| author | lcp | 
| Wed, 11 Jan 1995 18:21:39 +0100 | |
| changeset 845 | 825e96b87ef7 | 
| parent 752 | b89462f9d5f1 | 
| child 1168 | 74be52691d62 | 
| permissions | -rw-r--r-- | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1 | (* Title: HOLCF/sprod3.thy | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 2 | ID: $Id$ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 3 | Author: Franz Regensburger | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 4 | Copyright 1993 Technische Universitaet Muenchen | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 5 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 6 | Class instance of ** for class pcpo | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 7 | *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 8 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 9 | Sprod3 = Sprod2 + | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 10 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 11 | arities "**" :: (pcpo,pcpo)pcpo (* Witness sprod2.ML *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 12 | |
| 752 
b89462f9d5f1
----------------------------------------------------------------------
 regensbu parents: 
657diff
changeset | 13 | consts | 
| 657 | 14 | 	spair        :: "'a -> 'b -> ('a**'b)" (* continuous strict pairing *)
 | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 15 | 	sfst         :: "('a**'b)->'a"
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 16 | 	ssnd         :: "('a**'b)->'b"
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 17 | 	ssplit       :: "('a->'b->'c)->('a**'b)->'c"
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 18 | |
| 752 
b89462f9d5f1
----------------------------------------------------------------------
 regensbu parents: 
657diff
changeset | 19 | syntax  "@spair"     :: "'a => 'b => ('a**'b)" ("_##_" [101,100] 100)
 | 
| 
b89462f9d5f1
----------------------------------------------------------------------
 regensbu parents: 
657diff
changeset | 20 | |
| 657 | 21 | translations "x##y" == "spair[x][y]" | 
| 625 | 22 | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 23 | rules | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 24 | |
| 442 
13ac1fd0a14d
added parentheses made necessary by change of constrain's precedence
 clasohm parents: 
243diff
changeset | 25 | inst_sprod_pcpo "(UU::'a**'b) = Ispair(UU,UU)" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 26 | spair_def "spair == (LAM x y.Ispair(x,y))" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 27 | sfst_def "sfst == (LAM p.Isfst(p))" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 28 | ssnd_def "ssnd == (LAM p.Issnd(p))" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 29 | ssplit_def "ssplit == (LAM f. strictify[LAM p.f[sfst[p]][ssnd[p]]])" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 30 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 31 | end | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 32 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 33 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 34 |