|
33189
|
1 |
header {* Simply-typed lambda-calculus with let and tuple patterns *}
|
|
|
2 |
|
|
|
3 |
theory Pattern
|
|
|
4 |
imports Nominal
|
|
|
5 |
begin
|
|
|
6 |
|
|
|
7 |
no_syntax
|
|
|
8 |
"_Map" :: "maplets => 'a ~=> 'b" ("(1[_])")
|
|
|
9 |
|
|
|
10 |
atom_decl name
|
|
|
11 |
|
|
|
12 |
nominal_datatype ty =
|
|
|
13 |
Atom nat
|
|
|
14 |
| Arrow ty ty (infixr "\<rightarrow>" 200)
|
|
|
15 |
| TupleT ty ty (infixr "\<otimes>" 210)
|
|
|
16 |
|
|
|
17 |
lemma fresh_type [simp]: "(a::name) \<sharp> (T::ty)"
|
|
|
18 |
by (induct T rule: ty.induct) (simp_all add: fresh_nat)
|
|
|
19 |
|
|
|
20 |
lemma supp_type [simp]: "supp (T::ty) = ({} :: name set)"
|
|
|
21 |
by (induct T rule: ty.induct) (simp_all add: ty.supp supp_nat)
|
|
|
22 |
|
|
|
23 |
lemma perm_type: "(pi::name prm) \<bullet> (T::ty) = T"
|
|
|
24 |
by (induct T rule: ty.induct) (simp_all add: perm_nat_def)
|
|
|
25 |
|
|
|
26 |
nominal_datatype trm =
|
|
|
27 |
Var name
|
|
|
28 |
| Tuple trm trm ("(1'\<langle>_,/ _'\<rangle>)")
|
|
|
29 |
| Abs ty "\<guillemotleft>name\<guillemotright>trm"
|
|
|
30 |
| App trm trm (infixl "\<cdot>" 200)
|
|
|
31 |
| Let ty trm btrm
|
|
|
32 |
and btrm =
|
|
|
33 |
Base trm
|
|
|
34 |
| Bind ty "\<guillemotleft>name\<guillemotright>btrm"
|
|
|
35 |
|
|
|
36 |
abbreviation
|
|
|
37 |
Abs_syn :: "name \<Rightarrow> ty \<Rightarrow> trm \<Rightarrow> trm" ("(3\<lambda>_:_./ _)" [0, 0, 10] 10)
|
|
|
38 |
where
|
|
|
39 |
"\<lambda>x:T. t \<equiv> Abs T x t"
|
|
|
40 |
|
|
|
41 |
datatype pat =
|
|
|
42 |
PVar name ty
|
|
|
43 |
| PTuple pat pat ("(1'\<langle>\<langle>_,/ _'\<rangle>\<rangle>)")
|
|
|
44 |
|
|
|
45 |
(* FIXME: The following should be done automatically by the nominal package *)
|
|
|
46 |
overloading pat_perm \<equiv> "perm :: name prm \<Rightarrow> pat \<Rightarrow> pat" (unchecked)
|
|
|
47 |
begin
|
|
|
48 |
|
|
|
49 |
primrec pat_perm
|
|
|
50 |
where
|
|
|
51 |
"pat_perm pi (PVar x ty) = PVar (pi \<bullet> x) (pi \<bullet> ty)"
|
|
|
52 |
| "pat_perm pi \<langle>\<langle>p, q\<rangle>\<rangle> = \<langle>\<langle>pat_perm pi p, pat_perm pi q\<rangle>\<rangle>"
|
|
|
53 |
|
|
|
54 |
end
|
|
|
55 |
|
|
|
56 |
declare pat_perm.simps [eqvt]
|
|
|
57 |
|
|
|
58 |
lemma supp_PVar [simp]: "((supp (PVar x T))::name set) = supp x"
|
|
|
59 |
by (simp add: supp_def perm_fresh_fresh)
|
|
|
60 |
|
|
|
61 |
lemma supp_PTuple [simp]: "((supp \<langle>\<langle>p, q\<rangle>\<rangle>)::name set) = supp p \<union> supp q"
|
|
|
62 |
by (simp add: supp_def Collect_disj_eq del: disj_not1)
|
|
|
63 |
|
|
|
64 |
instance pat :: pt_name
|
|
|
65 |
proof intro_classes
|
|
|
66 |
case goal1
|
|
|
67 |
show ?case by (induct x) simp_all
|
|
|
68 |
next
|
|
|
69 |
case goal2
|
|
|
70 |
show ?case by (induct x) (simp_all add: pt_name2)
|
|
|
71 |
next
|
|
|
72 |
case goal3
|
|
|
73 |
then show ?case by (induct x) (simp_all add: pt_name3)
|
|
|
74 |
qed
|
|
|
75 |
|
|
|
76 |
instance pat :: fs_name
|
|
|
77 |
proof intro_classes
|
|
|
78 |
case goal1
|
|
|
79 |
show ?case by (induct x) (simp_all add: fin_supp)
|
|
|
80 |
qed
|
|
|
81 |
|
|
|
82 |
(* the following function cannot be defined using nominal_primrec, *)
|
|
|
83 |
(* since variable parameters are currently not allowed. *)
|
|
|
84 |
primrec abs_pat :: "pat \<Rightarrow> btrm \<Rightarrow> btrm" ("(3\<lambda>[_]./ _)" [0, 10] 10)
|
|
|
85 |
where
|
|
|
86 |
"(\<lambda>[PVar x T]. t) = Bind T x t"
|
|
|
87 |
| "(\<lambda>[\<langle>\<langle>p, q\<rangle>\<rangle>]. t) = (\<lambda>[p]. \<lambda>[q]. t)"
|
|
|
88 |
|
|
|
89 |
lemma abs_pat_eqvt [eqvt]:
|
|
|
90 |
"(pi :: name prm) \<bullet> (\<lambda>[p]. t) = (\<lambda>[pi \<bullet> p]. (pi \<bullet> t))"
|
|
|
91 |
by (induct p arbitrary: t) simp_all
|
|
|
92 |
|
|
|
93 |
lemma abs_pat_fresh [simp]:
|
|
|
94 |
"(x::name) \<sharp> (\<lambda>[p]. t) = (x \<in> supp p \<or> x \<sharp> t)"
|
|
|
95 |
by (induct p arbitrary: t) (simp_all add: abs_fresh supp_atm)
|
|
|
96 |
|
|
|
97 |
lemma abs_pat_alpha:
|
|
|
98 |
assumes fresh: "((pi::name prm) \<bullet> supp p::name set) \<sharp>* t"
|
|
|
99 |
and pi: "set pi \<subseteq> supp p \<times> pi \<bullet> supp p"
|
|
|
100 |
shows "(\<lambda>[p]. t) = (\<lambda>[pi \<bullet> p]. pi \<bullet> t)"
|
|
|
101 |
proof -
|
|
|
102 |
note pt_name_inst at_name_inst pi
|
|
|
103 |
moreover have "(supp p::name set) \<sharp>* (\<lambda>[p]. t)"
|
|
|
104 |
by (simp add: fresh_star_def)
|
|
|
105 |
moreover from fresh
|
|
|
106 |
have "(pi \<bullet> supp p::name set) \<sharp>* (\<lambda>[p]. t)"
|
|
|
107 |
by (simp add: fresh_star_def)
|
|
|
108 |
ultimately have "pi \<bullet> (\<lambda>[p]. t) = (\<lambda>[p]. t)"
|
|
|
109 |
by (rule pt_freshs_freshs)
|
|
|
110 |
then show ?thesis by (simp add: eqvts)
|
|
|
111 |
qed
|
|
|
112 |
|
|
|
113 |
primrec pat_vars :: "pat \<Rightarrow> name list"
|
|
|
114 |
where
|
|
|
115 |
"pat_vars (PVar x T) = [x]"
|
|
|
116 |
| "pat_vars \<langle>\<langle>p, q\<rangle>\<rangle> = pat_vars q @ pat_vars p"
|
|
|
117 |
|
|
|
118 |
lemma pat_vars_eqvt [eqvt]:
|
|
|
119 |
"(pi :: name prm) \<bullet> (pat_vars p) = pat_vars (pi \<bullet> p)"
|
|
|
120 |
by (induct p rule: pat.induct) (simp_all add: eqvts)
|
|
|
121 |
|
|
|
122 |
lemma set_pat_vars_supp: "set (pat_vars p) = supp p"
|
|
|
123 |
by (induct p) (auto simp add: supp_atm)
|
|
|
124 |
|
|
|
125 |
lemma distinct_eqvt [eqvt]:
|
|
|
126 |
"(pi :: name prm) \<bullet> (distinct (xs::name list)) = distinct (pi \<bullet> xs)"
|
|
|
127 |
by (induct xs) (simp_all add: eqvts)
|
|
|
128 |
|
|
|
129 |
primrec pat_type :: "pat \<Rightarrow> ty"
|
|
|
130 |
where
|
|
|
131 |
"pat_type (PVar x T) = T"
|
|
|
132 |
| "pat_type \<langle>\<langle>p, q\<rangle>\<rangle> = pat_type p \<otimes> pat_type q"
|
|
|
133 |
|
|
|
134 |
lemma pat_type_eqvt [eqvt]:
|
|
|
135 |
"(pi :: name prm) \<bullet> (pat_type p) = pat_type (pi \<bullet> p)"
|
|
|
136 |
by (induct p) simp_all
|
|
|
137 |
|
|
|
138 |
lemma pat_type_perm_eq: "pat_type ((pi :: name prm) \<bullet> p) = pat_type p"
|
|
|
139 |
by (induct p) (simp_all add: perm_type)
|
|
|
140 |
|
|
|
141 |
types ctx = "(name \<times> ty) list"
|
|
|
142 |
|
|
|
143 |
inductive
|
|
|
144 |
ptyping :: "pat \<Rightarrow> ty \<Rightarrow> ctx \<Rightarrow> bool" ("\<turnstile> _ : _ \<Rightarrow> _" [60, 60, 60] 60)
|
|
|
145 |
where
|
|
|
146 |
PVar: "\<turnstile> PVar x T : T \<Rightarrow> [(x, T)]"
|
|
|
147 |
| PTuple: "\<turnstile> p : T \<Rightarrow> \<Delta>\<^isub>1 \<Longrightarrow> \<turnstile> q : U \<Rightarrow> \<Delta>\<^isub>2 \<Longrightarrow> \<turnstile> \<langle>\<langle>p, q\<rangle>\<rangle> : T \<otimes> U \<Rightarrow> \<Delta>\<^isub>2 @ \<Delta>\<^isub>1"
|
|
|
148 |
|
|
|
149 |
lemma pat_vars_ptyping:
|
|
|
150 |
assumes "\<turnstile> p : T \<Rightarrow> \<Delta>"
|
|
|
151 |
shows "pat_vars p = map fst \<Delta>" using assms
|
|
|
152 |
by induct simp_all
|
|
|
153 |
|
|
|
154 |
inductive
|
|
|
155 |
valid :: "ctx \<Rightarrow> bool"
|
|
|
156 |
where
|
|
|
157 |
Nil [intro!]: "valid []"
|
|
|
158 |
| Cons [intro!]: "valid \<Gamma> \<Longrightarrow> x \<sharp> \<Gamma> \<Longrightarrow> valid ((x, T) # \<Gamma>)"
|
|
|
159 |
|
|
|
160 |
inductive_cases validE[elim!]: "valid ((x, T) # \<Gamma>)"
|
|
|
161 |
|
|
|
162 |
lemma fresh_ctxt_set_eq: "((x::name) \<sharp> (\<Gamma>::ctx)) = (x \<notin> fst ` set \<Gamma>)"
|
|
|
163 |
by (induct \<Gamma>) (auto simp add: fresh_list_nil fresh_list_cons fresh_prod fresh_atm)
|
|
|
164 |
|
|
|
165 |
lemma valid_distinct: "valid \<Gamma> = distinct (map fst \<Gamma>)"
|
|
|
166 |
by (induct \<Gamma>) (auto simp add: fresh_ctxt_set_eq [symmetric])
|
|
|
167 |
|
|
|
168 |
abbreviation
|
|
|
169 |
"sub_ctx" :: "ctx \<Rightarrow> ctx \<Rightarrow> bool" ("_ \<sqsubseteq> _")
|
|
|
170 |
where
|
|
|
171 |
"\<Gamma>\<^isub>1 \<sqsubseteq> \<Gamma>\<^isub>2 \<equiv> \<forall>x. x \<in> set \<Gamma>\<^isub>1 \<longrightarrow> x \<in> set \<Gamma>\<^isub>2"
|
|
|
172 |
|
|
|
173 |
abbreviation
|
|
|
174 |
Let_syn :: "pat \<Rightarrow> trm \<Rightarrow> trm \<Rightarrow> trm" ("(LET (_ =/ _)/ IN (_))" 10)
|
|
|
175 |
where
|
|
|
176 |
"LET p = t IN u \<equiv> Let (pat_type p) t (\<lambda>[p]. Base u)"
|
|
|
177 |
|
|
|
178 |
inductive typing :: "ctx \<Rightarrow> trm \<Rightarrow> ty \<Rightarrow> bool" ("_ \<turnstile> _ : _" [60, 60, 60] 60)
|
|
|
179 |
where
|
|
|
180 |
Var [intro]: "valid \<Gamma> \<Longrightarrow> (x, T) \<in> set \<Gamma> \<Longrightarrow> \<Gamma> \<turnstile> Var x : T"
|
|
|
181 |
| Tuple [intro]: "\<Gamma> \<turnstile> t : T \<Longrightarrow> \<Gamma> \<turnstile> u : U \<Longrightarrow> \<Gamma> \<turnstile> \<langle>t, u\<rangle> : T \<otimes> U"
|
|
|
182 |
| Abs [intro]: "(x, T) # \<Gamma> \<turnstile> t : U \<Longrightarrow> \<Gamma> \<turnstile> (\<lambda>x:T. t) : T \<rightarrow> U"
|
|
|
183 |
| App [intro]: "\<Gamma> \<turnstile> t : T \<rightarrow> U \<Longrightarrow> \<Gamma> \<turnstile> u : T \<Longrightarrow> \<Gamma> \<turnstile> t \<cdot> u : U"
|
|
|
184 |
| Let: "((supp p)::name set) \<sharp>* t \<Longrightarrow>
|
|
|
185 |
\<Gamma> \<turnstile> t : T \<Longrightarrow> \<turnstile> p : T \<Rightarrow> \<Delta> \<Longrightarrow> \<Delta> @ \<Gamma> \<turnstile> u : U \<Longrightarrow>
|
|
|
186 |
\<Gamma> \<turnstile> (LET p = t IN u) : U"
|
|
|
187 |
|
|
|
188 |
equivariance ptyping
|
|
|
189 |
|
|
|
190 |
equivariance valid
|
|
|
191 |
|
|
|
192 |
equivariance typing
|
|
|
193 |
|
|
|
194 |
lemma valid_typing:
|
|
|
195 |
assumes "\<Gamma> \<turnstile> t : T"
|
|
|
196 |
shows "valid \<Gamma>" using assms
|
|
|
197 |
by induct auto
|
|
|
198 |
|
|
|
199 |
lemma pat_var:
|
|
|
200 |
assumes "\<turnstile> p : T \<Rightarrow> \<Delta>"
|
|
|
201 |
shows "(supp p::name set) = supp \<Delta>" using assms
|
|
|
202 |
by induct (auto simp add: supp_list_nil supp_list_cons supp_prod supp_list_append)
|
|
|
203 |
|
|
|
204 |
lemma valid_app_fresh:
|
|
|
205 |
assumes "valid (\<Delta> @ \<Gamma>)" and "(x::name) \<in> supp \<Delta>"
|
|
|
206 |
shows "x \<sharp> \<Gamma>" using assms
|
|
|
207 |
by (induct \<Delta>)
|
|
|
208 |
(auto simp add: supp_list_nil supp_list_cons supp_prod supp_atm fresh_list_append)
|
|
|
209 |
|
|
|
210 |
lemma pat_freshs:
|
|
|
211 |
assumes "\<turnstile> p : T \<Rightarrow> \<Delta>"
|
|
|
212 |
shows "(supp p::name set) \<sharp>* c = (supp \<Delta>::name set) \<sharp>* c" using assms
|
|
|
213 |
by (auto simp add: fresh_star_def pat_var)
|
|
|
214 |
|
|
|
215 |
lemma valid_app_mono:
|
|
|
216 |
assumes "valid (\<Delta> @ \<Gamma>\<^isub>1)" and "(supp \<Delta>::name set) \<sharp>* \<Gamma>\<^isub>2" and "valid \<Gamma>\<^isub>2" and "\<Gamma>\<^isub>1 \<sqsubseteq> \<Gamma>\<^isub>2"
|
|
|
217 |
shows "valid (\<Delta> @ \<Gamma>\<^isub>2)" using assms
|
|
|
218 |
by (induct \<Delta>)
|
|
|
219 |
(auto simp add: supp_list_cons fresh_star_Un_elim supp_prod
|
|
|
220 |
fresh_list_append supp_atm fresh_star_insert_elim fresh_star_empty_elim)
|
|
|
221 |
|
|
|
222 |
nominal_inductive2 typing
|
|
|
223 |
avoids
|
|
|
224 |
Abs: "{x}"
|
|
|
225 |
| Let: "(supp p)::name set"
|
|
|
226 |
by (auto simp add: fresh_star_def abs_fresh fin_supp pat_var
|
|
|
227 |
dest!: valid_typing valid_app_fresh)
|
|
|
228 |
|
|
|
229 |
lemma better_T_Let [intro]:
|
|
|
230 |
assumes t: "\<Gamma> \<turnstile> t : T" and p: "\<turnstile> p : T \<Rightarrow> \<Delta>" and u: "\<Delta> @ \<Gamma> \<turnstile> u : U"
|
|
|
231 |
shows "\<Gamma> \<turnstile> (LET p = t IN u) : U"
|
|
|
232 |
proof -
|
|
|
233 |
obtain pi::"name prm" where pi: "(pi \<bullet> (supp p::name set)) \<sharp>* (t, Base u, \<Gamma>)"
|
|
|
234 |
and pi': "set pi \<subseteq> supp p \<times> (pi \<bullet> supp p)"
|
|
|
235 |
by (rule at_set_avoiding [OF at_name_inst fin_supp fin_supp])
|
|
|
236 |
from p u have p_fresh: "(supp p::name set) \<sharp>* \<Gamma>"
|
|
|
237 |
by (auto simp add: fresh_star_def pat_var dest!: valid_typing valid_app_fresh)
|
|
|
238 |
from pi have p_fresh': "(pi \<bullet> (supp p::name set)) \<sharp>* \<Gamma>"
|
|
|
239 |
by (simp add: fresh_star_prod_elim)
|
|
|
240 |
from pi have p_fresh'': "(pi \<bullet> (supp p::name set)) \<sharp>* Base u"
|
|
|
241 |
by (simp add: fresh_star_prod_elim)
|
|
|
242 |
from pi have "(supp (pi \<bullet> p)::name set) \<sharp>* t"
|
|
|
243 |
by (simp add: fresh_star_prod_elim eqvts)
|
|
|
244 |
moreover note t
|
|
|
245 |
moreover from p have "pi \<bullet> (\<turnstile> p : T \<Rightarrow> \<Delta>)" by (rule perm_boolI)
|
|
|
246 |
then have "\<turnstile> (pi \<bullet> p) : T \<Rightarrow> (pi \<bullet> \<Delta>)" by (simp add: eqvts perm_type)
|
|
|
247 |
moreover from u have "pi \<bullet> (\<Delta> @ \<Gamma> \<turnstile> u : U)" by (rule perm_boolI)
|
|
|
248 |
with pt_freshs_freshs [OF pt_name_inst at_name_inst pi' p_fresh p_fresh']
|
|
|
249 |
have "(pi \<bullet> \<Delta>) @ \<Gamma> \<turnstile> (pi \<bullet> u) : U" by (simp add: eqvts perm_type)
|
|
|
250 |
ultimately have "\<Gamma> \<turnstile> (LET (pi \<bullet> p) = t IN (pi \<bullet> u)) : U"
|
|
|
251 |
by (rule Let)
|
|
|
252 |
then show ?thesis by (simp add: abs_pat_alpha [OF p_fresh'' pi'] pat_type_perm_eq)
|
|
|
253 |
qed
|
|
|
254 |
|
|
|
255 |
lemma weakening:
|
|
|
256 |
assumes "\<Gamma>\<^isub>1 \<turnstile> t : T" and "valid \<Gamma>\<^isub>2" and "\<Gamma>\<^isub>1 \<sqsubseteq> \<Gamma>\<^isub>2"
|
|
|
257 |
shows "\<Gamma>\<^isub>2 \<turnstile> t : T" using assms
|
|
|
258 |
apply (nominal_induct \<Gamma>\<^isub>1 t T avoiding: \<Gamma>\<^isub>2 rule: typing.strong_induct)
|
|
|
259 |
apply auto
|
|
|
260 |
apply (drule_tac x="(x, T) # \<Gamma>\<^isub>2" in meta_spec)
|
|
|
261 |
apply (auto intro: valid_typing)
|
|
|
262 |
apply (drule_tac x="\<Gamma>\<^isub>2" in meta_spec)
|
|
|
263 |
apply (drule_tac x="\<Delta> @ \<Gamma>\<^isub>2" in meta_spec)
|
|
|
264 |
apply (auto intro: valid_typing)
|
|
|
265 |
apply (rule typing.Let)
|
|
|
266 |
apply assumption+
|
|
|
267 |
apply (drule meta_mp)
|
|
|
268 |
apply (rule valid_app_mono)
|
|
|
269 |
apply (rule valid_typing)
|
|
|
270 |
apply assumption
|
|
|
271 |
apply (auto simp add: pat_freshs)
|
|
|
272 |
done
|
|
|
273 |
|
|
|
274 |
inductive
|
|
|
275 |
match :: "pat \<Rightarrow> trm \<Rightarrow> (name \<times> trm) list \<Rightarrow> bool" ("\<turnstile> _ \<rhd> _ \<Rightarrow> _" [50, 50, 50] 50)
|
|
|
276 |
where
|
|
|
277 |
PVar: "\<turnstile> PVar x T \<rhd> t \<Rightarrow> [(x, t)]"
|
|
|
278 |
| PProd: "\<turnstile> p \<rhd> t \<Rightarrow> \<theta> \<Longrightarrow> \<turnstile> q \<rhd> u \<Rightarrow> \<theta>' \<Longrightarrow> \<turnstile> \<langle>\<langle>p, q\<rangle>\<rangle> \<rhd> \<langle>t, u\<rangle> \<Rightarrow> \<theta> @ \<theta>'"
|
|
|
279 |
|
|
|
280 |
fun
|
|
|
281 |
lookup :: "(name \<times> trm) list \<Rightarrow> name \<Rightarrow> trm"
|
|
|
282 |
where
|
|
|
283 |
"lookup [] x = Var x"
|
|
|
284 |
| "lookup ((y, e) # \<theta>) x = (if x = y then e else lookup \<theta> x)"
|
|
|
285 |
|
|
|
286 |
lemma lookup_eqvt[eqvt]:
|
|
|
287 |
fixes pi :: "name prm"
|
|
|
288 |
and \<theta> :: "(name \<times> trm) list"
|
|
|
289 |
and X :: "name"
|
|
|
290 |
shows "pi \<bullet> (lookup \<theta> X) = lookup (pi \<bullet> \<theta>) (pi \<bullet> X)"
|
|
|
291 |
by (induct \<theta>) (auto simp add: eqvts)
|
|
|
292 |
|
|
|
293 |
nominal_primrec
|
|
|
294 |
psubst :: "(name \<times> trm) list \<Rightarrow> trm \<Rightarrow> trm" ("_\<lparr>_\<rparr>" [95,0] 210)
|
|
|
295 |
and psubstb :: "(name \<times> trm) list \<Rightarrow> btrm \<Rightarrow> btrm" ("_\<lparr>_\<rparr>\<^sub>b" [95,0] 210)
|
|
|
296 |
where
|
|
|
297 |
"\<theta>\<lparr>Var x\<rparr> = (lookup \<theta> x)"
|
|
|
298 |
| "\<theta>\<lparr>t \<cdot> u\<rparr> = \<theta>\<lparr>t\<rparr> \<cdot> \<theta>\<lparr>u\<rparr>"
|
|
|
299 |
| "\<theta>\<lparr>\<langle>t, u\<rangle>\<rparr> = \<langle>\<theta>\<lparr>t\<rparr>, \<theta>\<lparr>u\<rparr>\<rangle>"
|
|
|
300 |
| "\<theta>\<lparr>Let T t u\<rparr> = Let T (\<theta>\<lparr>t\<rparr>) (\<theta>\<lparr>u\<rparr>\<^sub>b)"
|
|
|
301 |
| "x \<sharp> \<theta> \<Longrightarrow> \<theta>\<lparr>\<lambda>x:T. t\<rparr> = (\<lambda>x:T. \<theta>\<lparr>t\<rparr>)"
|
|
|
302 |
| "\<theta>\<lparr>Base t\<rparr>\<^sub>b = Base (\<theta>\<lparr>t\<rparr>)"
|
|
|
303 |
| "x \<sharp> \<theta> \<Longrightarrow> \<theta>\<lparr>Bind T x t\<rparr>\<^sub>b = Bind T x (\<theta>\<lparr>t\<rparr>\<^sub>b)"
|
|
|
304 |
apply finite_guess+
|
|
|
305 |
apply (simp add: abs_fresh | fresh_guess)+
|
|
|
306 |
done
|
|
|
307 |
|
|
|
308 |
lemma lookup_fresh:
|
|
|
309 |
"x = y \<longrightarrow> x \<in> set (map fst \<theta>) \<Longrightarrow> \<forall>(y, t)\<in>set \<theta>. x \<sharp> t \<Longrightarrow> x \<sharp> lookup \<theta> y"
|
|
|
310 |
apply (induct \<theta>)
|
|
|
311 |
apply (simp_all add: split_paired_all fresh_atm)
|
|
|
312 |
apply (case_tac "x = y")
|
|
|
313 |
apply (auto simp add: fresh_atm)
|
|
|
314 |
done
|
|
|
315 |
|
|
|
316 |
lemma psubst_fresh:
|
|
|
317 |
assumes "x \<in> set (map fst \<theta>)" and "\<forall>(y, t)\<in>set \<theta>. x \<sharp> t"
|
|
|
318 |
shows "x \<sharp> \<theta>\<lparr>t\<rparr>" and "x \<sharp> \<theta>\<lparr>t'\<rparr>\<^sub>b" using assms
|
|
|
319 |
apply (nominal_induct t and t' avoiding: \<theta> rule: trm_btrm.strong_inducts)
|
|
|
320 |
apply simp
|
|
|
321 |
apply (rule lookup_fresh)
|
|
|
322 |
apply (rule impI)
|
|
|
323 |
apply (simp_all add: abs_fresh)
|
|
|
324 |
done
|
|
|
325 |
|
|
|
326 |
lemma psubst_eqvt[eqvt]:
|
|
|
327 |
fixes pi :: "name prm"
|
|
|
328 |
shows "pi \<bullet> (\<theta>\<lparr>t\<rparr>) = (pi \<bullet> \<theta>)\<lparr>pi \<bullet> t\<rparr>"
|
|
|
329 |
and "pi \<bullet> (\<theta>\<lparr>t'\<rparr>\<^sub>b) = (pi \<bullet> \<theta>)\<lparr>pi \<bullet> t'\<rparr>\<^sub>b"
|
|
|
330 |
by (nominal_induct t and t' avoiding: \<theta> rule: trm_btrm.strong_inducts)
|
|
|
331 |
(simp_all add: eqvts fresh_bij)
|
|
|
332 |
|
|
|
333 |
abbreviation
|
|
|
334 |
subst :: "trm \<Rightarrow> name \<Rightarrow> trm \<Rightarrow> trm" ("_[_\<mapsto>_]" [100,0,0] 100)
|
|
|
335 |
where
|
|
|
336 |
"t[x\<mapsto>t'] \<equiv> [(x,t')]\<lparr>t\<rparr>"
|
|
|
337 |
|
|
|
338 |
abbreviation
|
|
|
339 |
substb :: "btrm \<Rightarrow> name \<Rightarrow> trm \<Rightarrow> btrm" ("_[_\<mapsto>_]\<^sub>b" [100,0,0] 100)
|
|
|
340 |
where
|
|
|
341 |
"t[x\<mapsto>t']\<^sub>b \<equiv> [(x,t')]\<lparr>t\<rparr>\<^sub>b"
|
|
|
342 |
|
|
|
343 |
lemma lookup_forget:
|
|
|
344 |
"(supp (map fst \<theta>)::name set) \<sharp>* x \<Longrightarrow> lookup \<theta> x = Var x"
|
|
|
345 |
by (induct \<theta>) (auto simp add: split_paired_all fresh_star_def fresh_atm supp_list_cons supp_atm)
|
|
|
346 |
|
|
|
347 |
lemma supp_fst: "(x::name) \<in> supp (map fst (\<theta>::(name \<times> trm) list)) \<Longrightarrow> x \<in> supp \<theta>"
|
|
|
348 |
by (induct \<theta>) (auto simp add: supp_list_nil supp_list_cons supp_prod)
|
|
|
349 |
|
|
|
350 |
lemma psubst_forget:
|
|
|
351 |
"(supp (map fst \<theta>)::name set) \<sharp>* t \<Longrightarrow> \<theta>\<lparr>t\<rparr> = t"
|
|
|
352 |
"(supp (map fst \<theta>)::name set) \<sharp>* t' \<Longrightarrow> \<theta>\<lparr>t'\<rparr>\<^sub>b = t'"
|
|
|
353 |
apply (nominal_induct t and t' avoiding: \<theta> rule: trm_btrm.strong_inducts)
|
|
|
354 |
apply (auto simp add: fresh_star_def lookup_forget abs_fresh)
|
|
|
355 |
apply (drule_tac x=\<theta> in meta_spec)
|
|
|
356 |
apply (drule meta_mp)
|
|
|
357 |
apply (rule ballI)
|
|
|
358 |
apply (drule_tac x=x in bspec)
|
|
|
359 |
apply assumption
|
|
|
360 |
apply (drule supp_fst)
|
|
|
361 |
apply (auto simp add: fresh_def)
|
|
|
362 |
apply (drule_tac x=\<theta> in meta_spec)
|
|
|
363 |
apply (drule meta_mp)
|
|
|
364 |
apply (rule ballI)
|
|
|
365 |
apply (drule_tac x=x in bspec)
|
|
|
366 |
apply assumption
|
|
|
367 |
apply (drule supp_fst)
|
|
|
368 |
apply (auto simp add: fresh_def)
|
|
|
369 |
done
|
|
|
370 |
|
|
|
371 |
lemma psubst_nil: "[]\<lparr>t\<rparr> = t" "[]\<lparr>t'\<rparr>\<^sub>b = t'"
|
|
|
372 |
by (induct t and t' rule: trm_btrm.inducts) (simp_all add: fresh_list_nil)
|
|
|
373 |
|
|
|
374 |
lemma psubst_cons:
|
|
|
375 |
assumes "(supp (map fst \<theta>)::name set) \<sharp>* u"
|
|
|
376 |
shows "((x, u) # \<theta>)\<lparr>t\<rparr> = \<theta>\<lparr>t[x\<mapsto>u]\<rparr>" and "((x, u) # \<theta>)\<lparr>t'\<rparr>\<^sub>b = \<theta>\<lparr>t'[x\<mapsto>u]\<^sub>b\<rparr>\<^sub>b"
|
|
|
377 |
using assms
|
|
|
378 |
by (nominal_induct t and t' avoiding: x u \<theta> rule: trm_btrm.strong_inducts)
|
|
|
379 |
(simp_all add: fresh_list_nil fresh_list_cons psubst_forget)
|
|
|
380 |
|
|
|
381 |
lemma psubst_append:
|
|
|
382 |
"(supp (map fst (\<theta>\<^isub>1 @ \<theta>\<^isub>2))::name set) \<sharp>* map snd (\<theta>\<^isub>1 @ \<theta>\<^isub>2) \<Longrightarrow> (\<theta>\<^isub>1 @ \<theta>\<^isub>2)\<lparr>t\<rparr> = \<theta>\<^isub>2\<lparr>\<theta>\<^isub>1\<lparr>t\<rparr>\<rparr>"
|
|
|
383 |
by (induct \<theta>\<^isub>1 arbitrary: t)
|
|
|
384 |
(simp_all add: psubst_nil split_paired_all supp_list_cons psubst_cons fresh_star_def
|
|
|
385 |
fresh_list_cons fresh_list_append supp_list_append)
|
|
|
386 |
|
|
|
387 |
lemma abs_pat_psubst [simp]:
|
|
|
388 |
"(supp p::name set) \<sharp>* \<theta> \<Longrightarrow> \<theta>\<lparr>\<lambda>[p]. t\<rparr>\<^sub>b = (\<lambda>[p]. \<theta>\<lparr>t\<rparr>\<^sub>b)"
|
|
|
389 |
by (induct p arbitrary: t) (auto simp add: fresh_star_def supp_atm)
|
|
|
390 |
|
|
|
391 |
lemma valid_insert:
|
|
|
392 |
assumes "valid (\<Delta> @ [(x, T)] @ \<Gamma>)"
|
|
|
393 |
shows "valid (\<Delta> @ \<Gamma>)" using assms
|
|
|
394 |
by (induct \<Delta>)
|
|
|
395 |
(auto simp add: fresh_list_append fresh_list_cons)
|
|
|
396 |
|
|
|
397 |
lemma fresh_set:
|
|
|
398 |
shows "y \<sharp> xs = (\<forall>x\<in>set xs. y \<sharp> x)"
|
|
|
399 |
by (induct xs) (simp_all add: fresh_list_nil fresh_list_cons)
|
|
|
400 |
|
|
|
401 |
lemma context_unique:
|
|
|
402 |
assumes "valid \<Gamma>"
|
|
|
403 |
and "(x, T) \<in> set \<Gamma>"
|
|
|
404 |
and "(x, U) \<in> set \<Gamma>"
|
|
|
405 |
shows "T = U" using assms
|
|
|
406 |
by induct (auto simp add: fresh_set fresh_prod fresh_atm)
|
|
|
407 |
|
|
|
408 |
lemma subst_type_aux:
|
|
|
409 |
assumes a: "\<Delta> @ [(x, U)] @ \<Gamma> \<turnstile> t : T"
|
|
|
410 |
and b: "\<Gamma> \<turnstile> u : U"
|
|
|
411 |
shows "\<Delta> @ \<Gamma> \<turnstile> t[x\<mapsto>u] : T" using a b
|
|
|
412 |
proof (nominal_induct \<Gamma>'\<equiv>"\<Delta> @ [(x, U)] @ \<Gamma>" t T avoiding: x u \<Delta> rule: typing.strong_induct)
|
|
|
413 |
case (Var \<Gamma>' y T x u \<Delta>)
|
|
|
414 |
then have a1: "valid (\<Delta> @ [(x, U)] @ \<Gamma>)"
|
|
|
415 |
and a2: "(y, T) \<in> set (\<Delta> @ [(x, U)] @ \<Gamma>)"
|
|
|
416 |
and a3: "\<Gamma> \<turnstile> u : U" by simp_all
|
|
|
417 |
from a1 have a4: "valid (\<Delta> @ \<Gamma>)" by (rule valid_insert)
|
|
|
418 |
show "\<Delta> @ \<Gamma> \<turnstile> Var y[x\<mapsto>u] : T"
|
|
|
419 |
proof cases
|
|
|
420 |
assume eq: "x = y"
|
|
|
421 |
from a1 a2 have "T = U" using eq by (auto intro: context_unique)
|
|
|
422 |
with a3 show "\<Delta> @ \<Gamma> \<turnstile> Var y[x\<mapsto>u] : T" using eq a4 by (auto intro: weakening)
|
|
|
423 |
next
|
|
|
424 |
assume ineq: "x \<noteq> y"
|
|
|
425 |
from a2 have "(y, T) \<in> set (\<Delta> @ \<Gamma>)" using ineq by simp
|
|
|
426 |
then show "\<Delta> @ \<Gamma> \<turnstile> Var y[x\<mapsto>u] : T" using ineq a4 by auto
|
|
|
427 |
qed
|
|
|
428 |
next
|
|
|
429 |
case (Tuple \<Gamma>' t\<^isub>1 T\<^isub>1 t\<^isub>2 T\<^isub>2)
|
|
|
430 |
from `\<Gamma> \<turnstile> u : U` `\<Gamma>' = \<Delta> @ [(x, U)] @ \<Gamma>`
|
|
|
431 |
have "\<Delta> @ \<Gamma> \<turnstile> t\<^isub>1[x\<mapsto>u] : T\<^isub>1" by (rule Tuple)
|
|
|
432 |
moreover from `\<Gamma> \<turnstile> u : U` `\<Gamma>' = \<Delta> @ [(x, U)] @ \<Gamma>`
|
|
|
433 |
have "\<Delta> @ \<Gamma> \<turnstile> t\<^isub>2[x\<mapsto>u] : T\<^isub>2" by (rule Tuple)
|
|
|
434 |
ultimately have "\<Delta> @ \<Gamma> \<turnstile> \<langle>t\<^isub>1[x\<mapsto>u], t\<^isub>2[x\<mapsto>u]\<rangle> : T\<^isub>1 \<otimes> T\<^isub>2" ..
|
|
|
435 |
then show ?case by simp
|
|
|
436 |
next
|
|
|
437 |
case (Let p t \<Gamma>' T \<Delta>' s S)
|
|
|
438 |
from `\<Gamma> \<turnstile> u : U` `\<Gamma>' = \<Delta> @ [(x, U)] @ \<Gamma>`
|
|
|
439 |
have "\<Delta> @ \<Gamma> \<turnstile> t[x\<mapsto>u] : T" by (rule Let)
|
|
|
440 |
moreover note `\<turnstile> p : T \<Rightarrow> \<Delta>'`
|
|
|
441 |
moreover from `\<Gamma>' = \<Delta> @ [(x, U)] @ \<Gamma>`
|
|
|
442 |
have "\<Delta>' @ \<Gamma>' = (\<Delta>' @ \<Delta>) @ [(x, U)] @ \<Gamma>" by simp
|
|
|
443 |
with `\<Gamma> \<turnstile> u : U` have "(\<Delta>' @ \<Delta>) @ \<Gamma> \<turnstile> s[x\<mapsto>u] : S" by (rule Let)
|
|
|
444 |
then have "\<Delta>' @ \<Delta> @ \<Gamma> \<turnstile> s[x\<mapsto>u] : S" by simp
|
|
|
445 |
ultimately have "\<Delta> @ \<Gamma> \<turnstile> (LET p = t[x\<mapsto>u] IN s[x\<mapsto>u]) : S"
|
|
|
446 |
by (rule better_T_Let)
|
|
|
447 |
moreover from Let have "(supp p::name set) \<sharp>* [(x, u)]"
|
|
|
448 |
by (simp add: fresh_star_def fresh_list_nil fresh_list_cons)
|
|
|
449 |
ultimately show ?case by simp
|
|
|
450 |
next
|
|
|
451 |
case (Abs y T \<Gamma>' t S)
|
|
|
452 |
from `\<Gamma>' = \<Delta> @ [(x, U)] @ \<Gamma>` have "(y, T) # \<Gamma>' = ((y, T) # \<Delta>) @ [(x, U)] @ \<Gamma>"
|
|
|
453 |
by simp
|
|
|
454 |
with `\<Gamma> \<turnstile> u : U` have "((y, T) # \<Delta>) @ \<Gamma> \<turnstile> t[x\<mapsto>u] : S" by (rule Abs)
|
|
|
455 |
then have "(y, T) # \<Delta> @ \<Gamma> \<turnstile> t[x\<mapsto>u] : S" by simp
|
|
|
456 |
then have "\<Delta> @ \<Gamma> \<turnstile> (\<lambda>y:T. t[x\<mapsto>u]) : T \<rightarrow> S"
|
|
|
457 |
by (rule typing.Abs)
|
|
|
458 |
moreover from Abs have "y \<sharp> [(x, u)]"
|
|
|
459 |
by (simp add: fresh_list_nil fresh_list_cons)
|
|
|
460 |
ultimately show ?case by simp
|
|
|
461 |
next
|
|
|
462 |
case (App \<Gamma>' t\<^isub>1 T S t\<^isub>2)
|
|
|
463 |
from `\<Gamma> \<turnstile> u : U` `\<Gamma>' = \<Delta> @ [(x, U)] @ \<Gamma>`
|
|
|
464 |
have "\<Delta> @ \<Gamma> \<turnstile> t\<^isub>1[x\<mapsto>u] : T \<rightarrow> S" by (rule App)
|
|
|
465 |
moreover from `\<Gamma> \<turnstile> u : U` `\<Gamma>' = \<Delta> @ [(x, U)] @ \<Gamma>`
|
|
|
466 |
have "\<Delta> @ \<Gamma> \<turnstile> t\<^isub>2[x\<mapsto>u] : T" by (rule App)
|
|
|
467 |
ultimately have "\<Delta> @ \<Gamma> \<turnstile> (t\<^isub>1[x\<mapsto>u]) \<cdot> (t\<^isub>2[x\<mapsto>u]) : S"
|
|
|
468 |
by (rule typing.App)
|
|
|
469 |
then show ?case by simp
|
|
|
470 |
qed
|
|
|
471 |
|
|
|
472 |
lemmas subst_type = subst_type_aux [of "[]", simplified]
|
|
|
473 |
|
|
|
474 |
lemma match_supp_fst:
|
|
|
475 |
assumes "\<turnstile> p \<rhd> u \<Rightarrow> \<theta>" shows "(supp (map fst \<theta>)::name set) = supp p" using assms
|
|
|
476 |
by induct (simp_all add: supp_list_nil supp_list_cons supp_list_append)
|
|
|
477 |
|
|
|
478 |
lemma match_supp_snd:
|
|
|
479 |
assumes "\<turnstile> p \<rhd> u \<Rightarrow> \<theta>" shows "(supp (map snd \<theta>)::name set) = supp u" using assms
|
|
|
480 |
by induct (simp_all add: supp_list_nil supp_list_cons supp_list_append trm.supp)
|
|
|
481 |
|
|
|
482 |
lemma match_fresh: "\<turnstile> p \<rhd> u \<Rightarrow> \<theta> \<Longrightarrow> (supp p::name set) \<sharp>* u \<Longrightarrow>
|
|
|
483 |
(supp (map fst \<theta>)::name set) \<sharp>* map snd \<theta>"
|
|
|
484 |
by (simp add: fresh_star_def fresh_def match_supp_fst match_supp_snd)
|
|
|
485 |
|
|
|
486 |
lemma match_type_aux:
|
|
|
487 |
assumes "\<turnstile> p : U \<Rightarrow> \<Delta>"
|
|
|
488 |
and "\<Gamma>\<^isub>2 \<turnstile> u : U"
|
|
|
489 |
and "\<Gamma>\<^isub>1 @ \<Delta> @ \<Gamma>\<^isub>2 \<turnstile> t : T"
|
|
|
490 |
and "\<turnstile> p \<rhd> u \<Rightarrow> \<theta>"
|
|
|
491 |
and "(supp p::name set) \<sharp>* u"
|
|
|
492 |
shows "\<Gamma>\<^isub>1 @ \<Gamma>\<^isub>2 \<turnstile> \<theta>\<lparr>t\<rparr> : T" using assms
|
|
|
493 |
proof (induct arbitrary: \<Gamma>\<^isub>1 \<Gamma>\<^isub>2 t u T \<theta>)
|
|
|
494 |
case (PVar x U)
|
|
|
495 |
from `\<Gamma>\<^isub>1 @ [(x, U)] @ \<Gamma>\<^isub>2 \<turnstile> t : T` `\<Gamma>\<^isub>2 \<turnstile> u : U`
|
|
|
496 |
have "\<Gamma>\<^isub>1 @ \<Gamma>\<^isub>2 \<turnstile> t[x\<mapsto>u] : T" by (rule subst_type_aux)
|
|
|
497 |
moreover from `\<turnstile> PVar x U \<rhd> u \<Rightarrow> \<theta>` have "\<theta> = [(x, u)]"
|
|
|
498 |
by cases simp_all
|
|
|
499 |
ultimately show ?case by simp
|
|
|
500 |
next
|
|
|
501 |
case (PTuple p S \<Delta>\<^isub>1 q U \<Delta>\<^isub>2)
|
|
|
502 |
from `\<turnstile> \<langle>\<langle>p, q\<rangle>\<rangle> \<rhd> u \<Rightarrow> \<theta>` obtain u\<^isub>1 u\<^isub>2 \<theta>\<^isub>1 \<theta>\<^isub>2
|
|
|
503 |
where u: "u = \<langle>u\<^isub>1, u\<^isub>2\<rangle>" and \<theta>: "\<theta> = \<theta>\<^isub>1 @ \<theta>\<^isub>2"
|
|
|
504 |
and p: "\<turnstile> p \<rhd> u\<^isub>1 \<Rightarrow> \<theta>\<^isub>1" and q: "\<turnstile> q \<rhd> u\<^isub>2 \<Rightarrow> \<theta>\<^isub>2"
|
|
|
505 |
by cases simp_all
|
|
|
506 |
with PTuple have "\<Gamma>\<^isub>2 \<turnstile> \<langle>u\<^isub>1, u\<^isub>2\<rangle> : S \<otimes> U" by simp
|
|
|
507 |
then obtain u\<^isub>1: "\<Gamma>\<^isub>2 \<turnstile> u\<^isub>1 : S" and u\<^isub>2: "\<Gamma>\<^isub>2 \<turnstile> u\<^isub>2 : U"
|
|
|
508 |
by cases (simp_all add: ty.inject trm.inject)
|
|
|
509 |
note u\<^isub>1
|
|
|
510 |
moreover from `\<Gamma>\<^isub>1 @ (\<Delta>\<^isub>2 @ \<Delta>\<^isub>1) @ \<Gamma>\<^isub>2 \<turnstile> t : T`
|
|
|
511 |
have "(\<Gamma>\<^isub>1 @ \<Delta>\<^isub>2) @ \<Delta>\<^isub>1 @ \<Gamma>\<^isub>2 \<turnstile> t : T" by simp
|
|
|
512 |
moreover note p
|
|
|
513 |
moreover from `supp \<langle>\<langle>p, q\<rangle>\<rangle> \<sharp>* u` and u
|
|
|
514 |
have "(supp p::name set) \<sharp>* u\<^isub>1" by (simp add: fresh_star_def)
|
|
|
515 |
ultimately have \<theta>\<^isub>1: "(\<Gamma>\<^isub>1 @ \<Delta>\<^isub>2) @ \<Gamma>\<^isub>2 \<turnstile> \<theta>\<^isub>1\<lparr>t\<rparr> : T"
|
|
|
516 |
by (rule PTuple)
|
|
|
517 |
note u\<^isub>2
|
|
|
518 |
moreover from \<theta>\<^isub>1
|
|
|
519 |
have "\<Gamma>\<^isub>1 @ \<Delta>\<^isub>2 @ \<Gamma>\<^isub>2 \<turnstile> \<theta>\<^isub>1\<lparr>t\<rparr> : T" by simp
|
|
|
520 |
moreover note q
|
|
|
521 |
moreover from `supp \<langle>\<langle>p, q\<rangle>\<rangle> \<sharp>* u` and u
|
|
|
522 |
have "(supp q::name set) \<sharp>* u\<^isub>2" by (simp add: fresh_star_def)
|
|
|
523 |
ultimately have "\<Gamma>\<^isub>1 @ \<Gamma>\<^isub>2 \<turnstile> \<theta>\<^isub>2\<lparr>\<theta>\<^isub>1\<lparr>t\<rparr>\<rparr> : T"
|
|
|
524 |
by (rule PTuple)
|
|
|
525 |
moreover from `\<turnstile> \<langle>\<langle>p, q\<rangle>\<rangle> \<rhd> u \<Rightarrow> \<theta>` `supp \<langle>\<langle>p, q\<rangle>\<rangle> \<sharp>* u`
|
|
|
526 |
have "(supp (map fst \<theta>)::name set) \<sharp>* map snd \<theta>"
|
|
|
527 |
by (rule match_fresh)
|
|
|
528 |
ultimately show ?case using \<theta> by (simp add: psubst_append)
|
|
|
529 |
qed
|
|
|
530 |
|
|
|
531 |
lemmas match_type = match_type_aux [where \<Gamma>\<^isub>1="[]", simplified]
|
|
|
532 |
|
|
|
533 |
inductive eval :: "trm \<Rightarrow> trm \<Rightarrow> bool" ("_ \<longmapsto> _" [60,60] 60)
|
|
|
534 |
where
|
|
|
535 |
TupleL: "t \<longmapsto> t' \<Longrightarrow> \<langle>t, u\<rangle> \<longmapsto> \<langle>t', u\<rangle>"
|
|
|
536 |
| TupleR: "u \<longmapsto> u' \<Longrightarrow> \<langle>t, u\<rangle> \<longmapsto> \<langle>t, u'\<rangle>"
|
|
|
537 |
| Abs: "t \<longmapsto> t' \<Longrightarrow> (\<lambda>x:T. t) \<longmapsto> (\<lambda>x:T. t')"
|
|
|
538 |
| AppL: "t \<longmapsto> t' \<Longrightarrow> t \<cdot> u \<longmapsto> t' \<cdot> u"
|
|
|
539 |
| AppR: "u \<longmapsto> u' \<Longrightarrow> t \<cdot> u \<longmapsto> t \<cdot> u'"
|
|
|
540 |
| Beta: "x \<sharp> u \<Longrightarrow> (\<lambda>x:T. t) \<cdot> u \<longmapsto> t[x\<mapsto>u]"
|
|
|
541 |
| Let: "((supp p)::name set) \<sharp>* t \<Longrightarrow> distinct (pat_vars p) \<Longrightarrow>
|
|
|
542 |
\<turnstile> p \<rhd> t \<Rightarrow> \<theta> \<Longrightarrow> (LET p = t IN u) \<longmapsto> \<theta>\<lparr>u\<rparr>"
|
|
|
543 |
|
|
|
544 |
equivariance match
|
|
|
545 |
|
|
|
546 |
equivariance eval
|
|
|
547 |
|
|
|
548 |
lemma match_vars:
|
|
|
549 |
assumes "\<turnstile> p \<rhd> t \<Rightarrow> \<theta>" and "x \<in> supp p"
|
|
|
550 |
shows "x \<in> set (map fst \<theta>)" using assms
|
|
|
551 |
by induct (auto simp add: supp_atm)
|
|
|
552 |
|
|
|
553 |
lemma match_fresh_mono:
|
|
|
554 |
assumes "\<turnstile> p \<rhd> t \<Rightarrow> \<theta>" and "(x::name) \<sharp> t"
|
|
|
555 |
shows "\<forall>(y, t)\<in>set \<theta>. x \<sharp> t" using assms
|
|
|
556 |
by induct auto
|
|
|
557 |
|
|
|
558 |
nominal_inductive2 eval
|
|
|
559 |
avoids
|
|
|
560 |
Abs: "{x}"
|
|
|
561 |
| Beta: "{x}"
|
|
|
562 |
| Let: "(supp p)::name set"
|
|
|
563 |
apply (simp_all add: fresh_star_def abs_fresh fin_supp)
|
|
|
564 |
apply (rule psubst_fresh)
|
|
|
565 |
apply simp
|
|
|
566 |
apply simp
|
|
|
567 |
apply (rule ballI)
|
|
|
568 |
apply (rule psubst_fresh)
|
|
|
569 |
apply (rule match_vars)
|
|
|
570 |
apply assumption+
|
|
|
571 |
apply (rule match_fresh_mono)
|
|
|
572 |
apply auto
|
|
|
573 |
done
|
|
|
574 |
|
|
|
575 |
lemma typing_case_Abs:
|
|
|
576 |
assumes ty: "\<Gamma> \<turnstile> (\<lambda>x:T. t) : S"
|
|
|
577 |
and fresh: "x \<sharp> \<Gamma>"
|
|
|
578 |
and R: "\<And>U. S = T \<rightarrow> U \<Longrightarrow> (x, T) # \<Gamma> \<turnstile> t : U \<Longrightarrow> P"
|
|
|
579 |
shows P using ty
|
|
|
580 |
proof cases
|
|
|
581 |
case (Abs x' T' \<Gamma>' t' U)
|
|
|
582 |
obtain y::name where y: "y \<sharp> (x, \<Gamma>, \<lambda>x':T'. t')"
|
|
|
583 |
by (rule exists_fresh) (auto intro: fin_supp)
|
|
|
584 |
from `(\<lambda>x:T. t) = (\<lambda>x':T'. t')` [symmetric]
|
|
|
585 |
have x: "x \<sharp> (\<lambda>x':T'. t')" by (simp add: abs_fresh)
|
|
|
586 |
have x': "x' \<sharp> (\<lambda>x':T'. t')" by (simp add: abs_fresh)
|
|
|
587 |
from `(x', T') # \<Gamma>' \<turnstile> t' : U` have x'': "x' \<sharp> \<Gamma>'"
|
|
|
588 |
by (auto dest: valid_typing)
|
|
|
589 |
have "(\<lambda>x:T. t) = (\<lambda>x':T'. t')" by fact
|
|
|
590 |
also from x x' y have "\<dots> = [(x, y)] \<bullet> [(x', y)] \<bullet> (\<lambda>x':T'. t')"
|
|
|
591 |
by (simp only: perm_fresh_fresh fresh_prod)
|
|
|
592 |
also have "\<dots> = (\<lambda>x:T'. [(x, y)] \<bullet> [(x', y)] \<bullet> t')"
|
|
|
593 |
by (simp add: swap_simps perm_fresh_fresh)
|
|
|
594 |
finally have "(\<lambda>x:T. t) = (\<lambda>x:T'. [(x, y)] \<bullet> [(x', y)] \<bullet> t')" .
|
|
|
595 |
then have T: "T = T'" and t: "[(x, y)] \<bullet> [(x', y)] \<bullet> t' = t"
|
|
|
596 |
by (simp_all add: trm.inject alpha)
|
|
|
597 |
from Abs T have "S = T \<rightarrow> U" by simp
|
|
|
598 |
moreover from `(x', T') # \<Gamma>' \<turnstile> t' : U`
|
|
|
599 |
have "[(x, y)] \<bullet> [(x', y)] \<bullet> ((x', T') # \<Gamma>' \<turnstile> t' : U)"
|
|
|
600 |
by (simp add: perm_bool)
|
|
|
601 |
with T t y `\<Gamma> = \<Gamma>'` x'' fresh have "(x, T) # \<Gamma> \<turnstile> t : U"
|
|
|
602 |
by (simp add: eqvts swap_simps perm_fresh_fresh fresh_prod)
|
|
|
603 |
ultimately show ?thesis by (rule R)
|
|
|
604 |
qed simp_all
|
|
|
605 |
|
|
|
606 |
nominal_primrec ty_size :: "ty \<Rightarrow> nat"
|
|
|
607 |
where
|
|
|
608 |
"ty_size (Atom n) = 0"
|
|
|
609 |
| "ty_size (T \<rightarrow> U) = ty_size T + ty_size U + 1"
|
|
|
610 |
| "ty_size (T \<otimes> U) = ty_size T + ty_size U + 1"
|
|
|
611 |
by (rule TrueI)+
|
|
|
612 |
|
|
|
613 |
lemma bind_tuple_ineq:
|
|
|
614 |
"ty_size (pat_type p) < ty_size U \<Longrightarrow> Bind U x t \<noteq> (\<lambda>[p]. u)"
|
|
|
615 |
by (induct p arbitrary: U x t u) (auto simp add: btrm.inject)
|
|
|
616 |
|
|
|
617 |
lemma valid_appD: assumes "valid (\<Gamma> @ \<Delta>)"
|
|
|
618 |
shows "valid \<Gamma>" "valid \<Delta>" using assms
|
|
|
619 |
by (induct \<Gamma>'\<equiv>"\<Gamma> @ \<Delta>" arbitrary: \<Gamma> \<Delta>)
|
|
|
620 |
(auto simp add: Cons_eq_append_conv fresh_list_append)
|
|
|
621 |
|
|
|
622 |
lemma valid_app_freshs: assumes "valid (\<Gamma> @ \<Delta>)"
|
|
|
623 |
shows "(supp \<Gamma>::name set) \<sharp>* \<Delta>" "(supp \<Delta>::name set) \<sharp>* \<Gamma>" using assms
|
|
|
624 |
by (induct \<Gamma>'\<equiv>"\<Gamma> @ \<Delta>" arbitrary: \<Gamma> \<Delta>)
|
|
|
625 |
(auto simp add: Cons_eq_append_conv fresh_star_def
|
|
|
626 |
fresh_list_nil fresh_list_cons supp_list_nil supp_list_cons fresh_list_append
|
|
|
627 |
supp_prod fresh_prod supp_atm fresh_atm
|
|
|
628 |
dest: notE [OF iffD1 [OF fresh_def [THEN meta_eq_to_obj_eq]]])
|
|
|
629 |
|
|
|
630 |
lemma perm_mem_left: "(x::name) \<in> ((pi::name prm) \<bullet> A) \<Longrightarrow> (rev pi \<bullet> x) \<in> A"
|
|
|
631 |
by (drule perm_boolI [of _ "rev pi"]) (simp add: eqvts perm_pi_simp)
|
|
|
632 |
|
|
|
633 |
lemma perm_mem_right: "(rev (pi::name prm) \<bullet> (x::name)) \<in> A \<Longrightarrow> x \<in> (pi \<bullet> A)"
|
|
|
634 |
by (drule perm_boolI [of _ pi]) (simp add: eqvts perm_pi_simp)
|
|
|
635 |
|
|
|
636 |
lemma perm_cases:
|
|
|
637 |
assumes pi: "set pi \<subseteq> A \<times> A"
|
|
|
638 |
shows "((pi::name prm) \<bullet> B) \<subseteq> A \<union> B"
|
|
|
639 |
proof
|
|
|
640 |
fix x assume "x \<in> pi \<bullet> B"
|
|
|
641 |
then show "x \<in> A \<union> B" using pi
|
|
|
642 |
apply (induct pi arbitrary: x B rule: rev_induct)
|
|
|
643 |
apply simp
|
|
|
644 |
apply (simp add: split_paired_all supp_eqvt)
|
|
|
645 |
apply (drule perm_mem_left)
|
|
|
646 |
apply (simp add: calc_atm split: split_if_asm)
|
|
|
647 |
apply (auto dest: perm_mem_right)
|
|
|
648 |
done
|
|
|
649 |
qed
|
|
|
650 |
|
|
|
651 |
lemma abs_pat_alpha':
|
|
|
652 |
assumes eq: "(\<lambda>[p]. t) = (\<lambda>[q]. u)"
|
|
|
653 |
and ty: "pat_type p = pat_type q"
|
|
|
654 |
and pv: "distinct (pat_vars p)"
|
|
|
655 |
and qv: "distinct (pat_vars q)"
|
|
|
656 |
shows "\<exists>pi::name prm. p = pi \<bullet> q \<and> t = pi \<bullet> u \<and>
|
|
|
657 |
set pi \<subseteq> (supp p \<union> supp q) \<times> (supp p \<union> supp q)"
|
|
|
658 |
using assms
|
|
|
659 |
proof (induct p arbitrary: q t u \<Delta>)
|
|
|
660 |
case (PVar x T)
|
|
|
661 |
note PVar' = this
|
|
|
662 |
show ?case
|
|
|
663 |
proof (cases q)
|
|
|
664 |
case (PVar x' T')
|
|
|
665 |
with `(\<lambda>[PVar x T]. t) = (\<lambda>[q]. u)`
|
|
|
666 |
have "x = x' \<and> t = u \<or> x \<noteq> x' \<and> t = [(x, x')] \<bullet> u \<and> x \<sharp> u"
|
|
|
667 |
by (simp add: btrm.inject alpha)
|
|
|
668 |
then show ?thesis
|
|
|
669 |
proof
|
|
|
670 |
assume "x = x' \<and> t = u"
|
|
|
671 |
with PVar PVar' have "PVar x T = ([]::name prm) \<bullet> q \<and>
|
|
|
672 |
t = ([]::name prm) \<bullet> u \<and>
|
|
|
673 |
set ([]::name prm) \<subseteq> (supp (PVar x T) \<union> supp q) \<times>
|
|
|
674 |
(supp (PVar x T) \<union> supp q)" by simp
|
|
|
675 |
then show ?thesis ..
|
|
|
676 |
next
|
|
|
677 |
assume "x \<noteq> x' \<and> t = [(x, x')] \<bullet> u \<and> x \<sharp> u"
|
|
|
678 |
with PVar PVar' have "PVar x T = [(x, x')] \<bullet> q \<and>
|
|
|
679 |
t = [(x, x')] \<bullet> u \<and>
|
|
|
680 |
set [(x, x')] \<subseteq> (supp (PVar x T) \<union> supp q) \<times>
|
|
|
681 |
(supp (PVar x T) \<union> supp q)"
|
|
|
682 |
by (simp add: perm_swap swap_simps supp_atm perm_type)
|
|
|
683 |
then show ?thesis ..
|
|
|
684 |
qed
|
|
|
685 |
next
|
|
|
686 |
case (PTuple p\<^isub>1 p\<^isub>2)
|
|
|
687 |
with PVar have "ty_size (pat_type p\<^isub>1) < ty_size T" by simp
|
|
|
688 |
then have "Bind T x t \<noteq> (\<lambda>[p\<^isub>1]. \<lambda>[p\<^isub>2]. u)"
|
|
|
689 |
by (rule bind_tuple_ineq)
|
|
|
690 |
moreover from PTuple PVar
|
|
|
691 |
have "Bind T x t = (\<lambda>[p\<^isub>1]. \<lambda>[p\<^isub>2]. u)" by simp
|
|
|
692 |
ultimately show ?thesis ..
|
|
|
693 |
qed
|
|
|
694 |
next
|
|
|
695 |
case (PTuple p\<^isub>1 p\<^isub>2)
|
|
|
696 |
note PTuple' = this
|
|
|
697 |
show ?case
|
|
|
698 |
proof (cases q)
|
|
|
699 |
case (PVar x T)
|
|
|
700 |
with PTuple have "ty_size (pat_type p\<^isub>1) < ty_size T" by auto
|
|
|
701 |
then have "Bind T x u \<noteq> (\<lambda>[p\<^isub>1]. \<lambda>[p\<^isub>2]. t)"
|
|
|
702 |
by (rule bind_tuple_ineq)
|
|
|
703 |
moreover from PTuple PVar
|
|
|
704 |
have "Bind T x u = (\<lambda>[p\<^isub>1]. \<lambda>[p\<^isub>2]. t)" by simp
|
|
|
705 |
ultimately show ?thesis ..
|
|
|
706 |
next
|
|
|
707 |
case (PTuple p\<^isub>1' p\<^isub>2')
|
|
|
708 |
with PTuple' have "(\<lambda>[p\<^isub>1]. \<lambda>[p\<^isub>2]. t) = (\<lambda>[p\<^isub>1']. \<lambda>[p\<^isub>2']. u)" by simp
|
|
|
709 |
moreover from PTuple PTuple' have "pat_type p\<^isub>1 = pat_type p\<^isub>1'"
|
|
|
710 |
by (simp add: ty.inject)
|
|
|
711 |
moreover from PTuple' have "distinct (pat_vars p\<^isub>1)" by simp
|
|
|
712 |
moreover from PTuple PTuple' have "distinct (pat_vars p\<^isub>1')" by simp
|
|
|
713 |
ultimately have "\<exists>pi::name prm. p\<^isub>1 = pi \<bullet> p\<^isub>1' \<and>
|
|
|
714 |
(\<lambda>[p\<^isub>2]. t) = pi \<bullet> (\<lambda>[p\<^isub>2']. u) \<and>
|
|
|
715 |
set pi \<subseteq> (supp p\<^isub>1 \<union> supp p\<^isub>1') \<times> (supp p\<^isub>1 \<union> supp p\<^isub>1')"
|
|
|
716 |
by (rule PTuple')
|
|
|
717 |
then obtain pi::"name prm" where
|
|
|
718 |
"p\<^isub>1 = pi \<bullet> p\<^isub>1'" "(\<lambda>[p\<^isub>2]. t) = pi \<bullet> (\<lambda>[p\<^isub>2']. u)" and
|
|
|
719 |
pi: "set pi \<subseteq> (supp p\<^isub>1 \<union> supp p\<^isub>1') \<times> (supp p\<^isub>1 \<union> supp p\<^isub>1')" by auto
|
|
|
720 |
from `(\<lambda>[p\<^isub>2]. t) = pi \<bullet> (\<lambda>[p\<^isub>2']. u)`
|
|
|
721 |
have "(\<lambda>[p\<^isub>2]. t) = (\<lambda>[pi \<bullet> p\<^isub>2']. pi \<bullet> u)"
|
|
|
722 |
by (simp add: eqvts)
|
|
|
723 |
moreover from PTuple PTuple' have "pat_type p\<^isub>2 = pat_type (pi \<bullet> p\<^isub>2')"
|
|
|
724 |
by (simp add: ty.inject pat_type_perm_eq)
|
|
|
725 |
moreover from PTuple' have "distinct (pat_vars p\<^isub>2)" by simp
|
|
|
726 |
moreover from PTuple PTuple' have "distinct (pat_vars (pi \<bullet> p\<^isub>2'))"
|
|
|
727 |
by (simp add: pat_vars_eqvt [symmetric] distinct_eqvt [symmetric])
|
|
|
728 |
ultimately have "\<exists>pi'::name prm. p\<^isub>2 = pi' \<bullet> pi \<bullet> p\<^isub>2' \<and>
|
|
|
729 |
t = pi' \<bullet> pi \<bullet> u \<and>
|
|
|
730 |
set pi' \<subseteq> (supp p\<^isub>2 \<union> supp (pi \<bullet> p\<^isub>2')) \<times> (supp p\<^isub>2 \<union> supp (pi \<bullet> p\<^isub>2'))"
|
|
|
731 |
by (rule PTuple')
|
|
|
732 |
then obtain pi'::"name prm" where
|
|
|
733 |
"p\<^isub>2 = pi' \<bullet> pi \<bullet> p\<^isub>2'" "t = pi' \<bullet> pi \<bullet> u" and
|
|
|
734 |
pi': "set pi' \<subseteq> (supp p\<^isub>2 \<union> supp (pi \<bullet> p\<^isub>2')) \<times>
|
|
|
735 |
(supp p\<^isub>2 \<union> supp (pi \<bullet> p\<^isub>2'))" by auto
|
|
|
736 |
from PTuple PTuple' have "pi \<bullet> distinct (pat_vars \<langle>\<langle>p\<^isub>1', p\<^isub>2'\<rangle>\<rangle>)" by simp
|
|
|
737 |
then have "distinct (pat_vars \<langle>\<langle>pi \<bullet> p\<^isub>1', pi \<bullet> p\<^isub>2'\<rangle>\<rangle>)" by (simp only: eqvts)
|
|
|
738 |
with `p\<^isub>1 = pi \<bullet> p\<^isub>1'` PTuple'
|
|
|
739 |
have fresh: "(supp p\<^isub>2 \<union> supp (pi \<bullet> p\<^isub>2') :: name set) \<sharp>* p\<^isub>1"
|
|
|
740 |
by (auto simp add: set_pat_vars_supp fresh_star_def fresh_def eqvts)
|
|
|
741 |
from `p\<^isub>1 = pi \<bullet> p\<^isub>1'` have "pi' \<bullet> (p\<^isub>1 = pi \<bullet> p\<^isub>1')" by (rule perm_boolI)
|
|
|
742 |
with pt_freshs_freshs [OF pt_name_inst at_name_inst pi' fresh fresh]
|
|
|
743 |
have "p\<^isub>1 = pi' \<bullet> pi \<bullet> p\<^isub>1'" by (simp add: eqvts)
|
|
|
744 |
with `p\<^isub>2 = pi' \<bullet> pi \<bullet> p\<^isub>2'` have "\<langle>\<langle>p\<^isub>1, p\<^isub>2\<rangle>\<rangle> = (pi' @ pi) \<bullet> \<langle>\<langle>p\<^isub>1', p\<^isub>2'\<rangle>\<rangle>"
|
|
|
745 |
by (simp add: pt_name2)
|
|
|
746 |
moreover
|
|
|
747 |
have "((supp p\<^isub>2 \<union> (pi \<bullet> supp p\<^isub>2')) \<times> (supp p\<^isub>2 \<union> (pi \<bullet> supp p\<^isub>2'))::(name \<times> name) set) \<subseteq>
|
|
|
748 |
(supp p\<^isub>2 \<union> (supp p\<^isub>1 \<union> supp p\<^isub>1' \<union> supp p\<^isub>2')) \<times> (supp p\<^isub>2 \<union> (supp p\<^isub>1 \<union> supp p\<^isub>1' \<union> supp p\<^isub>2'))"
|
|
|
749 |
by (rule subset_refl Sigma_mono Un_mono perm_cases [OF pi])+
|
|
|
750 |
with pi' have "set pi' \<subseteq> \<dots>" by (simp add: supp_eqvt [symmetric])
|
|
|
751 |
with pi have "set (pi' @ pi) \<subseteq> (supp \<langle>\<langle>p\<^isub>1, p\<^isub>2\<rangle>\<rangle> \<union> supp \<langle>\<langle>p\<^isub>1', p\<^isub>2'\<rangle>\<rangle>) \<times>
|
|
|
752 |
(supp \<langle>\<langle>p\<^isub>1, p\<^isub>2\<rangle>\<rangle> \<union> supp \<langle>\<langle>p\<^isub>1', p\<^isub>2'\<rangle>\<rangle>)"
|
|
|
753 |
by (simp add: Sigma_Un_distrib1 Sigma_Un_distrib2 Un_ac) blast
|
|
|
754 |
moreover note `t = pi' \<bullet> pi \<bullet> u`
|
|
|
755 |
ultimately have "\<langle>\<langle>p\<^isub>1, p\<^isub>2\<rangle>\<rangle> = (pi' @ pi) \<bullet> q \<and> t = (pi' @ pi) \<bullet> u \<and>
|
|
|
756 |
set (pi' @ pi) \<subseteq> (supp \<langle>\<langle>p\<^isub>1, p\<^isub>2\<rangle>\<rangle> \<union> supp q) \<times>
|
|
|
757 |
(supp \<langle>\<langle>p\<^isub>1, p\<^isub>2\<rangle>\<rangle> \<union> supp q)" using PTuple
|
|
|
758 |
by (simp add: pt_name2)
|
|
|
759 |
then show ?thesis ..
|
|
|
760 |
qed
|
|
|
761 |
qed
|
|
|
762 |
|
|
|
763 |
lemma typing_case_Let:
|
|
|
764 |
assumes ty: "\<Gamma> \<turnstile> (LET p = t IN u) : U"
|
|
|
765 |
and fresh: "(supp p::name set) \<sharp>* \<Gamma>"
|
|
|
766 |
and distinct: "distinct (pat_vars p)"
|
|
|
767 |
and R: "\<And>T \<Delta>. \<Gamma> \<turnstile> t : T \<Longrightarrow> \<turnstile> p : T \<Rightarrow> \<Delta> \<Longrightarrow> \<Delta> @ \<Gamma> \<turnstile> u : U \<Longrightarrow> P"
|
|
|
768 |
shows P using ty
|
|
|
769 |
proof cases
|
|
|
770 |
case (Let p' t' \<Gamma>' T \<Delta> u' U')
|
|
|
771 |
then have "(supp \<Delta>::name set) \<sharp>* \<Gamma>"
|
|
|
772 |
by (auto intro: valid_typing valid_app_freshs)
|
|
|
773 |
with Let have "(supp p'::name set) \<sharp>* \<Gamma>"
|
|
|
774 |
by (simp add: pat_var)
|
|
|
775 |
with fresh have fresh': "(supp p \<union> supp p' :: name set) \<sharp>* \<Gamma>"
|
|
|
776 |
by (auto simp add: fresh_star_def)
|
|
|
777 |
from Let have "(\<lambda>[p]. Base u) = (\<lambda>[p']. Base u')"
|
|
|
778 |
by (simp add: trm.inject)
|
|
|
779 |
moreover from Let have "pat_type p = pat_type p'"
|
|
|
780 |
by (simp add: trm.inject)
|
|
|
781 |
moreover note distinct
|
|
|
782 |
moreover from `\<Delta> @ \<Gamma>' \<turnstile> u' : U'` have "valid (\<Delta> @ \<Gamma>')"
|
|
|
783 |
by (rule valid_typing)
|
|
|
784 |
then have "valid \<Delta>" by (rule valid_appD)
|
|
|
785 |
with `\<turnstile> p' : T \<Rightarrow> \<Delta>` have "distinct (pat_vars p')"
|
|
|
786 |
by (simp add: valid_distinct pat_vars_ptyping)
|
|
|
787 |
ultimately have "\<exists>pi::name prm. p = pi \<bullet> p' \<and> Base u = pi \<bullet> Base u' \<and>
|
|
|
788 |
set pi \<subseteq> (supp p \<union> supp p') \<times> (supp p \<union> supp p')"
|
|
|
789 |
by (rule abs_pat_alpha')
|
|
|
790 |
then obtain pi::"name prm" where pi: "p = pi \<bullet> p'" "u = pi \<bullet> u'"
|
|
|
791 |
and pi': "set pi \<subseteq> (supp p \<union> supp p') \<times> (supp p \<union> supp p')"
|
|
|
792 |
by (auto simp add: btrm.inject)
|
|
|
793 |
from Let have "\<Gamma> \<turnstile> t : T" by (simp add: trm.inject)
|
|
|
794 |
moreover from `\<turnstile> p' : T \<Rightarrow> \<Delta>` have "\<turnstile> (pi \<bullet> p') : (pi \<bullet> T) \<Rightarrow> (pi \<bullet> \<Delta>)"
|
|
|
795 |
by (simp add: ptyping.eqvt)
|
|
|
796 |
with pi have "\<turnstile> p : T \<Rightarrow> (pi \<bullet> \<Delta>)" by (simp add: perm_type)
|
|
|
797 |
moreover from Let
|
|
|
798 |
have "(pi \<bullet> \<Delta>) @ (pi \<bullet> \<Gamma>) \<turnstile> (pi \<bullet> u') : (pi \<bullet> U)"
|
|
|
799 |
by (simp add: append_eqvt [symmetric] typing.eqvt)
|
|
|
800 |
with pi have "(pi \<bullet> \<Delta>) @ \<Gamma> \<turnstile> u : U"
|
|
|
801 |
by (simp add: perm_type pt_freshs_freshs
|
|
|
802 |
[OF pt_name_inst at_name_inst pi' fresh' fresh'])
|
|
|
803 |
ultimately show ?thesis by (rule R)
|
|
|
804 |
qed simp_all
|
|
|
805 |
|
|
|
806 |
lemma preservation:
|
|
|
807 |
assumes "t \<longmapsto> t'" and "\<Gamma> \<turnstile> t : T"
|
|
|
808 |
shows "\<Gamma> \<turnstile> t' : T" using assms
|
|
|
809 |
proof (nominal_induct avoiding: \<Gamma> T rule: eval.strong_induct)
|
|
|
810 |
case (TupleL t t' u)
|
|
|
811 |
from `\<Gamma> \<turnstile> \<langle>t, u\<rangle> : T` obtain T\<^isub>1 T\<^isub>2
|
|
|
812 |
where "T = T\<^isub>1 \<otimes> T\<^isub>2" "\<Gamma> \<turnstile> t : T\<^isub>1" "\<Gamma> \<turnstile> u : T\<^isub>2"
|
|
|
813 |
by cases (simp_all add: trm.inject)
|
|
|
814 |
from `\<Gamma> \<turnstile> t : T\<^isub>1` have "\<Gamma> \<turnstile> t' : T\<^isub>1" by (rule TupleL)
|
|
|
815 |
then have "\<Gamma> \<turnstile> \<langle>t', u\<rangle> : T\<^isub>1 \<otimes> T\<^isub>2" using `\<Gamma> \<turnstile> u : T\<^isub>2`
|
|
|
816 |
by (rule Tuple)
|
|
|
817 |
with `T = T\<^isub>1 \<otimes> T\<^isub>2` show ?case by simp
|
|
|
818 |
next
|
|
|
819 |
case (TupleR u u' t)
|
|
|
820 |
from `\<Gamma> \<turnstile> \<langle>t, u\<rangle> : T` obtain T\<^isub>1 T\<^isub>2
|
|
|
821 |
where "T = T\<^isub>1 \<otimes> T\<^isub>2" "\<Gamma> \<turnstile> t : T\<^isub>1" "\<Gamma> \<turnstile> u : T\<^isub>2"
|
|
|
822 |
by cases (simp_all add: trm.inject)
|
|
|
823 |
from `\<Gamma> \<turnstile> u : T\<^isub>2` have "\<Gamma> \<turnstile> u' : T\<^isub>2" by (rule TupleR)
|
|
|
824 |
with `\<Gamma> \<turnstile> t : T\<^isub>1` have "\<Gamma> \<turnstile> \<langle>t, u'\<rangle> : T\<^isub>1 \<otimes> T\<^isub>2"
|
|
|
825 |
by (rule Tuple)
|
|
|
826 |
with `T = T\<^isub>1 \<otimes> T\<^isub>2` show ?case by simp
|
|
|
827 |
next
|
|
|
828 |
case (Abs t t' x S)
|
|
|
829 |
from `\<Gamma> \<turnstile> (\<lambda>x:S. t) : T` `x \<sharp> \<Gamma>` obtain U where
|
|
|
830 |
T: "T = S \<rightarrow> U" and U: "(x, S) # \<Gamma> \<turnstile> t : U"
|
|
|
831 |
by (rule typing_case_Abs)
|
|
|
832 |
from U have "(x, S) # \<Gamma> \<turnstile> t' : U" by (rule Abs)
|
|
|
833 |
then have "\<Gamma> \<turnstile> (\<lambda>x:S. t') : S \<rightarrow> U"
|
|
|
834 |
by (rule typing.Abs)
|
|
|
835 |
with T show ?case by simp
|
|
|
836 |
next
|
|
|
837 |
case (Beta x u S t)
|
|
|
838 |
from `\<Gamma> \<turnstile> (\<lambda>x:S. t) \<cdot> u : T` `x \<sharp> \<Gamma>`
|
|
|
839 |
obtain "(x, S) # \<Gamma> \<turnstile> t : T" and "\<Gamma> \<turnstile> u : S"
|
|
|
840 |
by cases (auto simp add: trm.inject ty.inject elim: typing_case_Abs)
|
|
|
841 |
then show ?case by (rule subst_type)
|
|
|
842 |
next
|
|
|
843 |
case (Let p t \<theta> u)
|
|
|
844 |
from `\<Gamma> \<turnstile> (LET p = t IN u) : T` `supp p \<sharp>* \<Gamma>` `distinct (pat_vars p)`
|
|
|
845 |
obtain U \<Delta> where "\<turnstile> p : U \<Rightarrow> \<Delta>" "\<Gamma> \<turnstile> t : U" "\<Delta> @ \<Gamma> \<turnstile> u : T"
|
|
|
846 |
by (rule typing_case_Let)
|
|
|
847 |
then show ?case using `\<turnstile> p \<rhd> t \<Rightarrow> \<theta>` `supp p \<sharp>* t`
|
|
|
848 |
by (rule match_type)
|
|
|
849 |
next
|
|
|
850 |
case (AppL t t' u)
|
|
|
851 |
from `\<Gamma> \<turnstile> t \<cdot> u : T` obtain U where
|
|
|
852 |
t: "\<Gamma> \<turnstile> t : U \<rightarrow> T" and u: "\<Gamma> \<turnstile> u : U"
|
|
|
853 |
by cases (auto simp add: trm.inject)
|
|
|
854 |
from t have "\<Gamma> \<turnstile> t' : U \<rightarrow> T" by (rule AppL)
|
|
|
855 |
then show ?case using u by (rule typing.App)
|
|
|
856 |
next
|
|
|
857 |
case (AppR u u' t)
|
|
|
858 |
from `\<Gamma> \<turnstile> t \<cdot> u : T` obtain U where
|
|
|
859 |
t: "\<Gamma> \<turnstile> t : U \<rightarrow> T" and u: "\<Gamma> \<turnstile> u : U"
|
|
|
860 |
by cases (auto simp add: trm.inject)
|
|
|
861 |
from u have "\<Gamma> \<turnstile> u' : U" by (rule AppR)
|
|
|
862 |
with t show ?case by (rule typing.App)
|
|
|
863 |
qed
|
|
|
864 |
|
|
|
865 |
end
|