| author | wenzelm | 
| Tue, 08 Mar 2016 18:15:16 +0100 | |
| changeset 62559 | 83e815849a91 | 
| parent 62390 | 842917225d56 | 
| child 62843 | 313d3b697c9a | 
| permissions | -rw-r--r-- | 
| 60727 | 1  | 
(* Title: HOL/Library/Disjoint_Sets.thy  | 
2  | 
Author: Johannes Hölzl, TU München  | 
|
3  | 
*)  | 
|
4  | 
||
5  | 
section \<open>Handling Disjoint Sets\<close>  | 
|
6  | 
||
7  | 
theory Disjoint_Sets  | 
|
8  | 
imports Main  | 
|
9  | 
begin  | 
|
10  | 
||
11  | 
lemma range_subsetD: "range f \<subseteq> B \<Longrightarrow> f i \<in> B"  | 
|
12  | 
by blast  | 
|
13  | 
||
14  | 
lemma Int_Diff_disjoint: "A \<inter> B \<inter> (A - B) = {}"
 | 
|
15  | 
by blast  | 
|
16  | 
||
17  | 
lemma Int_Diff_Un: "A \<inter> B \<union> (A - B) = A"  | 
|
18  | 
by blast  | 
|
19  | 
||
20  | 
lemma mono_Un: "mono A \<Longrightarrow> (\<Union>i\<le>n. A i) = A n"  | 
|
21  | 
unfolding mono_def by auto  | 
|
22  | 
||
23  | 
subsection \<open>Set of Disjoint Sets\<close>  | 
|
24  | 
||
25  | 
definition "disjoint A \<longleftrightarrow> (\<forall>a\<in>A. \<forall>b\<in>A. a \<noteq> b \<longrightarrow> a \<inter> b = {})"
 | 
|
26  | 
||
27  | 
lemma disjointI:  | 
|
28  | 
  "(\<And>a b. a \<in> A \<Longrightarrow> b \<in> A \<Longrightarrow> a \<noteq> b \<Longrightarrow> a \<inter> b = {}) \<Longrightarrow> disjoint A"
 | 
|
29  | 
unfolding disjoint_def by auto  | 
|
30  | 
||
31  | 
lemma disjointD:  | 
|
32  | 
  "disjoint A \<Longrightarrow> a \<in> A \<Longrightarrow> b \<in> A \<Longrightarrow> a \<noteq> b \<Longrightarrow> a \<inter> b = {}"
 | 
|
33  | 
unfolding disjoint_def by auto  | 
|
34  | 
||
35  | 
lemma disjoint_empty[iff]: "disjoint {}"
 | 
|
36  | 
by (auto simp: disjoint_def)  | 
|
37  | 
||
38  | 
lemma disjoint_INT:  | 
|
39  | 
assumes *: "\<And>i. i \<in> I \<Longrightarrow> disjoint (F i)"  | 
|
40  | 
  shows "disjoint {\<Inter>i\<in>I. X i | X. \<forall>i\<in>I. X i \<in> F i}"
 | 
|
41  | 
proof (safe intro!: disjointI del: equalityI)  | 
|
42  | 
fix A B :: "'a \<Rightarrow> 'b set" assume "(\<Inter>i\<in>I. A i) \<noteq> (\<Inter>i\<in>I. B i)"  | 
|
43  | 
then obtain i where "A i \<noteq> B i" "i \<in> I"  | 
|
44  | 
by auto  | 
|
45  | 
moreover assume "\<forall>i\<in>I. A i \<in> F i" "\<forall>i\<in>I. B i \<in> F i"  | 
|
46  | 
  ultimately show "(\<Inter>i\<in>I. A i) \<inter> (\<Inter>i\<in>I. B i) = {}"
 | 
|
47  | 
using *[OF \<open>i\<in>I\<close>, THEN disjointD, of "A i" "B i"]  | 
|
48  | 
by (auto simp: INT_Int_distrib[symmetric])  | 
|
49  | 
qed  | 
|
50  | 
||
51  | 
lemma disjoint_singleton[simp]: "disjoint {A}"
 | 
|
52  | 
by(simp add: disjoint_def)  | 
|
53  | 
||
54  | 
subsubsection "Family of Disjoint Sets"  | 
|
55  | 
||
56  | 
definition disjoint_family_on :: "('i \<Rightarrow> 'a set) \<Rightarrow> 'i set \<Rightarrow> bool" where
 | 
|
57  | 
  "disjoint_family_on A S \<longleftrightarrow> (\<forall>m\<in>S. \<forall>n\<in>S. m \<noteq> n \<longrightarrow> A m \<inter> A n = {})"
 | 
|
58  | 
||
59  | 
abbreviation "disjoint_family A \<equiv> disjoint_family_on A UNIV"  | 
|
60  | 
||
61  | 
lemma disjoint_family_onD:  | 
|
62  | 
  "disjoint_family_on A I \<Longrightarrow> i \<in> I \<Longrightarrow> j \<in> I \<Longrightarrow> i \<noteq> j \<Longrightarrow> A i \<inter> A j = {}"
 | 
|
63  | 
by (auto simp: disjoint_family_on_def)  | 
|
64  | 
||
65  | 
lemma disjoint_family_subset: "disjoint_family A \<Longrightarrow> (\<And>x. B x \<subseteq> A x) \<Longrightarrow> disjoint_family B"  | 
|
66  | 
by (force simp add: disjoint_family_on_def)  | 
|
67  | 
||
68  | 
lemma disjoint_family_on_bisimulation:  | 
|
69  | 
assumes "disjoint_family_on f S"  | 
|
70  | 
  and "\<And>n m. n \<in> S \<Longrightarrow> m \<in> S \<Longrightarrow> n \<noteq> m \<Longrightarrow> f n \<inter> f m = {} \<Longrightarrow> g n \<inter> g m = {}"
 | 
|
71  | 
shows "disjoint_family_on g S"  | 
|
72  | 
using assms unfolding disjoint_family_on_def by auto  | 
|
73  | 
||
74  | 
lemma disjoint_family_on_mono:  | 
|
75  | 
"A \<subseteq> B \<Longrightarrow> disjoint_family_on f B \<Longrightarrow> disjoint_family_on f A"  | 
|
76  | 
unfolding disjoint_family_on_def by auto  | 
|
77  | 
||
78  | 
lemma disjoint_family_Suc:  | 
|
79  | 
"(\<And>n. A n \<subseteq> A (Suc n)) \<Longrightarrow> disjoint_family (\<lambda>i. A (Suc i) - A i)"  | 
|
80  | 
using lift_Suc_mono_le[of A]  | 
|
81  | 
by (auto simp add: disjoint_family_on_def)  | 
|
| 
61824
 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 
paulson <lp15@cam.ac.uk> 
parents: 
60727 
diff
changeset
 | 
82  | 
(metis insert_absorb insert_subset le_SucE le_antisym not_le_imp_less less_imp_le)  | 
| 60727 | 83  | 
|
84  | 
lemma disjoint_family_on_disjoint_image:  | 
|
85  | 
"disjoint_family_on A I \<Longrightarrow> disjoint (A ` I)"  | 
|
86  | 
unfolding disjoint_family_on_def disjoint_def by force  | 
|
87  | 
||
88  | 
lemma disjoint_family_on_vimageI: "disjoint_family_on F I \<Longrightarrow> disjoint_family_on (\<lambda>i. f -` F i) I"  | 
|
89  | 
by (auto simp: disjoint_family_on_def)  | 
|
90  | 
||
91  | 
lemma disjoint_image_disjoint_family_on:  | 
|
92  | 
assumes d: "disjoint (A ` I)" and i: "inj_on A I"  | 
|
93  | 
shows "disjoint_family_on A I"  | 
|
94  | 
unfolding disjoint_family_on_def  | 
|
95  | 
proof (intro ballI impI)  | 
|
96  | 
fix n m assume nm: "m \<in> I" "n \<in> I" and "n \<noteq> m"  | 
|
97  | 
  with i[THEN inj_onD, of n m] show "A n \<inter> A m = {}"
 | 
|
98  | 
by (intro disjointD[OF d]) auto  | 
|
99  | 
qed  | 
|
100  | 
||
101  | 
lemma disjoint_UN:  | 
|
102  | 
assumes F: "\<And>i. i \<in> I \<Longrightarrow> disjoint (F i)" and *: "disjoint_family_on (\<lambda>i. \<Union>F i) I"  | 
|
103  | 
shows "disjoint (\<Union>i\<in>I. F i)"  | 
|
104  | 
proof (safe intro!: disjointI del: equalityI)  | 
|
105  | 
fix A B i j assume "A \<noteq> B" "A \<in> F i" "i \<in> I" "B \<in> F j" "j \<in> I"  | 
|
106  | 
  show "A \<inter> B = {}"
 | 
|
107  | 
proof cases  | 
|
108  | 
    assume "i = j" with F[of i] \<open>i \<in> I\<close> \<open>A \<in> F i\<close> \<open>B \<in> F j\<close> \<open>A \<noteq> B\<close> show "A \<inter> B = {}"
 | 
|
109  | 
by (auto dest: disjointD)  | 
|
110  | 
next  | 
|
111  | 
assume "i \<noteq> j"  | 
|
112  | 
    with * \<open>i\<in>I\<close> \<open>j\<in>I\<close> have "(\<Union>F i) \<inter> (\<Union>F j) = {}"
 | 
|
113  | 
by (rule disjoint_family_onD)  | 
|
114  | 
with \<open>A\<in>F i\<close> \<open>i\<in>I\<close> \<open>B\<in>F j\<close> \<open>j\<in>I\<close>  | 
|
115  | 
    show "A \<inter> B = {}"
 | 
|
116  | 
by auto  | 
|
117  | 
qed  | 
|
118  | 
qed  | 
|
119  | 
||
120  | 
lemma disjoint_union: "disjoint C \<Longrightarrow> disjoint B \<Longrightarrow> \<Union>C \<inter> \<Union>B = {} \<Longrightarrow> disjoint (C \<union> B)"
 | 
|
121  | 
  using disjoint_UN[of "{C, B}" "\<lambda>x. x"] by (auto simp add: disjoint_family_on_def)
 | 
|
122  | 
||
123  | 
subsection \<open>Construct Disjoint Sequences\<close>  | 
|
124  | 
||
125  | 
definition disjointed :: "(nat \<Rightarrow> 'a set) \<Rightarrow> nat \<Rightarrow> 'a set" where  | 
|
126  | 
  "disjointed A n = A n - (\<Union>i\<in>{0..<n}. A i)"
 | 
|
127  | 
||
128  | 
lemma finite_UN_disjointed_eq: "(\<Union>i\<in>{0..<n}. disjointed A i) = (\<Union>i\<in>{0..<n}. A i)"
 | 
|
129  | 
proof (induct n)  | 
|
130  | 
case 0 show ?case by simp  | 
|
131  | 
next  | 
|
132  | 
case (Suc n)  | 
|
133  | 
thus ?case by (simp add: atLeastLessThanSuc disjointed_def)  | 
|
134  | 
qed  | 
|
135  | 
||
136  | 
lemma UN_disjointed_eq: "(\<Union>i. disjointed A i) = (\<Union>i. A i)"  | 
|
137  | 
by (rule UN_finite2_eq [where k=0])  | 
|
138  | 
(simp add: finite_UN_disjointed_eq)  | 
|
139  | 
||
140  | 
lemma less_disjoint_disjointed: "m < n \<Longrightarrow> disjointed A m \<inter> disjointed A n = {}"
 | 
|
141  | 
by (auto simp add: disjointed_def)  | 
|
142  | 
||
143  | 
lemma disjoint_family_disjointed: "disjoint_family (disjointed A)"  | 
|
144  | 
by (simp add: disjoint_family_on_def)  | 
|
145  | 
(metis neq_iff Int_commute less_disjoint_disjointed)  | 
|
146  | 
||
147  | 
lemma disjointed_subset: "disjointed A n \<subseteq> A n"  | 
|
148  | 
by (auto simp add: disjointed_def)  | 
|
149  | 
||
150  | 
lemma disjointed_0[simp]: "disjointed A 0 = A 0"  | 
|
151  | 
by (simp add: disjointed_def)  | 
|
152  | 
||
153  | 
lemma disjointed_mono: "mono A \<Longrightarrow> disjointed A (Suc n) = A (Suc n) - A n"  | 
|
154  | 
using mono_Un[of A] by (simp add: disjointed_def atLeastLessThanSuc_atLeastAtMost atLeast0AtMost)  | 
|
155  | 
||
| 62390 | 156  | 
end  |