightarrow> 'b::{comm_monoid_add, topological_space}\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   112
  assumes \<open>\<And>x. x\<in>T-S \<Longrightarrow> g x = 0\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   113
  assumes \<open>\<And>x. x\<in>S-T \<Longrightarrow> f x = 0\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   114
  assumes \<open>\<And>x. x\<in>S\<inter>T \<Longrightarrow> f x = g x\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   115
  shows "has_sum f S x \<longleftrightarrow> has_sum g T x"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   116
proof -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   117
  have \<open>eventually P (filtermap (sum f) (finite_subsets_at_top S))
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   118
      = eventually P (filtermap (sum g) (finite_subsets_at_top T))\<close> for P
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   119
  proof 
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   120
    assume \<open>eventually P (filtermap (sum f) (finite_subsets_at_top S))\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   121
    then obtain F0 where \<open>finite F0\<close> and \<open>F0 \<subseteq> S\<close> and F0_P: \<open>\<And>F. finite F \<Longrightarrow> F \<subseteq> S \<Longrightarrow> F \<supseteq> F0 \<Longrightarrow> P (sum f F)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   122
      by (metis (no_types, lifting) eventually_filtermap eventually_finite_subsets_at_top)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   123
    define F0' where \<open>F0' = F0 \<inter> T\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   124
    have [simp]: \<open>finite F0'\<close> \<open>F0' \<subseteq> T\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   125
      by (simp_all add: F0'_def \<open>finite F0\<close>)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   126
    have \<open>P (sum g F)\<close> if \<open>finite F\<close> \<open>F \<subseteq> T\<close> \<open>F \<supseteq> F0'\<close> for F
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   127
    proof -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   128
      have \<open>P (sum f ((F\<inter>S) \<union> (F0\<inter>S)))\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   129
        apply (rule F0_P)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   130
        using \<open>F0 \<subseteq> S\<close>  \<open>finite F0\<close> that by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   131
      also have \<open>sum f ((F\<inter>S) \<union> (F0\<inter>S)) = sum g F\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   132
        apply (rule sum.mono_neutral_cong)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   133
        using that \<open>finite F0\<close> F0'_def assms by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   134
      finally show ?thesis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   135
        by -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   136
    qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   137
    with \<open>F0' \<subseteq> T\<close> \<open>finite F0'\<close> show \<open>eventually P (filtermap (sum g) (finite_subsets_at_top T))\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   138
      by (metis (no_types, lifting) eventually_filtermap eventually_finite_subsets_at_top)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   139
  next
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   140
    assume \<open>eventually P (filtermap (sum g) (finite_subsets_at_top T))\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   141
    then obtain F0 where \<open>finite F0\<close> and \<open>F0 \<subseteq> T\<close> and F0_P: \<open>\<And>F. finite F \<Longrightarrow> F \<subseteq> T \<Longrightarrow> F \<supseteq> F0 \<Longrightarrow> P (sum g F)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   142
      by (metis (no_types, lifting) eventually_filtermap eventually_finite_subsets_at_top)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   143
    define F0' where \<open>F0' = F0 \<inter> S\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   144
    have [simp]: \<open>finite F0'\<close> \<open>F0' \<subseteq> S\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   145
      by (simp_all add: F0'_def \<open>finite F0\<close>)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   146
    have \<open>P (sum f F)\<close> if \<open>finite F\<close> \<open>F \<subseteq> S\<close> \<open>F \<supseteq> F0'\<close> for F
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   147
    proof -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   148
      have \<open>P (sum g ((F\<inter>T) \<union> (F0\<inter>T)))\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   149
        apply (rule F0_P)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   150
        using \<open>F0 \<subseteq> T\<close>  \<open>finite F0\<close> that by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   151
      also have \<open>sum g ((F\<inter>T) \<union> (F0\<inter>T)) = sum f F\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   152
        apply (rule sum.mono_neutral_cong)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   153
        using that \<open>finite F0\<close> F0'_def assms by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   154
      finally show ?thesis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   155
        by -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   156
    qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   157
    with \<open>F0' \<subseteq> S\<close> \<open>finite F0'\<close> show \<open>eventually P (filtermap (sum f) (finite_subsets_at_top S))\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   158
      by (metis (no_types, lifting) eventually_filtermap eventually_finite_subsets_at_top)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   159
  qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   160
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   161
  then have tendsto_x: "(sum f \<longlongrightarrow> x) (finite_subsets_at_top S) \<longleftrightarrow> (sum g \<longlongrightarrow> x) (finite_subsets_at_top T)" for x
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   162
    by (simp add: le_filter_def filterlim_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   163
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   164
  then show ?thesis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   165
    by (simp add: has_sum_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   166
qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   167
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   168
lemma summable_on_cong_neutral: 
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   169
  fixes f g :: \<open>'a \<Rightarrow> 'b::{comm_monoid_add, topological_space}\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   170
  assumes \<open>\<And>x. x\<in>T-S \<Longrightarrow> g x = 0\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   171
  assumes \<open>\<And>x. x\<in>S-T \<Longrightarrow> f x = 0\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   172
  assumes \<open>\<And>x. x\<in>S\<inter>T \<Longrightarrow> f x = g x\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   173
  shows "f summable_on S \<longleftrightarrow> g summable_on T"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   174
  using has_sum_cong_neutral[of T S g f, OF assms]
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   175
  by (simp add: summable_on_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   176
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   177
lemma infsum_cong_neutral: 
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   178
  fixes f g :: \<open>'a \<Rightarrow> 'b::{comm_monoid_add, t2_space}\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   179
  assumes \<open>\<And>x. x\<in>T-S \<Longrightarrow> g x = 0\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   180
  assumes \<open>\<And>x. x\<in>S-T \<Longrightarrow> f x = 0\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   181
  assumes \<open>\<And>x. x\<in>S\<inter>T \<Longrightarrow> f x = g x\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   182
  shows \<open>infsum f S = infsum g T\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   183
  apply (rule infsum_eqI')
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   184
  using assms by (rule has_sum_cong_neutral)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   185
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   186
lemma has_sum_cong: 
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   187
  assumes "\<And>x. x\<in>A \<Longrightarrow> f x = g x"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   188
  shows "has_sum f A x \<longleftrightarrow> has_sum g A x"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   189
  by (smt (verit, best) DiffE IntD2 assms has_sum_cong_neutral)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   190
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   191
lemma summable_on_cong:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   192
  assumes "\<And>x. x\<in>A \<Longrightarrow> f x = g x"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   193
  shows "f summable_on A \<longleftrightarrow> g summable_on A"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   194
  by (metis assms summable_on_def has_sum_cong)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   195
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   196
lemma infsum_cong:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   197
  assumes "\<And>x. x\<in>A \<Longrightarrow> f x = g x"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   198
  shows "infsum f A = infsum g A"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   199
  using assms infsum_eqI' has_sum_cong by blast
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   200
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   201
lemma summable_on_cofin_subset:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   202
  fixes f :: "'a \<Rightarrow> 'b::topological_ab_group_add"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   203
  assumes "f summable_on A" and [simp]: "finite F"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   204
  shows "f summable_on (A - F)"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   205
proof -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   206
  from assms(1) obtain x where lim_f: "(sum f \<longlongrightarrow> x) (finite_subsets_at_top A)"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   207
    unfolding summable_on_def has_sum_def by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   208
  define F' where "F' = F\<inter>A"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   209
  with assms have "finite F'" and "A-F = A-F'"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   210
    by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   211
  have "filtermap ((\<union>)F') (finite_subsets_at_top (A-F))
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   212
      \<le> finite_subsets_at_top A"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   213
  proof (rule filter_leI)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   214
    fix P assume "eventually P (finite_subsets_at_top A)"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   215
    then obtain X where [simp]: "finite X" and XA: "X \<subseteq> A" 
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   216
      and P: "\<forall>Y. finite Y \<and> X \<subseteq> Y \<and> Y \<subseteq> A \<longrightarrow> P Y"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   217
      unfolding eventually_finite_subsets_at_top by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   218
    define X' where "X' = X-F"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   219
    hence [simp]: "finite X'" and [simp]: "X' \<subseteq> A-F"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   220
      using XA by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   221
    hence "finite Y \<and> X' \<subseteq> Y \<and> Y \<subseteq> A - F \<longrightarrow> P (F' \<union> Y)" for Y
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   222
      using P XA unfolding X'_def using F'_def \<open>finite F'\<close> by blast
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   223
    thus "eventually P (filtermap ((\<union>) F') (finite_subsets_at_top (A - F)))"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   224
      unfolding eventually_filtermap eventually_finite_subsets_at_top
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   225
      by (rule_tac x=X' in exI, simp)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   226
  qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   227
  with lim_f have "(sum f \<longlongrightarrow> x) (filtermap ((\<union>)F') (finite_subsets_at_top (A-F)))"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   228
    using tendsto_mono by blast
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   229
  have "((\<lambda>G. sum f (F' \<union> G)) \<longlongrightarrow> x) (finite_subsets_at_top (A - F))"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   230
    if "((sum f \<circ> (\<union>) F') \<longlongrightarrow> x) (finite_subsets_at_top (A - F))"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   231
    using that unfolding o_def by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   232
  hence "((\<lambda>G. sum f (F' \<union> G)) \<longlongrightarrow> x) (finite_subsets_at_top (A-F))"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   233
    using tendsto_compose_filtermap [symmetric]
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   234
    by (simp add: \<open>(sum f \<longlongrightarrow> x) (filtermap ((\<union>) F') (finite_subsets_at_top (A - F)))\<close> 
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   235
        tendsto_compose_filtermap)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   236
  have "\<forall>Y. finite Y \<and> Y \<subseteq> A - F \<longrightarrow> sum f (F' \<union> Y) = sum f F' + sum f Y"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   237
    by (metis Diff_disjoint Int_Diff \<open>A - F = A - F'\<close> \<open>finite F'\<close> inf.orderE sum.union_disjoint)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   238
  hence "\<forall>\<^sub>F x in finite_subsets_at_top (A - F). sum f (F' \<union> x) = sum f F' + sum f x"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   239
    unfolding eventually_finite_subsets_at_top
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   240
    using exI [where x = "{}"]
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   241
    by (simp add: \<open>\<And>P. P {} \<Longrightarrow> \<exists>x. P x\<close>) 
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   242
  hence "((\<lambda>G. sum f F' + sum f G) \<longlongrightarrow> x) (finite_subsets_at_top (A-F))"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   243
    using tendsto_cong [THEN iffD1 , rotated]
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   244
      \<open>((\<lambda>G. sum f (F' \<union> G)) \<longlongrightarrow> x) (finite_subsets_at_top (A - F))\<close> by fastforce
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   245
  hence "((\<lambda>G. sum f F' + sum f G) \<longlongrightarrow> sum f F' + (x-sum f F')) (finite_subsets_at_top (A-F))"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   246
    by simp
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   247
  hence "(sum f \<longlongrightarrow> x - sum f F') (finite_subsets_at_top (A-F))"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   248
    using tendsto_add_const_iff by blast    
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   249
  thus "f summable_on (A - F)"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   250
    unfolding summable_on_def has_sum_def by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   251
qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   252
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   253
lemma
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   254
  fixes f :: "'a \<Rightarrow> 'b::{topological_ab_group_add}"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   255
  assumes \<open>has_sum f B b\<close> and \<open>has_sum f A a\<close> and AB: "A \<subseteq> B"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   256
  shows has_sum_Diff: "has_sum f (B - A) (b - a)"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   257
proof -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   258
  have finite_subsets1:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   259
    "finite_subsets_at_top (B - A) \<le> filtermap (\<lambda>F. F - A) (finite_subsets_at_top B)"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   260
  proof (rule filter_leI)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   261
    fix P assume "eventually P (filtermap (\<lambda>F. F - A) (finite_subsets_at_top B))"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   262
    then obtain X where "finite X" and "X \<subseteq> B" 
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   263
      and P: "finite Y \<and> X \<subseteq> Y \<and> Y \<subseteq> B \<longrightarrow> P (Y - A)" for Y
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   264
      unfolding eventually_filtermap eventually_finite_subsets_at_top by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   265
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   266
    hence "finite (X-A)" and "X-A \<subseteq> B - A"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   267
      by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   268
    moreover have "finite Y \<and> X-A \<subseteq> Y \<and> Y \<subseteq> B - A \<longrightarrow> P Y" for Y
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   269
      using P[where Y="Y\<union>X"] \<open>finite X\<close> \<open>X \<subseteq> B\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   270
      by (metis Diff_subset Int_Diff Un_Diff finite_Un inf.orderE le_sup_iff sup.orderE sup_ge2)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   271
    ultimately show "eventually P (finite_subsets_at_top (B - A))"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   272
      unfolding eventually_finite_subsets_at_top by meson
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   273
  qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   274
  have finite_subsets2: 
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   275
    "filtermap (\<lambda>F. F \<inter> A) (finite_subsets_at_top B) \<le> finite_subsets_at_top A"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   276
    apply (rule filter_leI)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   277
      using assms unfolding eventually_filtermap eventually_finite_subsets_at_top
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   278
      by (metis Int_subset_iff finite_Int inf_le2 subset_trans)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   279
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   280
  from assms(1) have limB: "(sum f \<longlongrightarrow> b) (finite_subsets_at_top B)"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   281
    using has_sum_def by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   282
  from assms(2) have limA: "(sum f \<longlongrightarrow> a) (finite_subsets_at_top A)"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   283
    using has_sum_def by blast
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   284
  have "((\<lambda>F. sum f (F\<inter>A)) \<longlongrightarrow> a) (finite_subsets_at_top B)"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   285
  proof (subst asm_rl [of "(\<lambda>F. sum f (F\<inter>A)) = sum f o (\<lambda>F. F\<inter>A)"])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   286
    show "(\<lambda>F. sum f (F \<inter> A)) = sum f \<circ> (\<lambda>F. F \<inter> A)"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   287
      unfolding o_def by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   288
    show "((sum f \<circ> (\<lambda>F. F \<inter> A)) \<longlongrightarrow> a) (finite_subsets_at_top B)"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   289
      unfolding o_def 
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   290
      using tendsto_compose_filtermap finite_subsets2 limA tendsto_mono
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   291
        \<open>(\<lambda>F. sum f (F \<inter> A)) = sum f \<circ> (\<lambda>F. F \<inter> A)\<close> by fastforce
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   292
  qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   293
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   294
  with limB have "((\<lambda>F. sum f F - sum f (F\<inter>A)) \<longlongrightarrow> b - a) (finite_subsets_at_top B)"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   295
    using tendsto_diff by blast
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   296
  have "sum f X - sum f (X \<inter> A) = sum f (X - A)" if "finite X" and "X \<subseteq> B" for X :: "'a set"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   297
    using that by (metis add_diff_cancel_left' sum.Int_Diff)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   298
  hence "\<forall>\<^sub>F x in finite_subsets_at_top B. sum f x - sum f (x \<inter> A) = sum f (x - A)"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   299
    by (rule eventually_finite_subsets_at_top_weakI)  
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   300
  hence "((\<lambda>F. sum f (F-A)) \<longlongrightarrow> b - a) (finite_subsets_at_top B)"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   301
    using tendsto_cong [THEN iffD1 , rotated]
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   302
      \<open>((\<lambda>F. sum f F - sum f (F \<inter> A)) \<longlongrightarrow> b - a) (finite_subsets_at_top B)\<close> by fastforce
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   303
  hence "(sum f \<longlongrightarrow> b - a) (filtermap (\<lambda>F. F-A) (finite_subsets_at_top B))"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   304
    by (subst tendsto_compose_filtermap[symmetric], simp add: o_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   305
  hence limBA: "(sum f \<longlongrightarrow> b - a) (finite_subsets_at_top (B-A))"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   306
    apply (rule tendsto_mono[rotated])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   307
    by (rule finite_subsets1)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   308
  thus ?thesis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   309
    by (simp add: has_sum_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   310
qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   311
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   312
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   313
lemma
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   314
  fixes f :: "'a \<Rightarrow> 'b::{topological_ab_group_add}"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   315
  assumes "f summable_on B" and "f summable_on A" and "A \<subseteq> B"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   316
  shows summable_on_Diff: "f summable_on (B-A)"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   317
  by (meson assms summable_on_def has_sum_Diff)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   318
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   319
lemma
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   320
  fixes f :: "'a \<Rightarrow> 'b::{topological_ab_group_add,t2_space}"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   321
  assumes "f summable_on B" and "f summable_on A" and AB: "A \<subseteq> B"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   322
  shows infsum_Diff: "infsum f (B - A) = infsum f B - infsum f A"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   323
  by (smt (z3) AB assms(1) assms(2) finite_subsets_at_top_neq_bot infsum_def summable_on_def has_sum_Diff has_sum_def tendsto_Lim)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   324
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   325
lemma has_sum_mono_neutral:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   326
  fixes f :: "'a\<Rightarrow>'b::{ordered_comm_monoid_add,linorder_topology}"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   327
  (* Does this really require a linorder topology? (Instead of order topology.) *)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   328
  assumes \<open>has_sum f A a\<close> and "has_sum g B b"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   329
  assumes \<open>\<And>x. x \<in> A\<inter>B \<Longrightarrow> f x \<le> g x\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   330
  assumes \<open>\<And>x. x \<in> A-B \<Longrightarrow> f x \<le> 0\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   331
  assumes \<open>\<And>x. x \<in> B-A \<Longrightarrow> g x \<ge> 0\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   332
  shows "a \<le> b"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   333
proof -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   334
  define f' g' where \<open>f' x = (if x \<in> A then f x else 0)\<close> and \<open>g' x = (if x \<in> B then g x else 0)\<close> for x
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   335
  have [simp]: \<open>f summable_on A\<close> \<open>g summable_on B\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   336
    using assms(1,2) summable_on_def by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   337
  have \<open>has_sum f' (A\<union>B) a\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   338
    apply (subst has_sum_cong_neutral[where g=f and T=A])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   339
    by (auto simp: f'_def assms(1))
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   340
  then have f'_lim: \<open>(sum f' \<longlongrightarrow> a) (finite_subsets_at_top (A\<union>B))\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   341
    by (meson has_sum_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   342
  have \<open>has_sum g' (A\<union>B) b\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   343
    apply (subst has_sum_cong_neutral[where g=g and T=B])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   344
    by (auto simp: g'_def assms(2))
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   345
  then have g'_lim: \<open>(sum g' \<longlongrightarrow> b) (finite_subsets_at_top (A\<union>B))\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   346
    using has_sum_def by blast
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   347
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   348
  have *: \<open>\<forall>\<^sub>F x in finite_subsets_at_top (A \<union> B). sum f' x \<le> sum g' x\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   349
    apply (rule eventually_finite_subsets_at_top_weakI)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   350
    apply (rule sum_mono)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   351
    using assms by (auto simp: f'_def g'_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   352
  show ?thesis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   353
    apply (rule tendsto_le)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   354
    using * g'_lim f'_lim by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   355
qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   356
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   357
lemma infsum_mono_neutral:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   358
  fixes f :: "'a\<Rightarrow>'b::{ordered_comm_monoid_add,linorder_topology}"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   359
  assumes "f summable_on A" and "g summable_on B"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   360
  assumes \<open>\<And>x. x \<in> A\<inter>B \<Longrightarrow> f x \<le> g x\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   361
  assumes \<open>\<And>x. x \<in> A-B \<Longrightarrow> f x \<le> 0\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   362
  assumes \<open>\<And>x. x \<in> B-A \<Longrightarrow> g x \<ge> 0\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   363
  shows "infsum f A \<le> infsum g B"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   364
  apply (rule has_sum_mono_neutral[of f A _ g B _])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   365
  using assms apply auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   366
  by (metis finite_subsets_at_top_neq_bot infsum_def summable_on_def has_sum_def tendsto_Lim)+
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   367
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   368
lemma has_sum_mono:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   369
  fixes f :: "'a\<Rightarrow>'b::{ordered_comm_monoid_add,linorder_topology}"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   370
  assumes "has_sum f A x" and "has_sum g A y"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   371
  assumes \<open>\<And>x. x \<in> A \<Longrightarrow> f x \<le> g x\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   372
  shows "x \<le> y"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   373
  apply (rule has_sum_mono_neutral)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   374
  using assms by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   375
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   376
lemma infsum_mono:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   377
  fixes f :: "'a\<Rightarrow>'b::{ordered_comm_monoid_add,linorder_topology}"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   378
  assumes "f summable_on A" and "g summable_on A"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   379
  assumes \<open>\<And>x. x \<in> A \<Longrightarrow> f x \<le> g x\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   380
  shows "infsum f A \<le> infsum g A"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   381
  apply (rule infsum_mono_neutral)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   382
  using assms by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   383
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   384
lemma has_sum_finite[simp]:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   385
  assumes "finite F"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   386
  shows "has_sum f F (sum f F)"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   387
  using assms
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   388
  by (auto intro: tendsto_Lim simp: finite_subsets_at_top_finite infsum_def has_sum_def principal_eq_bot_iff)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   389
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   390
lemma summable_on_finite[simp]:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   391
  fixes f :: \<open>'a \<Rightarrow> 'b::{comm_monoid_add,topological_space}\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   392
  assumes "finite F"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   393
  shows "f summable_on F"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   394
  using assms summable_on_def has_sum_finite by blast
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   395
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   396
lemma infsum_finite[simp]:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   397
  assumes "finite F"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   398
  shows "infsum f F = sum f F"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   399
  using assms by (auto intro: tendsto_Lim simp: finite_subsets_at_top_finite infsum_def principal_eq_bot_iff)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   400
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   401
lemma has_sum_finite_approximation:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   402
  fixes f :: "'a \<Rightarrow> 'b::{comm_monoid_add,metric_space}"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   403
  assumes "has_sum f A x" and "\<epsilon> > 0"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   404
  shows "\<exists>F. finite F \<and> F \<subseteq> A \<and> dist (sum f F) x \<le> \<epsilon>"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   405
proof -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   406
  have "(sum f \<longlongrightarrow> x) (finite_subsets_at_top A)"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   407
    by (meson assms(1) has_sum_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   408
  hence *: "\<forall>\<^sub>F F in (finite_subsets_at_top A). dist (sum f F) x < \<epsilon>"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   409
    using assms(2) by (rule tendstoD)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   410
  show ?thesis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   411
    by (smt (verit) * eventually_finite_subsets_at_top order_refl)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   412
qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   413
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   414
lemma infsum_finite_approximation:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   415
  fixes f :: "'a \<Rightarrow> 'b::{comm_monoid_add,metric_space}"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   416
  assumes "f summable_on A" and "\<epsilon> > 0"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   417
  shows "\<exists>F. finite F \<and> F \<subseteq> A \<and> dist (sum f F) (infsum f A) \<le> \<epsilon>"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   418
  by (metis assms(1) assms(2) finite_subsets_at_top_neq_bot infsum_def summable_on_def has_sum_finite_approximation has_sum_def tendsto_Lim)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   419
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   420
lemma abs_summable_summable:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   421
  fixes f :: \<open>'a \<Rightarrow> 'b :: banach\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   422
  assumes \<open>f abs_summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   423
  shows \<open>f summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   424
proof -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   425
  from assms obtain L where lim: \<open>(sum (\<lambda>x. norm (f x)) \<longlongrightarrow> L) (finite_subsets_at_top A)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   426
    unfolding has_sum_def summable_on_def by blast
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   427
  then have *: \<open>cauchy_filter (filtermap (sum (\<lambda>x. norm (f x))) (finite_subsets_at_top A))\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   428
    by (auto intro!: nhds_imp_cauchy_filter simp: filterlim_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   429
  have \<open>\<exists>P. eventually P (finite_subsets_at_top A) \<and>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   430
              (\<forall>F F'. P F \<and> P F' \<longrightarrow> dist (sum f F) (sum f F') < e)\<close> if \<open>e>0\<close> for e
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   431
  proof -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   432
    define d P where \<open>d = e/4\<close> and \<open>P F \<longleftrightarrow> finite F \<and> F \<subseteq> A \<and> dist (sum (\<lambda>x. norm (f x)) F) L < d\<close> for F
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   433
    then have \<open>d > 0\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   434
      by (simp add: d_def that)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   435
    have ev_P: \<open>eventually P (finite_subsets_at_top A)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   436
      using lim
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   437
      by (auto simp add: P_def[abs_def] \<open>0 < d\<close> eventually_conj_iff eventually_finite_subsets_at_top_weakI tendsto_iff)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   438
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   439
    moreover have \<open>dist (sum f F1) (sum f F2) < e\<close> if \<open>P F1\<close> and \<open>P F2\<close> for F1 F2
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   440
    proof -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   441
      from ev_P
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   442
      obtain F' where \<open>finite F'\<close> and \<open>F' \<subseteq> A\<close> and P_sup_F': \<open>finite F \<and> F \<supseteq> F' \<and> F \<subseteq> A \<Longrightarrow> P F\<close> for F
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   443
        apply atomize_elim by (simp add: eventually_finite_subsets_at_top)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   444
      define F where \<open>F = F' \<union> F1 \<union> F2\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   445
      have \<open>finite F\<close> and \<open>F \<subseteq> A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   446
        using F_def P_def[abs_def] that \<open>finite F'\<close> \<open>F' \<subseteq> A\<close> by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   447
      have dist_F: \<open>dist (sum (\<lambda>x. norm (f x)) F) L < d\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   448
        by (metis F_def \<open>F \<subseteq> A\<close> P_def P_sup_F' \<open>finite F\<close> le_supE order_refl)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   449
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   450
      from dist_F have \<open>dist (sum (\<lambda>x. norm (f x)) F) (sum (\<lambda>x. norm (f x)) F2) < 2*d\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   451
        by (smt (z3) P_def dist_norm real_norm_def that(2))
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   452
      then have \<open>norm (sum (\<lambda>x. norm (f x)) (F-F2)) < 2*d\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   453
        unfolding dist_norm
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   454
        by (metis F_def \<open>finite F\<close> sum_diff sup_commute sup_ge1)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   455
      then have \<open>norm (sum f (F-F2)) < 2*d\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   456
        by (smt (verit, ccfv_threshold) real_norm_def sum_norm_le)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   457
      then have dist_F_F2: \<open>dist (sum f F) (sum f F2) < 2*d\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   458
        by (metis F_def \<open>finite F\<close> dist_norm sum_diff sup_commute sup_ge1)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   459
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   460
      from dist_F have \<open>dist (sum (\<lambda>x. norm (f x)) F) (sum (\<lambda>x. norm (f x)) F1) < 2*d\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   461
        by (smt (z3) P_def dist_norm real_norm_def that(1))
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   462
      then have \<open>norm (sum (\<lambda>x. norm (f x)) (F-F1)) < 2*d\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   463
        unfolding dist_norm
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   464
        by (metis F_def \<open>finite F\<close> inf_sup_ord(3) order_trans sum_diff sup_ge2)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   465
      then have \<open>norm (sum f (F-F1)) < 2*d\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   466
        by (smt (verit, ccfv_threshold) real_norm_def sum_norm_le)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   467
      then have dist_F_F1: \<open>dist (sum f F) (sum f F1) < 2*d\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   468
        by (metis F_def \<open>finite F\<close> dist_norm inf_sup_ord(3) le_supE sum_diff)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   469
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   470
      from dist_F_F2 dist_F_F1 show \<open>dist (sum f F1) (sum f F2) < e\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   471
        unfolding d_def apply auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   472
        by (meson dist_triangle_half_r less_divide_eq_numeral1(1))
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   473
    qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   474
    then show ?thesis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   475
      using ev_P by blast
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   476
  qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   477
  then have \<open>cauchy_filter (filtermap (sum f) (finite_subsets_at_top A))\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   478
    by (simp add: cauchy_filter_metric_filtermap)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   479
  then obtain L' where \<open>(sum f \<longlongrightarrow> L') (finite_subsets_at_top A)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   480
    apply atomize_elim unfolding filterlim_def
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   481
    apply (rule complete_uniform[where S=UNIV, simplified, THEN iffD1, rule_format])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   482
      apply (auto simp add: filtermap_bot_iff)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   483
    by (meson Cauchy_convergent UNIV_I complete_def convergent_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   484
  then show ?thesis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   485
    using summable_on_def has_sum_def by blast
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   486
qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   487
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   488
text \<open>The converse of @{thm [source] abs_summable_summable} does not hold:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   489
  Consider the Hilbert space of square-summable sequences.
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   490
  Let $e_i$ denote the sequence with 1 in the $i$th position and 0 elsewhere.
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   491
  Let $f(i) := e_i/i$ for $i\geq1$. We have \<^term>\<open>\<not> f abs_summable_on UNIV\<close> because $\lVert f(i)\rVert=1/i$
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   492
  and thus the sum over $\lVert f(i)\rVert$ diverges. On the other hand, we have \<^term>\<open>f summable_on UNIV\<close>;
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   493
  the limit is the sequence with $1/i$ in the $i$th position.
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   494
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   495
  (We have not formalized this separating example here because to the best of our knowledge,
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   496
  this Hilbert space has not been formalized in Isabelle/HOL yet.)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   497
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   498
lemma norm_has_sum_bound:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   499
  fixes f :: "'b \<Rightarrow> 'a::real_normed_vector"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   500
    and A :: "'b set"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   501
  assumes "has_sum (\<lambda>x. norm (f x)) A n"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   502
  assumes "has_sum f A a"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   503
  shows "norm a \<le> n"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   504
proof -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   505
  have "norm a \<le> n + \<epsilon>" if "\<epsilon>>0" for \<epsilon>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   506
  proof-
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   507
    have "\<exists>F. norm (a - sum f F) \<le> \<epsilon> \<and> finite F \<and> F \<subseteq> A"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   508
      using has_sum_finite_approximation[where A=A and f=f and \<epsilon>="\<epsilon>"] assms \<open>0 < \<epsilon>\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   509
      by (metis dist_commute dist_norm)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   510
    then obtain F where "norm (a - sum f F) \<le> \<epsilon>"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   511
      and "finite F" and "F \<subseteq> A"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   512
      by (simp add: atomize_elim)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   513
    hence "norm a \<le> norm (sum f F) + \<epsilon>"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   514
      by (smt norm_triangle_sub)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   515
    also have "\<dots> \<le> sum (\<lambda>x. norm (f x)) F + \<epsilon>"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   516
      using norm_sum by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   517
    also have "\<dots> \<le> n + \<epsilon>"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   518
      apply (rule add_right_mono)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   519
      apply (rule has_sum_mono_neutral[where A=F and B=A and f=\<open>\<lambda>x. norm (f x)\<close> and g=\<open>\<lambda>x. norm (f x)\<close>])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   520
      using \<open>finite F\<close> \<open>F \<subseteq> A\<close> assms by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   521
    finally show ?thesis 
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   522
      by assumption
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   523
  qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   524
  thus ?thesis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   525
    using linordered_field_class.field_le_epsilon by blast
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   526
qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   527
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   528
lemma norm_infsum_bound:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   529
  fixes f :: "'b \<Rightarrow> 'a::real_normed_vector"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   530
    and A :: "'b set"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   531
  assumes "f abs_summable_on A"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   532
  shows "norm (infsum f A) \<le> infsum (\<lambda>x. norm (f x)) A"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   533
proof (cases "f summable_on A")
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   534
  case True
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   535
  show ?thesis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   536
    apply (rule norm_has_sum_bound[where A=A and f=f and a=\<open>infsum f A\<close> and n=\<open>infsum (\<lambda>x. norm (f x)) A\<close>])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   537
    using assms True
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   538
    by (metis finite_subsets_at_top_neq_bot infsum_def summable_on_def has_sum_def tendsto_Lim)+
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   539
next
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   540
  case False
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   541
  obtain t where t_def: "(sum (\<lambda>x. norm (f x)) \<longlongrightarrow> t) (finite_subsets_at_top A)"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   542
    using assms unfolding summable_on_def has_sum_def by blast
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   543
  have sumpos: "sum (\<lambda>x. norm (f x)) X \<ge> 0"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   544
    for X
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   545
    by (simp add: sum_nonneg)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   546
  have tgeq0:"t \<ge> 0"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   547
  proof(rule ccontr)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   548
    define S::"real set" where "S = {s. s < 0}"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   549
    assume "\<not> 0 \<le> t"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   550
    hence "t < 0" by simp
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   551
    hence "t \<in> S"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   552
      unfolding S_def by blast
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   553
    moreover have "open S"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   554
    proof-
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   555
      have "closed {s::real. s \<ge> 0}"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   556
        using Elementary_Topology.closed_sequential_limits[where S = "{s::real. s \<ge> 0}"]
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   557
        by (metis Lim_bounded2 mem_Collect_eq)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   558
      moreover have "{s::real. s \<ge> 0} = UNIV - S"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   559
        unfolding S_def by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   560
      ultimately have "closed (UNIV - S)"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   561
        by simp
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   562
      thus ?thesis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   563
        by (simp add: Compl_eq_Diff_UNIV open_closed) 
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   564
    qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   565
    ultimately have "\<forall>\<^sub>F X in finite_subsets_at_top A. (\<Sum>x\<in>X. norm (f x)) \<in> S"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   566
      using t_def unfolding tendsto_def by blast
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   567
    hence "\<exists>X. (\<Sum>x\<in>X. norm (f x)) \<in> S"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   568
      by (metis (no_types, lifting) eventually_mono filterlim_iff finite_subsets_at_top_neq_bot tendsto_Lim)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   569
    then obtain X where "(\<Sum>x\<in>X. norm (f x)) \<in> S"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   570
      by blast
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   571
    hence "(\<Sum>x\<in>X. norm (f x)) < 0"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   572
      unfolding S_def by auto      
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   573
    thus False using sumpos by smt
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   574
  qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   575
  have "\<exists>!h. (sum (\<lambda>x. norm (f x)) \<longlongrightarrow> h) (finite_subsets_at_top A)"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   576
    using t_def finite_subsets_at_top_neq_bot tendsto_unique by blast
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   577
  hence "t = (Topological_Spaces.Lim (finite_subsets_at_top A) (sum (\<lambda>x. norm (f x))))"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   578
    using t_def unfolding Topological_Spaces.Lim_def
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   579
    by (metis the_equality)     
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   580
  hence "Lim (finite_subsets_at_top A) (sum (\<lambda>x. norm (f x))) \<ge> 0"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   581
    using tgeq0 by blast
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   582
  thus ?thesis unfolding infsum_def 
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   583
    using False by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   584
qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   585
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   586
lemma has_sum_infsum[simp]:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   587
  assumes \<open>f summable_on S\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   588
  shows \<open>has_sum f S (infsum f S)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   589
  using assms by (auto simp: summable_on_def infsum_def has_sum_def tendsto_Lim)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   590
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   591
lemma infsum_tendsto:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   592
  assumes \<open>f summable_on S\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   593
  shows \<open>((\<lambda>F. sum f F) \<longlongrightarrow> infsum f S) (finite_subsets_at_top S)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   594
  using assms by (simp flip: has_sum_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   595
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   596
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   597
lemma has_sum_0: 
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   598
  assumes \<open>\<And>x. x\<in>M \<Longrightarrow> f x = 0\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   599
  shows \<open>has_sum f M 0\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   600
  unfolding has_sum_def
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   601
  apply (subst tendsto_cong[where g=\<open>\<lambda>_. 0\<close>])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   602
   apply (rule eventually_finite_subsets_at_top_weakI)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   603
  using assms by (auto simp add: subset_iff)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   604
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   605
lemma summable_on_0:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   606
  assumes \<open>\<And>x. x\<in>M \<Longrightarrow> f x = 0\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   607
  shows \<open>f summable_on M\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   608
  using assms summable_on_def has_sum_0 by blast
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   609
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   610
lemma infsum_0:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   611
  assumes \<open>\<And>x. x\<in>M \<Longrightarrow> f x = 0\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   612
  shows \<open>infsum f M = 0\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   613
  by (metis assms finite_subsets_at_top_neq_bot infsum_def has_sum_0 has_sum_def tendsto_Lim)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   614
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   615
text \<open>Variants of @{thm [source] infsum_0} etc. suitable as simp-rules\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   616
lemma infsum_0_simp[simp]: \<open>infsum (\<lambda>_. 0) M = 0\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   617
  by (simp_all add: infsum_0)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   618
lemma summable_on_0_simp[simp]: \<open>(\<lambda>_. 0) summable_on M\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   619
  by (simp_all add: summable_on_0)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   620
lemma has_sum_0_simp[simp]: \<open>has_sum (\<lambda>_. 0) M 0\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   621
  by (simp_all add: has_sum_0)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   622
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   623
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   624
lemma has_sum_add:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   625
  fixes f g :: "'a \<Rightarrow> 'b::{topological_comm_monoid_add}"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   626
  assumes \<open>has_sum f A a\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   627
  assumes \<open>has_sum g A b\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   628
  shows \<open>has_sum (\<lambda>x. f x + g x) A (a + b)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   629
proof -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   630
  from assms have lim_f: \<open>(sum f \<longlongrightarrow> a)  (finite_subsets_at_top A)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   631
    and lim_g: \<open>(sum g \<longlongrightarrow> b)  (finite_subsets_at_top A)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   632
    by (simp_all add: has_sum_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   633
  then have lim: \<open>(sum (\<lambda>x. f x + g x) \<longlongrightarrow> a + b) (finite_subsets_at_top A)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   634
    unfolding sum.distrib by (rule tendsto_add)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   635
  then show ?thesis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   636
    by (simp_all add: has_sum_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   637
qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   638
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   639
lemma summable_on_add:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   640
  fixes f g :: "'a \<Rightarrow> 'b::{topological_comm_monoid_add}"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   641
  assumes \<open>f summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   642
  assumes \<open>g summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   643
  shows \<open>(\<lambda>x. f x + g x) summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   644
  by (metis (full_types) assms(1) assms(2) summable_on_def has_sum_add)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   645
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   646
lemma infsum_add:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   647
  fixes f g :: "'a \<Rightarrow> 'b::{topological_comm_monoid_add, t2_space}"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   648
  assumes \<open>f summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   649
  assumes \<open>g summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   650
  shows \<open>infsum (\<lambda>x. f x + g x) A = infsum f A + infsum g A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   651
proof -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   652
  have \<open>has_sum (\<lambda>x. f x + g x) A (infsum f A + infsum g A)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   653
    by (simp add: assms(1) assms(2) has_sum_add)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   654
  then show ?thesis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   655
    by (smt (z3) finite_subsets_at_top_neq_bot infsum_def summable_on_def has_sum_def tendsto_Lim)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   656
qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   657
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   658
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   659
lemma has_sum_Un_disjoint:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   660
  fixes f :: "'a \<Rightarrow> 'b::topological_comm_monoid_add"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   661
  assumes "has_sum f A a"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   662
  assumes "has_sum f B b"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   663
  assumes disj: "A \<inter> B = {}"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   664
  shows \<open>has_sum f (A \<union> B) (a + b)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   665
proof -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   666
  define fA fB where \<open>fA x = (if x \<in> A then f x else 0)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   667
    and \<open>fB x = (if x \<notin> A then f x else 0)\<close> for x
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   668
  have fA: \<open>has_sum fA (A \<union> B) a\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   669
    apply (subst has_sum_cong_neutral[where T=A and g=f])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   670
    using assms by (auto simp: fA_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   671
  have fB: \<open>has_sum fB (A \<union> B) b\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   672
    apply (subst has_sum_cong_neutral[where T=B and g=f])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   673
    using assms by (auto simp: fB_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   674
  have fAB: \<open>f x = fA x + fB x\<close> for x
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   675
    unfolding fA_def fB_def by simp
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   676
  show ?thesis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   677
    unfolding fAB
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   678
    using fA fB by (rule has_sum_add)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   679
qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   680
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   681
lemma summable_on_Un_disjoint:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   682
  fixes f :: "'a \<Rightarrow> 'b::topological_comm_monoid_add"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   683
  assumes "f summable_on A"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   684
  assumes "f summable_on B"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   685
  assumes disj: "A \<inter> B = {}"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   686
  shows \<open>f summable_on (A \<union> B)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   687
  by (meson assms(1) assms(2) disj summable_on_def has_sum_Un_disjoint)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   688
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   689
lemma infsum_Un_disjoint:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   690
  fixes f :: "'a \<Rightarrow> 'b::{topological_comm_monoid_add, t2_space}"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   691
  assumes "f summable_on A"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   692
  assumes "f summable_on B"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   693
  assumes disj: "A \<inter> B = {}"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   694
  shows \<open>infsum f (A \<union> B) = infsum f A + infsum f B\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   695
  by (smt (verit, ccfv_threshold) assms(1) assms(2) disj finite_subsets_at_top_neq_bot summable_on_def has_sum_Un_disjoint has_sum_def has_sum_infsum tendsto_Lim)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   696
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   697
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   698
text \<open>The following lemma indeed needs a complete space (as formalized by the premise \<^term>\<open>complete UNIV\<close>).
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   699
  The following two counterexamples show this:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   700
  \begin{itemize}
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   701
  \item Consider the real vector space $V$ of sequences with finite support, and with the $\ell_2$-norm (sum of squares).
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   702
      Let $e_i$ denote the sequence with a $1$ at position $i$.
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   703
      Let $f : \mathbb Z \to V$ be defined as $f(n) := e_{\lvert n\rvert} / n$ (with $f(0) := 0$).
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   704
      We have that $\sum_{n\in\mathbb Z} f(n) = 0$ (it even converges absolutely). 
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   705
      But $\sum_{n\in\mathbb N} f(n)$ does not exist (it would converge against a sequence with infinite support).
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   706
  
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   707
  \item Let $f$ be a positive rational valued function such that $\sum_{x\in B} f(x)$ is $\sqrt 2$ and $\sum_{x\in A} f(x)$ is 1 (over the reals, with $A\subseteq B$).
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   708
      Then $\sum_{x\in B} f(x)$ does not exist over the rationals. But $\sum_{x\in A} f(x)$ exists.
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   709
  \end{itemize}
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   710
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   711
  The lemma also requires uniform continuity of the addition. And example of a topological group with continuous 
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   712
  but not uniformly continuous addition would be the positive reals with the usual multiplication as the addition.
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   713
  We do not know whether the lemma would also hold for such topological groups.\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   714
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   715
lemma summable_on_subset:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   716
  fixes A B and f :: \<open>'a \<Rightarrow> 'b::{ab_group_add, uniform_space}\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   717
  assumes \<open>complete (UNIV :: 'b set)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   718
  assumes plus_cont: \<open>uniformly_continuous_on UNIV (\<lambda>(x::'b,y). x+y)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   719
  assumes \<open>f summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   720
  assumes \<open>B \<subseteq> A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   721
  shows \<open>f summable_on B\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   722
proof -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   723
  from \<open>f summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   724
  obtain S where \<open>(sum f \<longlongrightarrow> S) (finite_subsets_at_top A)\<close> (is \<open>(sum f \<longlongrightarrow> S) ?filter_A\<close>)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   725
    using summable_on_def has_sum_def by blast
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   726
  then have cauchy_fA: \<open>cauchy_filter (filtermap (sum f) (finite_subsets_at_top A))\<close> (is \<open>cauchy_filter ?filter_fA\<close>)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   727
    by (auto intro!: nhds_imp_cauchy_filter simp: filterlim_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   728
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   729
  let ?filter_fB = \<open>filtermap (sum f) (finite_subsets_at_top B)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   730
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   731
  have \<open>cauchy_filter (filtermap (sum f) (finite_subsets_at_top B))\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   732
  proof (unfold cauchy_filter_def, rule filter_leI)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   733
    fix E :: \<open>('b\<times>'b) \<Rightarrow> bool\<close> assume \<open>eventually E uniformity\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   734
    then obtain E' where \<open>eventually E' uniformity\<close> and E'E'E: \<open>E' (x, y) \<longrightarrow> E' (y, z) \<longrightarrow> E (x, z)\<close> for x y z
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   735
      using uniformity_trans by blast
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   736
    from plus_cont[simplified uniformly_continuous_on_uniformity filterlim_def le_filter_def, rule_format, 
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   737
                   OF \<open>eventually E' uniformity\<close>]
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   738
    obtain D where \<open>eventually D uniformity\<close> and DE: \<open>D (x, y) \<Longrightarrow> E' (x+c, y+c)\<close> for x y c
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   739
      apply atomize_elim
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   740
      by (auto simp: case_prod_beta eventually_filtermap uniformity_prod_def 
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   741
        eventually_prod_same uniformity_refl)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   742
    with cauchy_fA have \<open>eventually D (?filter_fA \<times>\<^sub>F ?filter_fA)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   743
      unfolding cauchy_filter_def le_filter_def by simp
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   744
    then obtain P1 P2 where ev_P1: \<open>eventually (\<lambda>F. P1 (sum f F)) ?filter_A\<close> and ev_P2: \<open>eventually (\<lambda>F. P2 (sum f F)) ?filter_A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   745
      and P1P2E: \<open>P1 x \<Longrightarrow> P2 y \<Longrightarrow> D (x, y)\<close> for x y
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   746
      unfolding eventually_prod_filter eventually_filtermap
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   747
      by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   748
    from ev_P1 obtain F1 where \<open>finite F1\<close> and \<open>F1 \<subseteq> A\<close> and \<open>\<forall>F. F\<supseteq>F1 \<and> finite F \<and> F\<subseteq>A \<longrightarrow> P1 (sum f F)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   749
      by (metis eventually_finite_subsets_at_top)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   750
    from ev_P2 obtain F2 where \<open>finite F2\<close> and \<open>F2 \<subseteq> A\<close> and \<open>\<forall>F. F\<supseteq>F2 \<and> finite F \<and> F\<subseteq>A \<longrightarrow> P2 (sum f F)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   751
      by (metis eventually_finite_subsets_at_top)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   752
    define F0 F0A F0B where \<open>F0 \<equiv> F1 \<union> F2\<close> and \<open>F0A \<equiv> F0 - B\<close> and \<open>F0B \<equiv> F0 \<inter> B\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   753
    have [simp]: \<open>finite F0\<close>  \<open>F0 \<subseteq> A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   754
       apply (simp add: F0_def \<open>finite F1\<close> \<open>finite F2\<close>)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   755
      by (simp add: F0_def \<open>F1 \<subseteq> A\<close> \<open>F2 \<subseteq> A\<close>)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   756
    have [simp]: \<open>finite F0A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   757
      by (simp add: F0A_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   758
    have \<open>\<forall>F1 F2. F1\<supseteq>F0 \<and> F2\<supseteq>F0 \<and> finite F1 \<and> finite F2 \<and> F1\<subseteq>A \<and> F2\<subseteq>A \<longrightarrow> D (sum f F1, sum f F2)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   759
      by (simp add: F0_def P1P2E \<open>\<forall>F. F1 \<subseteq> F \<and> finite F \<and> F \<subseteq> A \<longrightarrow> P1 (sum f F)\<close> \<open>\<forall>F. F2 \<subseteq> F \<and> finite F \<and> F \<subseteq> A \<longrightarrow> P2 (sum f F)\<close>)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   760
    then have \<open>\<forall>F1 F2. F1\<supseteq>F0B \<and> F2\<supseteq>F0B \<and> finite F1 \<and> finite F2 \<and> F1\<subseteq>B \<and> F2\<subseteq>B \<longrightarrow> 
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   761
              D (sum f (F1 \<union> F0A), sum f (F2 \<union> F0A))\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   762
      by (smt (verit) Diff_Diff_Int Diff_subset_conv F0A_def F0B_def \<open>F0 \<subseteq> A\<close> \<open>finite F0A\<close> assms(4) finite_UnI sup.absorb_iff1 sup.mono sup_commute)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   763
    then have \<open>\<forall>F1 F2. F1\<supseteq>F0B \<and> F2\<supseteq>F0B \<and> finite F1 \<and> finite F2 \<and> F1\<subseteq>B \<and> F2\<subseteq>B \<longrightarrow> 
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   764
              D (sum f F1 + sum f F0A, sum f F2 + sum f F0A)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   765
      by (metis Diff_disjoint F0A_def \<open>finite F0A\<close> inf.absorb_iff1 inf_assoc inf_bot_right sum.union_disjoint)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   766
    then have *: \<open>\<forall>F1 F2. F1\<supseteq>F0B \<and> F2\<supseteq>F0B \<and> finite F1 \<and> finite F2 \<and> F1\<subseteq>B \<and> F2\<subseteq>B \<longrightarrow> 
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   767
              E' (sum f F1, sum f F2)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   768
      using DE[where c=\<open>- sum f F0A\<close>]
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   769
      apply auto by (metis add.commute add_diff_cancel_left')
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   770
    show \<open>eventually E (?filter_fB \<times>\<^sub>F ?filter_fB)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   771
      apply (subst eventually_prod_filter)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   772
      apply (rule exI[of _ \<open>\<lambda>x. E' (x, sum f F0B)\<close>])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   773
      apply (rule exI[of _ \<open>\<lambda>x. E' (sum f F0B, x)\<close>])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   774
      apply (auto simp: eventually_filtermap)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   775
      using * apply (metis (no_types, lifting) F0B_def Int_lower2 \<open>finite F0\<close> eventually_finite_subsets_at_top finite_Int order_refl)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   776
      using * apply (metis (no_types, lifting) F0B_def Int_lower2 \<open>finite F0\<close> eventually_finite_subsets_at_top finite_Int order_refl)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   777
      using E'E'E by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   778
  qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   779
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   780
  then obtain x where \<open>filtermap (sum f) (finite_subsets_at_top B) \<le> nhds x\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   781
    apply atomize_elim
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   782
    apply (rule complete_uniform[where S=UNIV, THEN iffD1, rule_format, simplified])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   783
    using assms by (auto simp add: filtermap_bot_iff)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   784
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   785
  then have \<open>(sum f \<longlongrightarrow> x) (finite_subsets_at_top B)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   786
    by (auto simp: filterlim_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   787
  then show ?thesis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   788
    by (auto simp: summable_on_def has_sum_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   789
qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   790
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   791
text \<open>A special case of @{thm [source] summable_on_subset} for Banach spaces with less premises.\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   792
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   793
lemma summable_on_subset_banach:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   794
  fixes A B and f :: \<open>'a \<Rightarrow> 'b::banach\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   795
  assumes \<open>f summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   796
  assumes \<open>B \<subseteq> A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   797
  shows \<open>f summable_on B\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   798
  apply (rule summable_on_subset)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   799
  using assms apply auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   800
  by (metis Cauchy_convergent UNIV_I complete_def convergent_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   801
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   802
lemma has_sum_empty[simp]: \<open>has_sum f {} 0\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   803
  by (meson ex_in_conv has_sum_0)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   804
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   805
lemma summable_on_empty[simp]: \<open>f summable_on {}\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   806
  by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   807
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   808
lemma infsum_empty[simp]: \<open>infsum f {} = 0\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   809
  by simp
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   810
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   811
lemma sum_has_sum:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   812
  fixes f :: "'a \<Rightarrow> 'b::topological_comm_monoid_add"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   813
  assumes finite: \<open>finite A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   814
  assumes conv: \<open>\<And>a. a \<in> A \<Longrightarrow> has_sum f (B a) (s a)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   815
  assumes disj: \<open>\<And>a a'. a\<in>A \<Longrightarrow> a'\<in>A \<Longrightarrow> a\<noteq>a' \<Longrightarrow> B a \<inter> B a' = {}\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   816
  shows \<open>has_sum f (\<Union>a\<in>A. B a) (sum s A)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   817
  using assms
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   818
proof (insert finite conv disj, induction)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   819
  case empty
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   820
  then show ?case 
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   821
    by simp
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   822
next
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   823
  case (insert x A)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   824
  have \<open>has_sum f (B x) (s x)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   825
    by (simp add: insert.prems)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   826
  moreover have IH: \<open>has_sum f (\<Union>a\<in>A. B a) (sum s A)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   827
    using insert by simp
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   828
  ultimately have \<open>has_sum f (B x \<union> (\<Union>a\<in>A. B a)) (s x + sum s A)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   829
    apply (rule has_sum_Un_disjoint)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   830
    using insert by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   831
  then show ?case
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   832
    using insert.hyps by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   833
qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   834
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   835
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   836
lemma summable_on_finite_union_disjoint:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   837
  fixes f :: "'a \<Rightarrow> 'b::topological_comm_monoid_add"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   838
  assumes finite: \<open>finite A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   839
  assumes conv: \<open>\<And>a. a \<in> A \<Longrightarrow> f summable_on (B a)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   840
  assumes disj: \<open>\<And>a a'. a\<in>A \<Longrightarrow> a'\<in>A \<Longrightarrow> a\<noteq>a' \<Longrightarrow> B a \<inter> B a' = {}\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   841
  shows \<open>f summable_on (\<Union>a\<in>A. B a)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   842
  using finite conv disj apply induction by (auto intro!: summable_on_Un_disjoint)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   843
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   844
lemma sum_infsum:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   845
  fixes f :: "'a \<Rightarrow> 'b::{topological_comm_monoid_add, t2_space}"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   846
  assumes finite: \<open>finite A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   847
  assumes conv: \<open>\<And>a. a \<in> A \<Longrightarrow> f summable_on (B a)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   848
  assumes disj: \<open>\<And>a a'. a\<in>A \<Longrightarrow> a'\<in>A \<Longrightarrow> a\<noteq>a' \<Longrightarrow> B a \<inter> B a' = {}\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   849
  shows \<open>sum (\<lambda>a. infsum f (B a)) A = infsum f (\<Union>a\<in>A. B a)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   850
  using sum_has_sum[of A f B \<open>\<lambda>a. infsum f (B a)\<close>]
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   851
  using assms apply auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   852
  by (metis finite_subsets_at_top_neq_bot infsum_def summable_on_def has_sum_def tendsto_Lim)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   853
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   854
text \<open>The lemmas \<open>infsum_comm_additive_general\<close> and \<open>infsum_comm_additive\<close> (and variants) below both state that the infinite sum commutes with
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   855
  a continuous additive function. \<open>infsum_comm_additive_general\<close> is stated more for more general type classes
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   856
  at the expense of a somewhat less compact formulation of the premises.
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   857
  E.g., by avoiding the constant \<^const>\<open>additive\<close> which introduces an additional sort constraint
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   858
  (group instead of monoid). For example, extended reals (\<^typ>\<open>ereal\<close>, \<^typ>\<open>ennreal\<close>) are not covered
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   859
  by \<open>infsum_comm_additive\<close>.\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   860
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   861
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   862
lemma has_sum_comm_additive_general: 
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   863
  fixes f :: \<open>'b :: {comm_monoid_add,topological_space} \<Rightarrow> 'c :: {comm_monoid_add,topological_space}\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   864
  assumes f_sum: \<open>\<And>F. finite F \<Longrightarrow> F \<subseteq> S \<Longrightarrow> sum (f o g) F = f (sum g F)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   865
      \<comment> \<open>Not using \<^const>\<open>additive\<close> because it would add sort constraint \<^class>\<open>ab_group_add\<close>\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   866
  assumes cont: \<open>f \<midarrow>x\<rightarrow> f x\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   867
    \<comment> \<open>For \<^class>\<open>t2_space\<close>, this is equivalent to \<open>isCont f x\<close> by @{thm [source] isCont_def}.\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   868
  assumes infsum: \<open>has_sum g S x\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   869
  shows \<open>has_sum (f o g) S (f x)\<close> 
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   870
proof -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   871
  have \<open>(sum g \<longlongrightarrow> x) (finite_subsets_at_top S)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   872
    using infsum has_sum_def by blast
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   873
  then have \<open>((f o sum g) \<longlongrightarrow> f x) (finite_subsets_at_top S)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   874
    apply (rule tendsto_compose_at)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   875
    using assms by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   876
  then have \<open>(sum (f o g) \<longlongrightarrow> f x) (finite_subsets_at_top S)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   877
    apply (rule tendsto_cong[THEN iffD1, rotated])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   878
    using f_sum by fastforce
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   879
  then show \<open>has_sum (f o g) S (f x)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   880
    using has_sum_def by blast 
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   881
qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   882
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   883
lemma summable_on_comm_additive_general:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   884
  fixes f :: \<open>'b :: {comm_monoid_add,topological_space} \<Rightarrow> 'c :: {comm_monoid_add,topological_space}\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   885
  assumes \<open>\<And>F. finite F \<Longrightarrow> F \<subseteq> S \<Longrightarrow> sum (f o g) F = f (sum g F)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   886
    \<comment> \<open>Not using \<^const>\<open>additive\<close> because it would add sort constraint \<^class>\<open>ab_group_add\<close>\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   887
  assumes \<open>\<And>x. has_sum g S x \<Longrightarrow> f \<midarrow>x\<rightarrow> f x\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   888
    \<comment> \<open>For \<^class>\<open>t2_space\<close>, this is equivalent to \<open>isCont f x\<close> by @{thm [source] isCont_def}.\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   889
  assumes \<open>g summable_on S\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   890
  shows \<open>(f o g) summable_on S\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   891
  by (meson assms summable_on_def has_sum_comm_additive_general has_sum_def infsum_tendsto)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   892
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   893
lemma infsum_comm_additive_general:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   894
  fixes f :: \<open>'b :: {comm_monoid_add,t2_space} \<Rightarrow> 'c :: {comm_monoid_add,t2_space}\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   895
  assumes f_sum: \<open>\<And>F. finite F \<Longrightarrow> F \<subseteq> S \<Longrightarrow> sum (f o g) F = f (sum g F)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   896
      \<comment> \<open>Not using \<^const>\<open>additive\<close> because it would add sort constraint \<^class>\<open>ab_group_add\<close>\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   897
  assumes \<open>isCont f (infsum g S)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   898
  assumes \<open>g summable_on S\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   899
  shows \<open>infsum (f o g) S = f (infsum g S)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   900
  by (smt (verit) assms(2) assms(3) continuous_within f_sum finite_subsets_at_top_neq_bot summable_on_comm_additive_general has_sum_comm_additive_general has_sum_def has_sum_infsum tendsto_Lim)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   901
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   902
lemma has_sum_comm_additive: 
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   903
  fixes f :: \<open>'b :: {ab_group_add,topological_space} \<Rightarrow> 'c :: {ab_group_add,topological_space}\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   904
  assumes \<open>additive f\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   905
  assumes \<open>f \<midarrow>x\<rightarrow> f x\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   906
    \<comment> \<open>For \<^class>\<open>t2_space\<close>, this is equivalent to \<open>isCont f x\<close> by @{thm [source] isCont_def}.\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   907
  assumes infsum: \<open>has_sum g S x\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   908
  shows \<open>has_sum (f o g) S (f x)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   909
  by (smt (verit, best) additive.sum assms(1) assms(2) comp_eq_dest_lhs continuous_within finite_subsets_at_top_neq_bot infsum summable_on_def has_sum_comm_additive_general has_sum_def has_sum_infsum sum.cong tendsto_Lim) 
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   910
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   911
lemma summable_on_comm_additive:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   912
  fixes f :: \<open>'b :: {ab_group_add,t2_space} \<Rightarrow> 'c :: {ab_group_add,topological_space}\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   913
  assumes \<open>additive f\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   914
  assumes \<open>isCont f (infsum g S)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   915
  assumes \<open>g summable_on S\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   916
  shows \<open>(f o g) summable_on S\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   917
  by (meson assms(1) assms(2) assms(3) summable_on_def has_sum_comm_additive has_sum_infsum isContD)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   918
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   919
lemma infsum_comm_additive:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   920
  fixes f :: \<open>'b :: {ab_group_add,t2_space} \<Rightarrow> 'c :: {ab_group_add,t2_space}\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   921
  assumes \<open>additive f\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   922
  assumes \<open>isCont f (infsum g S)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   923
  assumes \<open>g summable_on S\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   924
  shows \<open>infsum (f o g) S = f (infsum g S)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   925
  by (rule infsum_comm_additive_general; auto simp: assms additive.sum)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   926
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   927
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   928
lemma pos_has_sum:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   929
  fixes f :: \<open>'a \<Rightarrow> 'b :: {conditionally_complete_linorder, ordered_comm_monoid_add, linorder_topology}\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   930
  assumes \<open>\<And>x. x\<in>A \<Longrightarrow> f x \<ge> 0\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   931
  assumes \<open>bdd_above (sum f ` {F. F\<subseteq>A \<and> finite F})\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   932
  shows \<open>has_sum f A (SUP F\<in>{F. finite F \<and> F\<subseteq>A}. sum f F)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   933
proof -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   934
  have \<open>(sum f \<longlongrightarrow> (SUP F\<in>{F. finite F \<and> F\<subseteq>A}. sum f F)) (finite_subsets_at_top A)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   935
  proof (rule order_tendstoI)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   936
    fix a assume \<open>a < (SUP F\<in>{F. finite F \<and> F\<subseteq>A}. sum f F)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   937
    then obtain F where \<open>a < sum f F\<close> and \<open>finite F\<close> and \<open>F \<subseteq> A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   938
      by (metis (mono_tags, lifting) Collect_cong Collect_empty_eq assms(2) empty_subsetI finite.emptyI less_cSUP_iff mem_Collect_eq)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   939
    show \<open>\<forall>\<^sub>F x in finite_subsets_at_top A. a < sum f x\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   940
      unfolding eventually_finite_subsets_at_top
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   941
      apply (rule exI[of _ F])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   942
      using \<open>a < sum f F\<close> and \<open>finite F\<close> and \<open>F \<subseteq> A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   943
      apply auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   944
      by (smt (verit, best) Diff_iff assms(1) less_le_trans subset_iff sum_mono2)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   945
  next
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   946
    fix a assume \<open>(SUP F\<in>{F. finite F \<and> F\<subseteq>A}. sum f F) < a\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   947
    then have \<open>sum f F < a\<close> if \<open>F\<subseteq>A\<close> and \<open>finite F\<close> for F
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   948
      by (smt (verit, best) Collect_cong antisym_conv assms(2) cSUP_upper dual_order.trans le_less_linear less_le mem_Collect_eq that(1) that(2))
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   949
    then show \<open>\<forall>\<^sub>F x in finite_subsets_at_top A. sum f x < a\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   950
      by (rule eventually_finite_subsets_at_top_weakI)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   951
  qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   952
  then show ?thesis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   953
    using has_sum_def by blast
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   954
qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   955
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   956
lemma pos_summable_on:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   957
  fixes f :: \<open>'a \<Rightarrow> 'b :: {conditionally_complete_linorder, ordered_comm_monoid_add, linorder_topology}\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   958
  assumes \<open>\<And>x. x\<in>A \<Longrightarrow> f x \<ge> 0\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   959
  assumes \<open>bdd_above (sum f ` {F. F\<subseteq>A \<and> finite F})\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   960
  shows \<open>f summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   961
  using assms(1) assms(2) summable_on_def pos_has_sum by blast
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   962
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   963
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   964
lemma pos_infsum:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   965
  fixes f :: \<open>'a \<Rightarrow> 'b :: {conditionally_complete_linorder, ordered_comm_monoid_add, linorder_topology}\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   966
  assumes \<open>\<And>x. x\<in>A \<Longrightarrow> f x \<ge> 0\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   967
  assumes \<open>bdd_above (sum f ` {F. F\<subseteq>A \<and> finite F})\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   968
  shows \<open>infsum f A = (SUP F\<in>{F. finite F \<and> F\<subseteq>A}. sum f F)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   969
  using assms by (auto intro!: infsumI pos_has_sum)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   970
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   971
lemma pos_has_sum_complete:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   972
  fixes f :: \<open>'a \<Rightarrow> 'b :: {complete_linorder, ordered_comm_monoid_add, linorder_topology}\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   973
  assumes \<open>\<And>x. x\<in>A \<Longrightarrow> f x \<ge> 0\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   974
  shows \<open>has_sum f A (SUP F\<in>{F. finite F \<and> F\<subseteq>A}. sum f F)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   975
  using assms pos_has_sum by blast
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   976
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   977
lemma pos_summable_on_complete:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   978
  fixes f :: \<open>'a \<Rightarrow> 'b :: {complete_linorder, ordered_comm_monoid_add, linorder_topology}\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   979
  assumes \<open>\<And>x. x\<in>A \<Longrightarrow> f x \<ge> 0\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   980
  shows \<open>f summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   981
  using assms pos_summable_on by blast
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   982
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   983
lemma pos_infsum_complete:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   984
  fixes f :: \<open>'a \<Rightarrow> 'b :: {complete_linorder, ordered_comm_monoid_add, linorder_topology}\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   985
  assumes \<open>\<And>x. x\<in>A \<Longrightarrow> f x \<ge> 0\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   986
  shows \<open>infsum f A = (SUP F\<in>{F. finite F \<and> F\<subseteq>A}. sum f F)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   987
  using assms pos_infsum by blast
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   988
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   989
lemma has_sum_nonneg:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   990
  fixes f :: "'a \<Rightarrow> 'b::{ordered_comm_monoid_add,linorder_topology}"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   991
  assumes "has_sum f M a"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   992
    and "\<And>x. x \<in> M \<Longrightarrow> 0 \<le> f x"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   993
  shows "a \<ge> 0"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   994
  by (metis (no_types, lifting) DiffD1 assms(1) assms(2) empty_iff has_sum_0 has_sum_mono_neutral order_refl)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   995
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   996
lemma infsum_nonneg:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   997
  fixes f :: "'a \<Rightarrow> 'b::{ordered_comm_monoid_add,linorder_topology}"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   998
  assumes "f summable_on M"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   999
    and "\<And>x. x \<in> M \<Longrightarrow> 0 \<le> f x"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1000
  shows "infsum f M \<ge> 0" (is "?lhs \<ge> _")
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1001
  by (metis assms infsum_0_simp summable_on_0_simp infsum_mono)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1002
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1003
lemma has_sum_reindex:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1004
  assumes \<open>inj_on h A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1005
  shows \<open>has_sum g (h ` A) x \<longleftrightarrow> has_sum (g \<circ> h) A x\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1006
proof -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1007
  have \<open>has_sum g (h ` A) x \<longleftrightarrow> (sum g \<longlongrightarrow> x) (finite_subsets_at_top (h ` A))\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1008
    by (simp add: has_sum_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1009
  also have \<open>\<dots> \<longleftrightarrow> ((\<lambda>F. sum g (h ` F)) \<longlongrightarrow> x) (finite_subsets_at_top A)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1010
    apply (subst filtermap_image_finite_subsets_at_top[symmetric])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1011
    using assms by (auto simp: filterlim_def filtermap_filtermap)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1012
  also have \<open>\<dots> \<longleftrightarrow> (sum (g \<circ> h) \<longlongrightarrow> x) (finite_subsets_at_top A)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1013
    apply (rule tendsto_cong)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1014
    apply (rule eventually_finite_subsets_at_top_weakI)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1015
    apply (rule sum.reindex)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1016
    using assms subset_inj_on by blast
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1017
  also have \<open>\<dots> \<longleftrightarrow> has_sum (g \<circ> h) A x\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1018
    by (simp add: has_sum_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1019
  finally show ?thesis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1020
    by -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1021
qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1022
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1023
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1024
lemma summable_on_reindex:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1025
  assumes \<open>inj_on h A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1026
  shows \<open>g summable_on (h ` A) \<longleftrightarrow> (g \<circ> h) summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1027
  by (simp add: assms summable_on_def has_sum_reindex)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1028
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1029
lemma infsum_reindex:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1030
  assumes \<open>inj_on h A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1031
  shows \<open>infsum g (h ` A) = infsum (g \<circ> h) A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1032
  by (metis (no_types, opaque_lifting) assms finite_subsets_at_top_neq_bot infsum_def summable_on_reindex has_sum_def has_sum_infsum has_sum_reindex tendsto_Lim)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1033
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1034
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1035
lemma sum_uniformity:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1036
  assumes plus_cont: \<open>uniformly_continuous_on UNIV (\<lambda>(x::'b::{uniform_space,comm_monoid_add},y). x+y)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1037
  assumes \<open>eventually E uniformity\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1038
  obtains D where \<open>eventually D uniformity\<close> 
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1039
    and \<open>\<And>M::'a set. \<And>f f' :: 'a \<Rightarrow> 'b. card M \<le> n \<and> (\<forall>m\<in>M. D (f m, f' m)) \<Longrightarrow> E (sum f M, sum f' M)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1040
proof (atomize_elim, insert \<open>eventually E uniformity\<close>, induction n arbitrary: E rule:nat_induct)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1041
  case 0
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1042
  then show ?case
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1043
    by (metis card_eq_0_iff equals0D le_zero_eq sum.infinite sum.not_neutral_contains_not_neutral uniformity_refl)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1044
next
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1045
  case (Suc n)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1046
  from plus_cont[unfolded uniformly_continuous_on_uniformity filterlim_def le_filter_def, rule_format, OF Suc.prems]
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1047
  obtain D1 D2 where \<open>eventually D1 uniformity\<close> and \<open>eventually D2 uniformity\<close> 
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1048
    and D1D2E: \<open>D1 (x, y) \<Longrightarrow> D2 (x', y') \<Longrightarrow> E (x + x', y + y')\<close> for x y x' y'
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1049
    apply atomize_elim
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1050
    by (auto simp: eventually_prod_filter case_prod_beta uniformity_prod_def eventually_filtermap)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1051
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1052
  from Suc.IH[OF \<open>eventually D2 uniformity\<close>]
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1053
  obtain D3 where \<open>eventually D3 uniformity\<close> and D3: \<open>card M \<le> n \<Longrightarrow> (\<forall>m\<in>M. D3 (f m, f' m)) \<Longrightarrow> D2 (sum f M, sum f' M)\<close> 
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1054
    for M :: \<open>'a set\<close> and f f'
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1055
    by metis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1056
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1057
  define D where \<open>D x \<equiv> D1 x \<and> D3 x\<close> for x
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1058
  have \<open>eventually D uniformity\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1059
    using D_def \<open>eventually D1 uniformity\<close> \<open>eventually D3 uniformity\<close> eventually_elim2 by blast
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1060
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1061
  have \<open>E (sum f M, sum f' M)\<close> 
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1062
    if \<open>card M \<le> Suc n\<close> and DM: \<open>\<forall>m\<in>M. D (f m, f' m)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1063
    for M :: \<open>'a set\<close> and f f'
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1064
  proof (cases \<open>card M = 0\<close>)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1065
    case True
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1066
    then show ?thesis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1067
      by (metis Suc.prems card_eq_0_iff sum.empty sum.infinite uniformity_refl) 
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1068
  next
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1069
    case False
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1070
    with \<open>card M \<le> Suc n\<close> obtain N x where \<open>card N \<le> n\<close> and \<open>x \<notin> N\<close> and \<open>M = insert x N\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1071
      by (metis card_Suc_eq less_Suc_eq_0_disj less_Suc_eq_le)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1072
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1073
    from DM have \<open>\<And>m. m\<in>N \<Longrightarrow> D (f m, f' m)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1074
      using \<open>M = insert x N\<close> by blast
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1075
    with D3[OF \<open>card N \<le> n\<close>]
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1076
    have D2_N: \<open>D2 (sum f N, sum f' N)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1077
      using D_def by blast
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1078
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1079
    from DM 
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1080
    have \<open>D (f x, f' x)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1081
      using \<open>M = insert x N\<close> by blast
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1082
    then have \<open>D1 (f x, f' x)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1083
      by (simp add: D_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1084
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1085
    with D2_N
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1086
    have \<open>E (f x + sum f N, f' x + sum f' N)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1087
      using D1D2E by presburger
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1088
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1089
    then show \<open>E (sum f M, sum f' M)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1090
      by (metis False \<open>M = insert x N\<close> \<open>x \<notin> N\<close> card.infinite finite_insert sum.insert)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1091
  qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1092
  with \<open>eventually D uniformity\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1093
  show ?case 
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1094
    by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1095
qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1096
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1097
lemma has_sum_Sigma:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1098
  fixes A :: "'a set" and B :: "'a \<Rightarrow> 'b set"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1099
    and f :: \<open>'a \<times> 'b \<Rightarrow> 'c::{comm_monoid_add,uniform_space}\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1100
  assumes plus_cont: \<open>uniformly_continuous_on UNIV (\<lambda>(x::'c,y). x+y)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1101
  assumes summableAB: "has_sum f (Sigma A B) a"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1102
  assumes summableB: \<open>\<And>x. x\<in>A \<Longrightarrow> has_sum (\<lambda>y. f (x, y)) (B x) (b x)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1103
  shows "has_sum b A a"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1104
proof -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1105
  define F FB FA where \<open>F = finite_subsets_at_top (Sigma A B)\<close> and \<open>FB x = finite_subsets_at_top (B x)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1106
    and \<open>FA = finite_subsets_at_top A\<close> for x
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1107
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1108
  from summableB
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1109
  have sum_b: \<open>(sum (\<lambda>y. f (x, y)) \<longlongrightarrow> b x) (FB x)\<close> if \<open>x \<in> A\<close> for x
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1110
    using FB_def[abs_def] has_sum_def that by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1111
  from summableAB
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1112
  have sum_S: \<open>(sum f \<longlongrightarrow> a) F\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1113
    using F_def has_sum_def by blast
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1114
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1115
  have finite_proj: \<open>finite {b| b. (a,b) \<in> H}\<close> if \<open>finite H\<close> for H :: \<open>('a\<times>'b) set\<close> and a
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1116
    apply (subst asm_rl[of \<open>{b| b. (a,b) \<in> H} = snd ` {ab. ab \<in> H \<and> fst ab = a}\<close>])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1117
    by (auto simp: image_iff that)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1118
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1119
  have \<open>(sum b \<longlongrightarrow> a) FA\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1120
  proof (rule tendsto_iff_uniformity[THEN iffD2, rule_format])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1121
    fix E :: \<open>('c \<times> 'c) \<Rightarrow> bool\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1122
    assume \<open>eventually E uniformity\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1123
    then obtain D where D_uni: \<open>eventually D uniformity\<close> and DDE': \<open>\<And>x y z. D (x, y) \<Longrightarrow> D (y, z) \<Longrightarrow> E (x, z)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1124
      by (metis (no_types, lifting) \<open>eventually E uniformity\<close> uniformity_transE)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1125
    from sum_S obtain G where \<open>finite G\<close> and \<open>G \<subseteq> Sigma A B\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1126
      and G_sum: \<open>G \<subseteq> H \<Longrightarrow> H \<subseteq> Sigma A B \<Longrightarrow> finite H \<Longrightarrow> D (sum f H, a)\<close> for H
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1127
      unfolding tendsto_iff_uniformity
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1128
      by (metis (mono_tags, lifting) D_uni F_def eventually_finite_subsets_at_top)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1129
    have \<open>finite (fst ` G)\<close> and \<open>fst ` G \<subseteq> A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1130
      using \<open>finite G\<close> \<open>G \<subseteq> Sigma A B\<close> by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1131
    thm uniformity_prod_def
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1132
    define Ga where \<open>Ga a = {b. (a,b) \<in> G}\<close> for a
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1133
    have Ga_fin: \<open>finite (Ga a)\<close> and Ga_B: \<open>Ga a \<subseteq> B a\<close> for a
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1134
      using \<open>finite G\<close> \<open>G \<subseteq> Sigma A B\<close> finite_proj by (auto simp: Ga_def finite_proj)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1135
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1136
    have \<open>E (sum b M, a)\<close> if \<open>M \<supseteq> fst ` G\<close> and \<open>finite M\<close> and \<open>M \<subseteq> A\<close> for M
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1137
    proof -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1138
      define FMB where \<open>FMB = finite_subsets_at_top (Sigma M B)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1139
      have \<open>eventually (\<lambda>H. D (\<Sum>a\<in>M. b a, \<Sum>(a,b)\<in>H. f (a,b))) FMB\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1140
      proof -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1141
        obtain D' where D'_uni: \<open>eventually D' uniformity\<close> 
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1142
          and \<open>card M' \<le> card M \<and> (\<forall>m\<in>M'. D' (g m, g' m)) \<Longrightarrow> D (sum g M', sum g' M')\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1143
            for M' :: \<open>'a set\<close> and g g'
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1144
          apply (rule sum_uniformity[OF plus_cont \<open>eventually D uniformity\<close>, where n=\<open>card M\<close>])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1145
          by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1146
        then have D'_sum_D: \<open>(\<forall>m\<in>M. D' (g m, g' m)) \<Longrightarrow> D (sum g M, sum g' M)\<close> for g g'
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1147
          by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1148
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1149
        obtain Ha where \<open>Ha a \<supseteq> Ga a\<close> and Ha_fin: \<open>finite (Ha a)\<close> and Ha_B: \<open>Ha a \<subseteq> B a\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1150
          and D'_sum_Ha: \<open>Ha a \<subseteq> L \<Longrightarrow> L \<subseteq> B a \<Longrightarrow> finite L \<Longrightarrow> D' (b a, sum (\<lambda>b. f (a,b)) L)\<close> if \<open>a \<in> A\<close> for a L
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1151
        proof -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1152
          from sum_b[unfolded tendsto_iff_uniformity, rule_format, OF _ D'_uni[THEN uniformity_sym]]
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1153
          obtain Ha0 where \<open>finite (Ha0 a)\<close> and \<open>Ha0 a \<subseteq> B a\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1154
            and \<open>Ha0 a \<subseteq> L \<Longrightarrow> L \<subseteq> B a \<Longrightarrow> finite L \<Longrightarrow> D' (b a, sum (\<lambda>b. f (a,b)) L)\<close> if \<open>a \<in> A\<close> for a L
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1155
            unfolding FB_def eventually_finite_subsets_at_top apply auto by metis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1156
          moreover define Ha where \<open>Ha a = Ha0 a \<union> Ga a\<close> for a
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1157
          ultimately show ?thesis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1158
            using that[where Ha=Ha]
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1159
            using Ga_fin Ga_B by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1160
        qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1161
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1162
        have \<open>D (\<Sum>a\<in>M. b a, \<Sum>(a,b)\<in>H. f (a,b))\<close> if \<open>finite H\<close> and \<open>H \<subseteq> Sigma M B\<close> and \<open>H \<supseteq> Sigma M Ha\<close> for H
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1163
        proof -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1164
          define Ha' where \<open>Ha' a = {b| b. (a,b) \<in> H}\<close> for a
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1165
          have [simp]: \<open>finite (Ha' a)\<close> and [simp]: \<open>Ha' a \<supseteq> Ha a\<close> and [simp]: \<open>Ha' a \<subseteq> B a\<close> if \<open>a \<in> M\<close> for a
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1166
            unfolding Ha'_def using \<open>finite H\<close> \<open>H \<subseteq> Sigma M B\<close> \<open>Sigma M Ha \<subseteq> H\<close> that finite_proj by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1167
          have \<open>Sigma M Ha' = H\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1168
            using that by (auto simp: Ha'_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1169
          then have *: \<open>(\<Sum>(a,b)\<in>H. f (a,b)) = (\<Sum>a\<in>M. \<Sum>b\<in>Ha' a. f (a,b))\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1170
            apply (subst sum.Sigma)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1171
            using \<open>finite M\<close> by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1172
          have \<open>D' (b a, sum (\<lambda>b. f (a,b)) (Ha' a))\<close> if \<open>a \<in> M\<close> for a
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1173
            apply (rule D'_sum_Ha)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1174
            using that \<open>M \<subseteq> A\<close> by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1175
          then have \<open>D (\<Sum>a\<in>M. b a, \<Sum>a\<in>M. sum (\<lambda>b. f (a,b)) (Ha' a))\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1176
            by (rule_tac D'_sum_D, auto)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1177
          with * show ?thesis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1178
            by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1179
        qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1180
        moreover have \<open>Sigma M Ha \<subseteq> Sigma M B\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1181
          using Ha_B \<open>M \<subseteq> A\<close> by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1182
        ultimately show ?thesis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1183
          apply (simp add: FMB_def eventually_finite_subsets_at_top)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1184
          by (metis Ha_fin finite_SigmaI subsetD that(2) that(3))
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1185
      qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1186
      moreover have \<open>eventually (\<lambda>H. D (\<Sum>(a,b)\<in>H. f (a,b), a)) FMB\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1187
        unfolding FMB_def eventually_finite_subsets_at_top
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1188
        apply (rule exI[of _ G])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1189
        using \<open>G \<subseteq> Sigma A B\<close> \<open>finite G\<close> that G_sum apply auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1190
        by (smt (z3) Sigma_Un_distrib1 dual_order.trans subset_Un_eq)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1191
      ultimately have \<open>\<forall>\<^sub>F x in FMB. E (sum b M, a)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1192
        by (smt (verit, best) DDE' eventually_elim2)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1193
      then show \<open>E (sum b M, a)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1194
        apply (rule eventually_const[THEN iffD1, rotated])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1195
        using FMB_def by force
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1196
    qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1197
    then show \<open>\<forall>\<^sub>F x in FA. E (sum b x, a)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1198
      using \<open>finite (fst ` G)\<close> and \<open>fst ` G \<subseteq> A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1199
      by (auto intro!: exI[of _ \<open>fst ` G\<close>] simp add: FA_def eventually_finite_subsets_at_top)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1200
  qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1201
  then show ?thesis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1202
    by (simp add: FA_def has_sum_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1203
qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1204
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1205
lemma summable_on_Sigma:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1206
  fixes A :: "'a set" and B :: "'a \<Rightarrow> 'b set"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1207
    and f :: \<open>'a \<Rightarrow> 'b \<Rightarrow> 'c::{comm_monoid_add, t2_space, uniform_space}\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1208
  assumes plus_cont: \<open>uniformly_continuous_on UNIV (\<lambda>(x::'c,y). x+y)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1209
  assumes summableAB: "(\<lambda>(x,y). f x y) summable_on (Sigma A B)"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1210
  assumes summableB: \<open>\<And>x. x\<in>A \<Longrightarrow> (f x) summable_on (B x)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1211
  shows \<open>(\<lambda>x. infsum (f x) (B x)) summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1212
proof -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1213
  from summableAB obtain a where a: \<open>has_sum (\<lambda>(x,y). f x y) (Sigma A B) a\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1214
    using has_sum_infsum by blast
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1215
  from summableB have b: \<open>\<And>x. x\<in>A \<Longrightarrow> has_sum (f x) (B x) (infsum (f x) (B x))\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1216
    by (auto intro!: has_sum_infsum)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1217
  show ?thesis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1218
    using plus_cont a b 
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1219
    by (auto intro: has_sum_Sigma[where f=\<open>\<lambda>(x,y). f x y\<close>, simplified] simp: summable_on_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1220
qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1221
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1222
lemma infsum_Sigma:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1223
  fixes A :: "'a set" and B :: "'a \<Rightarrow> 'b set"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1224
    and f :: \<open>'a \<times> 'b \<Rightarrow> 'c::{comm_monoid_add, t2_space, uniform_space}\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1225
  assumes plus_cont: \<open>uniformly_continuous_on UNIV (\<lambda>(x::'c,y). x+y)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1226
  assumes summableAB: "f summable_on (Sigma A B)"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1227
  assumes summableB: \<open>\<And>x. x\<in>A \<Longrightarrow> (\<lambda>y. f (x, y)) summable_on (B x)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1228
  shows "infsum f (Sigma A B) = infsum (\<lambda>x. infsum (\<lambda>y. f (x, y)) (B x)) A"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1229
proof -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1230
  from summableAB have a: \<open>has_sum f (Sigma A B) (infsum f (Sigma A B))\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1231
    using has_sum_infsum by blast
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1232
  from summableB have b: \<open>\<And>x. x\<in>A \<Longrightarrow> has_sum (\<lambda>y. f (x, y)) (B x) (infsum (\<lambda>y. f (x, y)) (B x))\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1233
    by (auto intro!: has_sum_infsum)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1234
  show ?thesis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1235
    using plus_cont a b by (auto intro: infsumI[symmetric] has_sum_Sigma simp: summable_on_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1236
qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1237
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1238
lemma infsum_Sigma':
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1239
  fixes A :: "'a set" and B :: "'a \<Rightarrow> 'b set"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1240
    and f :: \<open>'a \<Rightarrow> 'b \<Rightarrow> 'c::{comm_monoid_add, t2_space, uniform_space}\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1241
  assumes plus_cont: \<open>uniformly_continuous_on UNIV (\<lambda>(x::'c,y). x+y)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1242
  assumes summableAB: "(\<lambda>(x,y). f x y) summable_on (Sigma A B)"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1243
  assumes summableB: \<open>\<And>x. x\<in>A \<Longrightarrow> (f x) summable_on (B x)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1244
  shows \<open>infsum (\<lambda>x. infsum (f x) (B x)) A = infsum (\<lambda>(x,y). f x y) (Sigma A B)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1245
  using infsum_Sigma[of \<open>\<lambda>(x,y). f x y\<close> A B]
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1246
  using assms by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1247
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1248
text \<open>A special case of @{thm [source] infsum_Sigma} etc. for Banach spaces. It has less premises.\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1249
lemma
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1250
  fixes A :: "'a set" and B :: "'a \<Rightarrow> 'b set"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1251
    and f :: \<open>'a \<Rightarrow> 'b \<Rightarrow> 'c::banach\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1252
  assumes [simp]: "(\<lambda>(x,y). f x y) summable_on (Sigma A B)"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1253
  shows infsum_Sigma'_banach: \<open>infsum (\<lambda>x. infsum (f x) (B x)) A = infsum (\<lambda>(x,y). f x y) (Sigma A B)\<close> (is ?thesis1)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1254
    and summable_on_Sigma_banach: \<open>(\<lambda>x. infsum (f x) (B x)) summable_on A\<close> (is ?thesis2)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1255
proof -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1256
  have [simp]: \<open>(f x) summable_on (B x)\<close> if \<open>x \<in> A\<close> for x
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1257
  proof -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1258
    from assms
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1259
    have \<open>(\<lambda>(x,y). f x y) summable_on (Pair x ` B x)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1260
      by (meson image_subset_iff summable_on_subset_banach mem_Sigma_iff that)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1261
    then have \<open>((\<lambda>(x,y). f x y) o Pair x) summable_on (B x)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1262
      apply (rule_tac summable_on_reindex[THEN iffD1])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1263
      by (simp add: inj_on_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1264
    then show ?thesis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1265
      by (auto simp: o_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1266
  qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1267
  show ?thesis1
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1268
    apply (rule infsum_Sigma')
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1269
    by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1270
  show ?thesis2
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1271
    apply (rule summable_on_Sigma)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1272
    by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1273
qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1274
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1275
lemma infsum_Sigma_banach:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1276
  fixes A :: "'a set" and B :: "'a \<Rightarrow> 'b set"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1277
    and f :: \<open>'a \<times> 'b \<Rightarrow> 'c::banach\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1278
  assumes [simp]: "f summable_on (Sigma A B)"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1279
  shows \<open>infsum (\<lambda>x. infsum (\<lambda>y. f (x,y)) (B x)) A = infsum f (Sigma A B)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1280
  by (smt (verit, best) SigmaE assms infsum_Sigma'_banach infsum_cong summable_on_cong old.prod.case)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1281
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1282
lemma infsum_swap:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1283
  fixes A :: "'a set" and B :: "'b set"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1284
  fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c::{comm_monoid_add,t2_space,uniform_space}"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1285
  assumes plus_cont: \<open>uniformly_continuous_on UNIV (\<lambda>(x::'c,y). x+y)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1286
  assumes \<open>(\<lambda>(x, y). f x y) summable_on (A \<times> B)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1287
  assumes \<open>\<And>a. a\<in>A \<Longrightarrow> (f a) summable_on B\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1288
  assumes \<open>\<And>b. b\<in>B \<Longrightarrow> (\<lambda>a. f a b) summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1289
  shows \<open>infsum (\<lambda>x. infsum (\<lambda>y. f x y) B) A = infsum (\<lambda>y. infsum (\<lambda>x. f x y) A) B\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1290
proof -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1291
  have [simp]: \<open>(\<lambda>(x, y). f y x) summable_on (B \<times> A)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1292
    apply (subst product_swap[symmetric])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1293
    apply (subst summable_on_reindex)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1294
    using assms by (auto simp: o_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1295
  have \<open>infsum (\<lambda>x. infsum (\<lambda>y. f x y) B) A = infsum (\<lambda>(x,y). f x y) (A \<times> B)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1296
    apply (subst infsum_Sigma)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1297
    using assms by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1298
  also have \<open>\<dots> = infsum (\<lambda>(x,y). f y x) (B \<times> A)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1299
    apply (subst product_swap[symmetric])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1300
    apply (subst infsum_reindex)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1301
    using assms by (auto simp: o_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1302
  also have \<open>\<dots> = infsum (\<lambda>y. infsum (\<lambda>x. f x y) A) B\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1303
    apply (subst infsum_Sigma)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1304
    using assms by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1305
  finally show ?thesis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1306
    by -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1307
qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1308
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1309
lemma infsum_swap_banach:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1310
  fixes A :: "'a set" and B :: "'b set"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1311
  fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c::banach"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1312
  assumes \<open>(\<lambda>(x, y). f x y) summable_on (A \<times> B)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1313
  shows "infsum (\<lambda>x. infsum (\<lambda>y. f x y) B) A = infsum (\<lambda>y. infsum (\<lambda>x. f x y) A) B"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1314
proof -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1315
  have [simp]: \<open>(\<lambda>(x, y). f y x) summable_on (B \<times> A)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1316
    apply (subst product_swap[symmetric])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1317
    apply (subst summable_on_reindex)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1318
    using assms by (auto simp: o_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1319
  have \<open>infsum (\<lambda>x. infsum (\<lambda>y. f x y) B) A = infsum (\<lambda>(x,y). f x y) (A \<times> B)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1320
    apply (subst infsum_Sigma'_banach)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1321
    using assms by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1322
  also have \<open>\<dots> = infsum (\<lambda>(x,y). f y x) (B \<times> A)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1323
    apply (subst product_swap[symmetric])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1324
    apply (subst infsum_reindex)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1325
    using assms by (auto simp: o_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1326
  also have \<open>\<dots> = infsum (\<lambda>y. infsum (\<lambda>x. f x y) A) B\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1327
    apply (subst infsum_Sigma'_banach)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1328
    using assms by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1329
  finally show ?thesis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1330
    by -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1331
qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1332
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1333
lemma infsum_0D:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1334
  fixes f :: "'a \<Rightarrow> 'b::{topological_ab_group_add,ordered_ab_group_add,linorder_topology}"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1335
  assumes "infsum f A \<le> 0"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1336
    and abs_sum: "f summable_on A"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1337
    and nneg: "\<And>x. x \<in> A \<Longrightarrow> f x \<ge> 0"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1338
    and "x \<in> A"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1339
  shows "f x = 0"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1340
proof (rule ccontr)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1341
  assume \<open>f x \<noteq> 0\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1342
  have ex: \<open>f summable_on (A-{x})\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1343
    apply (rule summable_on_cofin_subset)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1344
    using assms by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1345
  then have pos: \<open>infsum f (A - {x}) \<ge> 0\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1346
    apply (rule infsum_nonneg)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1347
    using nneg by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1348
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1349
  have [trans]: \<open>x \<ge> y \<Longrightarrow> y > z \<Longrightarrow> x > z\<close> for x y z :: 'b by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1350
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1351
  have \<open>infsum f A = infsum f (A-{x}) + infsum f {x}\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1352
    apply (subst infsum_Un_disjoint[symmetric])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1353
    using assms ex apply auto by (metis insert_absorb) 
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1354
  also have \<open>\<dots> \<ge> infsum f {x}\<close> (is \<open>_ \<ge> \<dots>\<close>)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1355
    using pos apply (rule add_increasing) by simp
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1356
  also have \<open>\<dots> = f x\<close> (is \<open>_ = \<dots>\<close>)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1357
    apply (subst infsum_finite) by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1358
  also have \<open>\<dots> > 0\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1359
    using \<open>f x \<noteq> 0\<close> assms(4) nneg by fastforce
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1360
  finally show False
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1361
    using assms by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1362
qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1363
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1364
lemma has_sum_0D:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1365
  fixes f :: "'a \<Rightarrow> 'b::{topological_ab_group_add,ordered_ab_group_add,linorder_topology}"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1366
  assumes "has_sum f A a" \<open>a \<le> 0\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1367
    and nneg: "\<And>x. x \<in> A \<Longrightarrow> f x \<ge> 0"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1368
    and "x \<in> A"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1369
  shows "f x = 0"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1370
  by (metis assms(1) assms(2) assms(4) infsumI infsum_0D summable_on_def nneg)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1371
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1372
lemma has_sum_cmult_left:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1373
  fixes f :: "'a \<Rightarrow> 'b :: {topological_semigroup_mult, semiring_0}"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1374
  assumes \<open>has_sum f A a\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1375
  shows "has_sum (\<lambda>x. f x * c) A (a * c)"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1376
proof -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1377
  from assms have \<open>(sum f \<longlongrightarrow> a) (finite_subsets_at_top A)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1378
    using has_sum_def by blast
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1379
  then have \<open>((\<lambda>F. sum f F * c) \<longlongrightarrow> a * c) (finite_subsets_at_top A)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1380
    by (simp add: tendsto_mult_right)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1381
  then have \<open>(sum (\<lambda>x. f x * c) \<longlongrightarrow> a * c) (finite_subsets_at_top A)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1382
    apply (rule tendsto_cong[THEN iffD1, rotated])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1383
    apply (rule eventually_finite_subsets_at_top_weakI)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1384
    using sum_distrib_right by blast
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1385
  then show ?thesis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1386
    using infsumI has_sum_def by blast
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1387
qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1388
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1389
lemma infsum_cmult_left:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1390
  fixes f :: "'a \<Rightarrow> 'b :: {t2_space, topological_semigroup_mult, semiring_0}"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1391
  assumes \<open>c \<noteq> 0 \<Longrightarrow> f summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1392
  shows "infsum (\<lambda>x. f x * c) A = infsum f A * c"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1393
proof (cases \<open>c=0\<close>)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1394
  case True
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1395
  then show ?thesis by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1396
next
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1397
  case False
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1398
  then have \<open>has_sum f A (infsum f A)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1399
    by (simp add: assms)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1400
  then show ?thesis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1401
    by (auto intro!: infsumI has_sum_cmult_left)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1402
qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1403
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1404
lemma summable_on_cmult_left:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1405
  fixes f :: "'a \<Rightarrow> 'b :: {t2_space, topological_semigroup_mult, semiring_0}"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1406
  assumes \<open>f summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1407
  shows "(\<lambda>x. f x * c) summable_on A"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1408
  using assms summable_on_def has_sum_cmult_left by blast
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1409
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1410
lemma has_sum_cmult_right:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1411
  fixes f :: "'a \<Rightarrow> 'b :: {topological_semigroup_mult, semiring_0}"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1412
  assumes \<open>has_sum f A a\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1413
  shows "has_sum (\<lambda>x. c * f x) A (c * a)"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1414
proof -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1415
  from assms have \<open>(sum f \<longlongrightarrow> a) (finite_subsets_at_top A)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1416
    using has_sum_def by blast
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1417
  then have \<open>((\<lambda>F. c * sum f F) \<longlongrightarrow> c * a) (finite_subsets_at_top A)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1418
    by (simp add: tendsto_mult_left)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1419
  then have \<open>(sum (\<lambda>x. c * f x) \<longlongrightarrow> c * a) (finite_subsets_at_top A)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1420
    apply (rule tendsto_cong[THEN iffD1, rotated])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1421
    apply (rule eventually_finite_subsets_at_top_weakI)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1422
    using sum_distrib_left by blast
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1423
  then show ?thesis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1424
    using infsumI has_sum_def by blast
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1425
qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1426
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1427
lemma infsum_cmult_right:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1428
  fixes f :: "'a \<Rightarrow> 'b :: {t2_space, topological_semigroup_mult, semiring_0}"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1429
  assumes \<open>c \<noteq> 0 \<Longrightarrow> f summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1430
  shows \<open>infsum (\<lambda>x. c * f x) A = c * infsum f A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1431
proof (cases \<open>c=0\<close>)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1432
  case True
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1433
  then show ?thesis by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1434
next
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1435
  case False
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1436
  then have \<open>has_sum f A (infsum f A)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1437
    by (simp add: assms)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1438
  then show ?thesis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1439
    by (auto intro!: infsumI has_sum_cmult_right)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1440
qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1441
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1442
lemma summable_on_cmult_right:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1443
  fixes f :: "'a \<Rightarrow> 'b :: {t2_space, topological_semigroup_mult, semiring_0}"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1444
  assumes \<open>f summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1445
  shows "(\<lambda>x. c * f x) summable_on A"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1446
  using assms summable_on_def has_sum_cmult_right by blast
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1447
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1448
lemma summable_on_cmult_left':
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1449
  fixes f :: "'a \<Rightarrow> 'b :: {t2_space, topological_semigroup_mult, division_ring}"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1450
  assumes \<open>c \<noteq> 0\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1451
  shows "(\<lambda>x. f x * c) summable_on A \<longleftrightarrow> f summable_on A"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1452
proof
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1453
  assume \<open>f summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1454
  then show \<open>(\<lambda>x. f x * c) summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1455
    by (rule summable_on_cmult_left)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1456
next
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1457
  assume \<open>(\<lambda>x. f x * c) summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1458
  then have \<open>(\<lambda>x. f x * c * inverse c) summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1459
    by (rule summable_on_cmult_left)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1460
  then show \<open>f summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1461
    by (metis (no_types, lifting) assms summable_on_cong mult.assoc mult.right_neutral right_inverse)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1462
qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1463
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1464
lemma summable_on_cmult_right':
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1465
  fixes f :: "'a \<Rightarrow> 'b :: {t2_space, topological_semigroup_mult, division_ring}"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1466
  assumes \<open>c \<noteq> 0\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1467
  shows "(\<lambda>x. c * f x) summable_on A \<longleftrightarrow> f summable_on A"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1468
proof
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1469
  assume \<open>f summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1470
  then show \<open>(\<lambda>x. c * f x) summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1471
    by (rule summable_on_cmult_right)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1472
next
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1473
  assume \<open>(\<lambda>x. c * f x) summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1474
  then have \<open>(\<lambda>x. inverse c * (c * f x)) summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1475
    by (rule summable_on_cmult_right)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1476
  then show \<open>f summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1477
    by (metis (no_types, lifting) assms summable_on_cong left_inverse mult.assoc mult.left_neutral)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1478
qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1479
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1480
lemma infsum_cmult_left':
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1481
  fixes f :: "'a \<Rightarrow> 'b :: {t2_space, topological_semigroup_mult, division_ring}"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1482
  shows "infsum (\<lambda>x. f x * c) A = infsum f A * c"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1483
proof (cases \<open>c \<noteq> 0 \<longrightarrow> f summable_on A\<close>)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1484
  case True
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1485
  then show ?thesis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1486
    apply (rule_tac infsum_cmult_left) by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1487
next
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1488
  case False
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1489
  note asm = False
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1490
  then show ?thesis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1491
  proof (cases \<open>c=0\<close>)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1492
    case True
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1493
    then show ?thesis by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1494
  next
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1495
    case False
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1496
    with asm have nex: \<open>\<not> f summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1497
      by simp
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1498
    moreover have nex': \<open>\<not> (\<lambda>x. f x * c) summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1499
      using asm False apply (subst summable_on_cmult_left') by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1500
    ultimately show ?thesis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1501
      unfolding infsum_def by simp
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1502
  qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1503
qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1504
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1505
lemma infsum_cmult_right':
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1506
  fixes f :: "'a \<Rightarrow> 'b :: {t2_space,topological_semigroup_mult,division_ring}"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1507
  shows "infsum (\<lambda>x. c * f x) A = c * infsum f A"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1508
proof (cases \<open>c \<noteq> 0 \<longrightarrow> f summable_on A\<close>)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1509
  case True
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1510
  then show ?thesis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1511
    apply (rule_tac infsum_cmult_right) by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1512
next
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1513
  case False
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1514
  note asm = False
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1515
  then show ?thesis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1516
  proof (cases \<open>c=0\<close>)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1517
    case True
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1518
    then show ?thesis by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1519
  next
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1520
    case False
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1521
    with asm have nex: \<open>\<not> f summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1522
      by simp
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1523
    moreover have nex': \<open>\<not> (\<lambda>x. c * f x) summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1524
      using asm False apply (subst summable_on_cmult_right') by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1525
    ultimately show ?thesis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1526
      unfolding infsum_def by simp
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1527
  qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1528
qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1529
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1530
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1531
lemma has_sum_constant[simp]:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1532
  assumes \<open>finite F\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1533
  shows \<open>has_sum (\<lambda>_. c) F (of_nat (card F) * c)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1534
  by (metis assms has_sum_finite sum_constant)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1535
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1536
lemma infsum_constant[simp]:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1537
  assumes \<open>finite F\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1538
  shows \<open>infsum (\<lambda>_. c) F = of_nat (card F) * c\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1539
  apply (subst infsum_finite[OF assms]) by simp
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1540
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1541
lemma infsum_diverge_constant:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1542
  \<comment> \<open>This probably does not really need all of \<^class>\<open>archimedean_field\<close> but Isabelle/HOL
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1543
       has no type class such as, e.g., "archimedean ring".\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1544
  fixes c :: \<open>'a::{archimedean_field, comm_monoid_add, linorder_topology, topological_semigroup_mult}\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1545
  assumes \<open>infinite A\<close> and \<open>c \<noteq> 0\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1546
  shows \<open>\<not> (\<lambda>_. c) summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1547
proof (rule notI)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1548
  assume \<open>(\<lambda>_. c) summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1549
  then have \<open>(\<lambda>_. inverse c * c) summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1550
    by (rule summable_on_cmult_right)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1551
  then have [simp]: \<open>(\<lambda>_. 1::'a) summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1552
    using assms by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1553
  have \<open>infsum (\<lambda>_. 1) A \<ge> d\<close> for d :: 'a
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1554
  proof -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1555
    obtain n :: nat where \<open>of_nat n \<ge> d\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1556
      by (meson real_arch_simple)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1557
    from assms
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1558
    obtain F where \<open>F \<subseteq> A\<close> and \<open>finite F\<close> and \<open>card F = n\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1559
      by (meson infinite_arbitrarily_large)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1560
    note \<open>d \<le> of_nat n\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1561
    also have \<open>of_nat n = infsum (\<lambda>_. 1::'a) F\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1562
      by (simp add: \<open>card F = n\<close> \<open>finite F\<close>)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1563
    also have \<open>\<dots> \<le> infsum (\<lambda>_. 1::'a) A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1564
      apply (rule infsum_mono_neutral)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1565
      using \<open>finite F\<close> \<open>F \<subseteq> A\<close> by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1566
    finally show ?thesis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1567
      by -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1568
  qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1569
  then show False
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1570
    by (meson linordered_field_no_ub not_less)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1571
qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1572
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1573
lemma has_sum_constant_archimedean[simp]:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1574
  \<comment> \<open>This probably does not really need all of \<^class>\<open>archimedean_field\<close> but Isabelle/HOL
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1575
       has no type class such as, e.g., "archimedean ring".\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1576
  fixes c :: \<open>'a::{archimedean_field, comm_monoid_add, linorder_topology, topological_semigroup_mult}\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1577
  shows \<open>infsum (\<lambda>_. c) A = of_nat (card A) * c\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1578
  apply (cases \<open>finite A\<close>)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1579
   apply simp
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1580
  apply (cases \<open>c = 0\<close>)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1581
   apply simp
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1582
  by (simp add: infsum_diverge_constant infsum_not_exists)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1583
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1584
lemma has_sum_uminus:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1585
  fixes f :: \<open>'a \<Rightarrow> 'b::topological_ab_group_add\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1586
  shows \<open>has_sum (\<lambda>x. - f x) A a \<longleftrightarrow> has_sum f A (- a)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1587
  by (auto simp add: sum_negf[abs_def] tendsto_minus_cancel_left has_sum_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1588
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1589
lemma summable_on_uminus:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1590
  fixes f :: \<open>'a \<Rightarrow> 'b::topological_ab_group_add\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1591
  shows\<open>(\<lambda>x. - f x) summable_on A \<longleftrightarrow> f summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1592
  by (metis summable_on_def has_sum_uminus verit_minus_simplify(4))
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1593
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1594
lemma infsum_uminus:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1595
  fixes f :: \<open>'a \<Rightarrow> 'b::{topological_ab_group_add, t2_space}\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1596
  shows \<open>infsum (\<lambda>x. - f x) A = - infsum f A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1597
  by (metis (full_types) add.inverse_inverse add.inverse_neutral infsumI infsum_def has_sum_infsum has_sum_uminus)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1598
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1599
subsection \<open>Extended reals and nats\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1600
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1601
lemma summable_on_ennreal[simp]: \<open>(f::_ \<Rightarrow> ennreal) summable_on S\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1602
  apply (rule pos_summable_on_complete) by simp
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1603
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1604
lemma summable_on_enat[simp]: \<open>(f::_ \<Rightarrow> enat) summable_on S\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1605
  apply (rule pos_summable_on_complete) by simp
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1606
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1607
lemma has_sum_superconst_infinite_ennreal:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1608
  fixes f :: \<open>'a \<Rightarrow> ennreal\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1609
  assumes geqb: \<open>\<And>x. x \<in> S \<Longrightarrow> f x \<ge> b\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1610
  assumes b: \<open>b > 0\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1611
  assumes \<open>infinite S\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1612
  shows "has_sum f S \<infinity>"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1613
proof -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1614
  have \<open>(sum f \<longlongrightarrow> \<infinity>) (finite_subsets_at_top S)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1615
  proof (rule order_tendstoI[rotated], simp)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1616
    fix y :: ennreal assume \<open>y < \<infinity>\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1617
    then have \<open>y / b < \<infinity>\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1618
      by (metis b ennreal_divide_eq_top_iff gr_implies_not_zero infinity_ennreal_def top.not_eq_extremum)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1619
    then obtain F where \<open>finite F\<close> and \<open>F \<subseteq> S\<close> and cardF: \<open>card F > y / b\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1620
      using \<open>infinite S\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1621
      by (metis ennreal_Ex_less_of_nat infinite_arbitrarily_large infinity_ennreal_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1622
    moreover have \<open>sum f Y > y\<close> if \<open>finite Y\<close> and \<open>F \<subseteq> Y\<close> and \<open>Y \<subseteq> S\<close> for Y
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1623
    proof -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1624
      have \<open>y < b * card F\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1625
        by (metis \<open>y < \<infinity>\<close> b cardF divide_less_ennreal ennreal_mult_eq_top_iff gr_implies_not_zero infinity_ennreal_def mult.commute top.not_eq_extremum)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1626
      also have \<open>\<dots> \<le> b * card Y\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1627
        by (meson b card_mono less_imp_le mult_left_mono of_nat_le_iff that(1) that(2))
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1628
      also have \<open>\<dots> = sum (\<lambda>_. b) Y\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1629
        by (simp add: mult.commute)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1630
      also have \<open>\<dots> \<le> sum f Y\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1631
        using geqb by (meson subset_eq sum_mono that(3))
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1632
      finally show ?thesis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1633
        by -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1634
    qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1635
    ultimately show \<open>\<forall>\<^sub>F x in finite_subsets_at_top S. y < sum f x\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1636
      unfolding eventually_finite_subsets_at_top 
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1637
      by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1638
  qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1639
  then show ?thesis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1640
    by (simp add: has_sum_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1641
qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1642
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1643
lemma infsum_superconst_infinite_ennreal:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1644
  fixes f :: \<open>'a \<Rightarrow> ennreal\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1645
  assumes \<open>\<And>x. x \<in> S \<Longrightarrow> f x \<ge> b\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1646
  assumes \<open>b > 0\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1647
  assumes \<open>infinite S\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1648
  shows "infsum f S = \<infinity>"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1649
  using assms infsumI has_sum_superconst_infinite_ennreal by blast
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1650
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1651
lemma infsum_superconst_infinite_ereal:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1652
  fixes f :: \<open>'a \<Rightarrow> ereal\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1653
  assumes geqb: \<open>\<And>x. x \<in> S \<Longrightarrow> f x \<ge> b\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1654
  assumes b: \<open>b > 0\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1655
  assumes \<open>infinite S\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1656
  shows "infsum f S = \<infinity>"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1657
proof -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1658
  obtain b' where b': \<open>e2ennreal b' = b\<close> and \<open>b' > 0\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1659
    using b by blast
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1660
  have *: \<open>infsum (e2ennreal o f) S = \<infinity>\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1661
    apply (rule infsum_superconst_infinite_ennreal[where b=b'])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1662
    using assms \<open>b' > 0\<close> b' e2ennreal_mono apply auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1663
    by (metis dual_order.strict_iff_order enn2ereal_e2ennreal le_less_linear zero_ennreal_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1664
  have \<open>infsum f S = infsum (enn2ereal o (e2ennreal o f)) S\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1665
    by (smt (verit, best) b comp_apply dual_order.trans enn2ereal_e2ennreal geqb infsum_cong less_imp_le)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1666
  also have \<open>\<dots> = enn2ereal \<infinity>\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1667
    apply (subst infsum_comm_additive_general)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1668
    using * by (auto simp: continuous_at_enn2ereal)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1669
  also have \<open>\<dots> = \<infinity>\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1670
    by simp
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1671
  finally show ?thesis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1672
    by -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1673
qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1674
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1675
lemma has_sum_superconst_infinite_ereal:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1676
  fixes f :: \<open>'a \<Rightarrow> ereal\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1677
  assumes \<open>\<And>x. x \<in> S \<Longrightarrow> f x \<ge> b\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1678
  assumes \<open>b > 0\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1679
  assumes \<open>infinite S\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1680
  shows "has_sum f S \<infinity>"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1681
  by (metis Infty_neq_0(1) assms infsum_def has_sum_infsum infsum_superconst_infinite_ereal)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1682
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1683
lemma infsum_superconst_infinite_enat:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1684
  fixes f :: \<open>'a \<Rightarrow> enat\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1685
  assumes geqb: \<open>\<And>x. x \<in> S \<Longrightarrow> f x \<ge> b\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1686
  assumes b: \<open>b > 0\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1687
  assumes \<open>infinite S\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1688
  shows "infsum f S = \<infinity>"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1689
proof -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1690
  have \<open>ennreal_of_enat (infsum f S) = infsum (ennreal_of_enat o f) S\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1691
    apply (rule infsum_comm_additive_general[symmetric])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1692
    by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1693
  also have \<open>\<dots> = \<infinity>\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1694
    by (metis assms(3) b comp_apply ennreal_of_enat_0 ennreal_of_enat_inj ennreal_of_enat_le_iff geqb infsum_superconst_infinite_ennreal not_gr_zero)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1695
  also have \<open>\<dots> = ennreal_of_enat \<infinity>\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1696
    by simp
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1697
  finally show ?thesis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1698
    by (rule ennreal_of_enat_inj[THEN iffD1])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1699
qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1700
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1701
lemma has_sum_superconst_infinite_enat:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1702
  fixes f :: \<open>'a \<Rightarrow> enat\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1703
  assumes \<open>\<And>x. x \<in> S \<Longrightarrow> f x \<ge> b\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1704
  assumes \<open>b > 0\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1705
  assumes \<open>infinite S\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1706
  shows "has_sum f S \<infinity>"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1707
  by (metis assms i0_lb has_sum_infsum infsum_superconst_infinite_enat pos_summable_on_complete)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1708
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1709
text \<open>This lemma helps to relate a real-valued infsum to a supremum over extended nonnegative reals.\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1710
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1711
lemma infsum_nonneg_is_SUPREMUM_ennreal:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1712
  fixes f :: "'a \<Rightarrow> real"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1713
  assumes summable: "f summable_on A"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1714
    and fnn: "\<And>x. x\<in>A \<Longrightarrow> f x \<ge> 0"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1715
  shows "ennreal (infsum f A) = (SUP F\<in>{F. finite F \<and> F \<subseteq> A}. (ennreal (sum f F)))"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1716
proof -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1717
  have \<open>ennreal (infsum f A) = infsum (ennreal o f) A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1718
    apply (rule infsum_comm_additive_general[symmetric])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1719
    apply (subst sum_ennreal[symmetric])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1720
    using assms by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1721
  also have \<open>\<dots> = (SUP F\<in>{F. finite F \<and> F \<subseteq> A}. (ennreal (sum f F)))\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1722
    apply (subst pos_infsum_complete, simp)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1723
    apply (rule SUP_cong, blast)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1724
    apply (subst sum_ennreal[symmetric])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1725
    using fnn by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1726
  finally show ?thesis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1727
    by -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1728
qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1729
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1730
text \<open>This lemma helps to related a real-valued infsum to a supremum over extended reals.\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1731
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1732
lemma infsum_nonneg_is_SUPREMUM_ereal:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1733
  fixes f :: "'a \<Rightarrow> real"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1734
  assumes summable: "f summable_on A"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1735
    and fnn: "\<And>x. x\<in>A \<Longrightarrow> f x \<ge> 0"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1736
  shows "ereal (infsum f A) = (SUP F\<in>{F. finite F \<and> F \<subseteq> A}. (ereal (sum f F)))"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1737
proof -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1738
  have \<open>ereal (infsum f A) = infsum (ereal o f) A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1739
    apply (rule infsum_comm_additive_general[symmetric])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1740
    using assms by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1741
  also have \<open>\<dots> = (SUP F\<in>{F. finite F \<and> F \<subseteq> A}. (ereal (sum f F)))\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1742
    apply (subst pos_infsum_complete)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1743
    by (simp_all add: assms)[2]
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1744
  finally show ?thesis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1745
    by -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1746
qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1747
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1748
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1749
subsection \<open>Real numbers\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1750
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1751
text \<open>Most lemmas in the general property section already apply to real numbers.
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1752
      A few ones that are specific to reals are given here.\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1753
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1754
lemma infsum_nonneg_is_SUPREMUM_real:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1755
  fixes f :: "'a \<Rightarrow> real"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1756
  assumes summable: "f summable_on A"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1757
    and fnn: "\<And>x. x\<in>A \<Longrightarrow> f x \<ge> 0"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1758
  shows "infsum f A = (SUP F\<in>{F. finite F \<and> F \<subseteq> A}. (sum f F))"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1759
proof -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1760
  have "ereal (infsum f A) = (SUP F\<in>{F. finite F \<and> F \<subseteq> A}. (ereal (sum f F)))"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1761
    using assms by (rule infsum_nonneg_is_SUPREMUM_ereal)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1762
  also have "\<dots> = ereal (SUP F\<in>{F. finite F \<and> F \<subseteq> A}. (sum f F))"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1763
  proof (subst ereal_SUP)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1764
    show "\<bar>SUP a\<in>{F. finite F \<and> F \<subseteq> A}. ereal (sum f a)\<bar> \<noteq> \<infinity>"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1765
      using calculation by fastforce      
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1766
    show "(SUP F\<in>{F. finite F \<and> F \<subseteq> A}. ereal (sum f F)) = (SUP a\<in>{F. finite F \<and> F \<subseteq> A}. ereal (sum f a))"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1767
      by simp      
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1768
  qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1769
  finally show ?thesis by simp
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1770
qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1771
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1772
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1773
lemma has_sum_nonneg_SUPREMUM_real:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1774
  fixes f :: "'a \<Rightarrow> real"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1775
  assumes "f summable_on A" and "\<And>x. x\<in>A \<Longrightarrow> f x \<ge> 0"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1776
  shows "has_sum f A (SUP F\<in>{F. finite F \<and> F \<subseteq> A}. (sum f F))"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1777
  by (metis (mono_tags, lifting) assms has_sum_infsum infsum_nonneg_is_SUPREMUM_real)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1778
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1779
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1780
lemma summable_on_iff_abs_summable_on_real:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1781
  fixes f :: \<open>'a \<Rightarrow> real\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1782
  shows \<open>f summable_on A \<longleftrightarrow> f abs_summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1783
proof (rule iffI)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1784
  assume \<open>f summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1785
  define n A\<^sub>p A\<^sub>n
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1786
    where \<open>n x = norm (f x)\<close> and \<open>A\<^sub>p = {x\<in>A. f x \<ge> 0}\<close> and \<open>A\<^sub>n = {x\<in>A. f x < 0}\<close> for x
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1787
  have [simp]: \<open>A\<^sub>p \<union> A\<^sub>n = A\<close> \<open>A\<^sub>p \<inter> A\<^sub>n = {}\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1788
    by (auto simp: A\<^sub>p_def A\<^sub>n_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1789
  from \<open>f summable_on A\<close> have [simp]: \<open>f summable_on A\<^sub>p\<close> \<open>f summable_on A\<^sub>n\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1790
    using A\<^sub>p_def A\<^sub>n_def summable_on_subset_banach by fastforce+
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1791
  then have [simp]: \<open>n summable_on A\<^sub>p\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1792
    apply (subst summable_on_cong[where g=f])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1793
    by (simp_all add: A\<^sub>p_def n_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1794
  moreover have [simp]: \<open>n summable_on A\<^sub>n\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1795
    apply (subst summable_on_cong[where g=\<open>\<lambda>x. - f x\<close>])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1796
     apply (simp add: A\<^sub>n_def n_def[abs_def])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1797
    by (simp add: summable_on_uminus)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1798
  ultimately have [simp]: \<open>n summable_on (A\<^sub>p \<union> A\<^sub>n)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1799
    apply (rule summable_on_Un_disjoint) by simp
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1800
  then show \<open>n summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1801
    by simp
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1802
next
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1803
  show \<open>f abs_summable_on A \<Longrightarrow> f summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1804
    using abs_summable_summable by blast
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1805
qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1806
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1807
subsection \<open>Complex numbers\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1808
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1809
lemma has_sum_cnj_iff[simp]: 
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1810
  fixes f :: \<open>'a \<Rightarrow> complex\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1811
  shows \<open>has_sum (\<lambda>x. cnj (f x)) M (cnj a) \<longleftrightarrow> has_sum f M a\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1812
  by (simp add: has_sum_def lim_cnj del: cnj_sum add: cnj_sum[symmetric, abs_def, of f])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1813
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1814
lemma summable_on_cnj_iff[simp]:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1815
  "(\<lambda>i. cnj (f i)) summable_on A \<longleftrightarrow> f summable_on A"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1816
  by (metis complex_cnj_cnj summable_on_def has_sum_cnj_iff)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1817
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1818
lemma infsum_cnj[simp]: \<open>infsum (\<lambda>x. cnj (f x)) M = cnj (infsum f M)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1819
  by (metis complex_cnj_zero infsumI has_sum_cnj_iff infsum_def summable_on_cnj_iff has_sum_infsum)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1820
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1821
lemma infsum_Re:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1822
  assumes "f summable_on M"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1823
  shows "infsum (\<lambda>x. Re (f x)) M = Re (infsum f M)"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1824
  apply (rule infsum_comm_additive[where f=Re, unfolded o_def])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1825
  using assms by (auto intro!: additive.intro)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1826
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1827
lemma has_sum_Re:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1828
  assumes "has_sum f M a"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1829
  shows "has_sum (\<lambda>x. Re (f x)) M (Re a)"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1830
  apply (rule has_sum_comm_additive[where f=Re, unfolded o_def])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1831
  using assms by (auto intro!: additive.intro tendsto_Re)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1832
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1833
lemma summable_on_Re: 
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1834
  assumes "f summable_on M"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1835
  shows "(\<lambda>x. Re (f x)) summable_on M"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1836
  apply (rule summable_on_comm_additive[where f=Re, unfolded o_def])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1837
  using assms by (auto intro!: additive.intro)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1838
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1839
lemma infsum_Im: 
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1840
  assumes "f summable_on M"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1841
  shows "infsum (\<lambda>x. Im (f x)) M = Im (infsum f M)"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1842
  apply (rule infsum_comm_additive[where f=Im, unfolded o_def])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1843
  using assms by (auto intro!: additive.intro)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1844
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1845
lemma has_sum_Im:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1846
  assumes "has_sum f M a"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1847
  shows "has_sum (\<lambda>x. Im (f x)) M (Im a)"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1848
  apply (rule has_sum_comm_additive[where f=Im, unfolded o_def])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1849
  using assms by (auto intro!: additive.intro tendsto_Im)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1850
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1851
lemma summable_on_Im: 
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1852
  assumes "f summable_on M"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1853
  shows "(\<lambda>x. Im (f x)) summable_on M"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1854
  apply (rule summable_on_comm_additive[where f=Im, unfolded o_def])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1855
  using assms by (auto intro!: additive.intro)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1856
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1857
lemma infsum_0D_complex:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1858
  fixes f :: "'a \<Rightarrow> complex"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1859
  assumes "infsum f A \<le> 0"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1860
    and abs_sum: "f summable_on A"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1861
    and nneg: "\<And>x. x \<in> A \<Longrightarrow> f x \<ge> 0"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1862
    and "x \<in> A"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1863
  shows "f x = 0"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1864
proof -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1865
  have \<open>Im (f x) = 0\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1866
    apply (rule infsum_0D[where A=A])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1867
    using assms
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1868
    by (auto simp add: infsum_Im summable_on_Im less_eq_complex_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1869
  moreover have \<open>Re (f x) = 0\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1870
    apply (rule infsum_0D[where A=A])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1871
    using assms by (auto simp add: summable_on_Re infsum_Re less_eq_complex_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1872
  ultimately show ?thesis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1873
    by (simp add: complex_eqI)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1874
qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1875
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1876
lemma has_sum_0D_complex:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1877
  fixes f :: "'a \<Rightarrow> complex"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1878
  assumes "has_sum f A a" and \<open>a \<le> 0\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1879
    and "\<And>x. x \<in> A \<Longrightarrow> f x \<ge> 0" and "x \<in> A"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1880
  shows "f x = 0"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1881
  by (metis assms infsumI infsum_0D_complex summable_on_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1882
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1883
text \<open>The lemma @{thm [source] infsum_mono_neutral} above applies to various linear ordered monoids such as the reals but not to the complex numbers.
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1884
      Thus we have a separate corollary for those:\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1885
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1886
lemma infsum_mono_neutral_complex:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1887
  fixes f :: "'a \<Rightarrow> complex"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1888
  assumes [simp]: "f summable_on A"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1889
    and [simp]: "g summable_on B"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1890
  assumes \<open>\<And>x. x \<in> A\<inter>B \<Longrightarrow> f x \<le> g x\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1891
  assumes \<open>\<And>x. x \<in> A-B \<Longrightarrow> f x \<le> 0\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1892
  assumes \<open>\<And>x. x \<in> B-A \<Longrightarrow> g x \<ge> 0\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1893
  shows \<open>infsum f A \<le> infsum g B\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1894
proof -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1895
  have \<open>infsum (\<lambda>x. Re (f x)) A \<le> infsum (\<lambda>x. Re (g x)) B\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1896
    apply (rule infsum_mono_neutral)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1897
    using assms(3-5) by (auto simp add: summable_on_Re less_eq_complex_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1898
  then have Re: \<open>Re (infsum f A) \<le> Re (infsum g B)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1899
    by (metis assms(1-2) infsum_Re)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1900
  have \<open>infsum (\<lambda>x. Im (f x)) A = infsum (\<lambda>x. Im (g x)) B\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1901
    apply (rule infsum_cong_neutral)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1902
    using assms(3-5) by (auto simp add: summable_on_Re less_eq_complex_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1903
  then have Im: \<open>Im (infsum f A) = Im (infsum g B)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1904
    by (metis assms(1-2) infsum_Im)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1905
  from Re Im show ?thesis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1906
    by (auto simp: less_eq_complex_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1907
qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1908
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1909
lemma infsum_mono_complex:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1910
  \<comment> \<open>For \<^typ>\<open>real\<close>, @{thm [source] infsum_mono} can be used. 
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1911
      But \<^typ>\<open>complex\<close> does not have the right typeclass.\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1912
  fixes f g :: "'a \<Rightarrow> complex"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1913
  assumes f_sum: "f summable_on A" and g_sum: "g summable_on A"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1914
  assumes leq: "\<And>x. x \<in> A \<Longrightarrow> f x \<le> g x"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1915
  shows   "infsum f A \<le> infsum g A"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1916
  by (metis DiffE IntD1 f_sum g_sum infsum_mono_neutral_complex leq)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1917
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1918
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1919
lemma infsum_nonneg_complex:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1920
  fixes f :: "'a \<Rightarrow> complex"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1921
  assumes "f summable_on M"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1922
    and "\<And>x. x \<in> M \<Longrightarrow> 0 \<le> f x"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1923
  shows "infsum f M \<ge> 0" (is "?lhs \<ge> _")
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1924
  by (metis assms(1) assms(2) infsum_0_simp summable_on_0_simp infsum_mono_complex)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1925
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1926
lemma infsum_cmod:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1927
  assumes "f summable_on M"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1928
    and fnn: "\<And>x. x \<in> M \<Longrightarrow> 0 \<le> f x"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1929
  shows "infsum (\<lambda>x. cmod (f x)) M = cmod (infsum f M)"
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1930
proof -
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1931
  have \<open>complex_of_real (infsum (\<lambda>x. cmod (f x)) M) = infsum (\<lambda>x. complex_of_real (cmod (f x))) M\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1932
    apply (rule infsum_comm_additive[symmetric, unfolded o_def])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1933
    apply auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1934
    apply (simp add: additive.intro)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1935
    by (smt (verit, best) assms(1) cmod_eq_Re fnn summable_on_Re summable_on_cong less_eq_complex_def zero_complex.simps(1) zero_complex.simps(2))
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1936
  also have \<open>\<dots> = infsum f M\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1937
    apply (rule infsum_cong)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1938
    using fnn
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1939
    using cmod_eq_Re complex_is_Real_iff less_eq_complex_def by force
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1940
  finally show ?thesis
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1941
    by (metis abs_of_nonneg infsum_def le_less_trans norm_ge_zero norm_infsum_bound norm_of_real not_le order_refl)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1942
qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1943
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1944
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1945
lemma summable_on_iff_abs_summable_on_complex:
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1946
  fixes f :: \<open>'a \<Rightarrow> complex\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1947
  shows \<open>f summable_on A \<longleftrightarrow> f abs_summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1948
proof (rule iffI)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1949
  assume \<open>f summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1950
  define i r ni nr n where \<open>i x = Im (f x)\<close> and \<open>r x = Re (f x)\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1951
    and \<open>ni x = norm (i x)\<close> and \<open>nr x = norm (r x)\<close> and \<open>n x = norm (f x)\<close> for x
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1952
  from \<open>f summable_on A\<close> have \<open>i summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1953
    by (simp add: i_def[abs_def] summable_on_Im)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1954
  then have [simp]: \<open>ni summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1955
    using ni_def[abs_def] summable_on_iff_abs_summable_on_real by force
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1956
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1957
  from \<open>f summable_on A\<close> have \<open>r summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1958
    by (simp add: r_def[abs_def] summable_on_Re)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1959
  then have [simp]: \<open>nr summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1960
    by (metis nr_def summable_on_cong summable_on_iff_abs_summable_on_real)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1961
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1962
  have n_sum: \<open>n x \<le> nr x + ni x\<close> for x
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1963
    by (simp add: n_def nr_def ni_def r_def i_def cmod_le)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1964
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1965
  have *: \<open>(\<lambda>x. nr x + ni x) summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1966
    apply (rule summable_on_add) by auto
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1967
  show \<open>n summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1968
    apply (rule pos_summable_on)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1969
     apply (simp add: n_def)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1970
    apply (rule bdd_aboveI[where M=\<open>infsum (\<lambda>x. nr x + ni x) A\<close>])
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1971
    using * n_sum by (auto simp flip: infsum_finite simp: ni_def[abs_def] nr_def[abs_def] intro!: infsum_mono_neutral)
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1972
next
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1973
  show \<open>f abs_summable_on A \<Longrightarrow> f summable_on A\<close>
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1974
    using abs_summable_summable by blast
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1975
qed
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1976
409ca22dee4c new notion of infinite sums in HOL-Analysis, ordering on complex numbers
eberlm <eberlm@in.tum.de>
parents:
diff changeset
  1977
end