| 
460
 | 
     1  | 
\begin{thebibliography}{10}
 | 
| 
 | 
     2  | 
  | 
| 
 | 
     3  | 
\bibitem{andrews86}
 | 
| 
 | 
     4  | 
Andrews, P.~B.,
  | 
| 
 | 
     5  | 
\newblock {\em An Introduction to Mathematical Logic and Type Theory: To Truth
 | 
| 
 | 
     6  | 
  Through Proof},
  | 
| 
 | 
     7  | 
\newblock Academic Press, 1986
  | 
| 
 | 
     8  | 
  | 
| 
 | 
     9  | 
\bibitem{basin91}
 | 
| 
 | 
    10  | 
Basin, D., Kaufmann, M.,
  | 
| 
 | 
    11  | 
\newblock The {Boyer-Moore} prover and {Nuprl}: An experimental comparison,
 | 
| 
 | 
    12  | 
\newblock In {\em Logical Frameworks}, G.~Huet, G.~Plotkin, Eds. Cambridge
 | 
| 
 | 
    13  | 
  Univ. Press, 1991, pp.~89--119
  | 
| 
 | 
    14  | 
  | 
| 
 | 
    15  | 
\bibitem{boyer86}
 | 
| 
 | 
    16  | 
Boyer, R., Lusk, E., McCune, W., Overbeek, R., Stickel, M., Wos, L.,
  | 
| 
 | 
    17  | 
\newblock Set theory in first-order logic: Clauses for {G\"odel's} axioms,
 | 
| 
 | 
    18  | 
\newblock {\em J. Auto. Reas. {\bf 2}}, 3 (1986), 287--327
 | 
| 
 | 
    19  | 
  | 
| 
 | 
    20  | 
\bibitem{bm88book}
 | 
| 
 | 
    21  | 
Boyer, R.~S., Moore, J.~S.,
  | 
| 
 | 
    22  | 
\newblock {\em A Computational Logic Handbook},
 | 
| 
 | 
    23  | 
\newblock Academic Press, 1988
  | 
| 
 | 
    24  | 
  | 
| 
 | 
    25  | 
\bibitem{camilleri92}
 | 
| 
 | 
    26  | 
Camilleri, J., Melham, T.~F.,
  | 
| 
 | 
    27  | 
\newblock Reasoning with inductively defined relations in the {HOL} theorem
 | 
| 
 | 
    28  | 
  prover,
  | 
| 
 | 
    29  | 
\newblock Tech. Rep. 265, Comp. Lab., Univ. Cambridge, Aug. 1992
  | 
| 
 | 
    30  | 
  | 
| 
 | 
    31  | 
\bibitem{charniak80}
 | 
| 
 | 
    32  | 
Charniak, E., Riesbeck, C.~K., McDermott, D.~V.,
  | 
| 
 | 
    33  | 
\newblock {\em Artificial Intelligence Programming},
 | 
| 
 | 
    34  | 
\newblock Lawrence Erlbaum Associates, 1980
  | 
| 
 | 
    35  | 
  | 
| 
 | 
    36  | 
\bibitem{church40}
 | 
| 
 | 
    37  | 
Church, A.,
  | 
| 
 | 
    38  | 
\newblock A formulation of the simple theory of types,
  | 
| 
 | 
    39  | 
\newblock {\em J. Symb. Logic {\bf 5}\/} (1940), 56--68
 | 
| 
 | 
    40  | 
  | 
| 
 | 
    41  | 
\bibitem{coen92}
 | 
| 
 | 
    42  | 
Coen, M.~D.,
  | 
| 
 | 
    43  | 
\newblock {\em Interactive Program Derivation},
 | 
| 
 | 
    44  | 
\newblock PhD thesis, University of Cambridge, 1992,
  | 
| 
 | 
    45  | 
\newblock Computer Laboratory Technical Report 272
  | 
| 
 | 
    46  | 
  | 
| 
 | 
    47  | 
\bibitem{constable86}
 | 
| 
 | 
    48  | 
{Constable et al.}, R.~L.,
 | 
| 
 | 
    49  | 
\newblock {\em Implementing Mathematics with the Nuprl Proof Development
 | 
| 
 | 
    50  | 
  System},
  | 
| 
 | 
    51  | 
\newblock Prentice-Hall, 1986
  | 
| 
 | 
    52  | 
  | 
| 
 | 
    53  | 
\bibitem{davey&priestley}
 | 
| 
 | 
    54  | 
Davey, B.~A., Priestley, H.~A.,
  | 
| 
 | 
    55  | 
\newblock {\em Introduction to Lattices and Order},
 | 
| 
 | 
    56  | 
\newblock Cambridge Univ. Press, 1990
  | 
| 
 | 
    57  | 
  | 
| 
 | 
    58  | 
\bibitem{dawson90}
 | 
| 
 | 
    59  | 
Dawson, W.~M.,
  | 
| 
 | 
    60  | 
\newblock {\em A Generic Logic Environment},
 | 
| 
 | 
    61  | 
\newblock PhD thesis, Imperial College, London, 1990
  | 
| 
 | 
    62  | 
  | 
| 
 | 
    63  | 
\bibitem{debruijn72}
 | 
| 
 | 
    64  | 
de~Bruijn, N.~G.,
  | 
| 
 | 
    65  | 
\newblock Lambda calculus notation with nameless dummies, a tool for automatic
  | 
| 
 | 
    66  | 
  formula manipulation, with application to the {Church-Rosser Theorem},
 | 
| 
 | 
    67  | 
\newblock {\em Indag. Math. {\bf 34}\/} (1972), 381--392
 | 
| 
 | 
    68  | 
  | 
| 
 | 
    69  | 
\bibitem{devlin79}
 | 
| 
 | 
    70  | 
Devlin, K.~J.,
  | 
| 
 | 
    71  | 
\newblock {\em Fundamentals of Contemporary Set Theory},
 | 
| 
 | 
    72  | 
\newblock Springer, 1979
  | 
| 
 | 
    73  | 
  | 
| 
 | 
    74  | 
\bibitem{coq}
 | 
| 
 | 
    75  | 
{Dowek et al.}, G.,
 | 
| 
 | 
    76  | 
\newblock The {Coq} proof assistant user's guide,
 | 
| 
 | 
    77  | 
\newblock Technical Report 134, INRIA-Rocquencourt, 1991
  | 
| 
 | 
    78  | 
  | 
| 
 | 
    79  | 
\bibitem{dummett}
 | 
| 
 | 
    80  | 
Dummett, M.,
  | 
| 
 | 
    81  | 
\newblock {\em Elements of Intuitionism},
 | 
| 
 | 
    82  | 
\newblock Oxford University Press, 1977
  | 
| 
 | 
    83  | 
  | 
| 
 | 
    84  | 
\bibitem{dyckhoff}
 | 
| 
 | 
    85  | 
Dyckhoff, R.,
  | 
| 
 | 
    86  | 
\newblock Contraction-free sequent calculi for intuitionistic logic,
  | 
| 
 | 
    87  | 
\newblock {\em J. Symb. Logic {\bf 57}}, 3 (1992), 795--807
 | 
| 
 | 
    88  | 
  | 
| 
 | 
    89  | 
\bibitem{felty91a}
 | 
| 
 | 
    90  | 
Felty, A.,
  | 
| 
 | 
    91  | 
\newblock A logic program for transforming sequent proofs to natural deduction
  | 
| 
 | 
    92  | 
  proofs,
  | 
| 
 | 
    93  | 
\newblock In {\em Extensions of Logic Programming\/} (1991),
 | 
| 
 | 
    94  | 
  P.~Schroeder-Heister, Ed., Springer, pp.~157--178,
  | 
| 
 | 
    95  | 
\newblock LNAI 475
  | 
| 
 | 
    96  | 
  | 
| 
 | 
    97  | 
\bibitem{felty93}
 | 
| 
 | 
    98  | 
Felty, A.,
  | 
| 
 | 
    99  | 
\newblock Implementing tactics and tacticals in a higher-order logic
  | 
| 
 | 
   100  | 
  programming language,
  | 
| 
 | 
   101  | 
\newblock {\em J. Auto. Reas. {\bf 11}}, 1 (1993), 43--82
 | 
| 
 | 
   102  | 
  | 
| 
 | 
   103  | 
\bibitem{frost93}
 | 
| 
 | 
   104  | 
Frost, J.,
  | 
| 
 | 
   105  | 
\newblock A case study of co-induction in {Isabelle HOL},
 | 
| 
 | 
   106  | 
\newblock Tech. Rep. 308, Comp. Lab., Univ. Cambridge, Aug. 1993
  | 
| 
 | 
   107  | 
  | 
| 
 | 
   108  | 
\bibitem{OBJ}
 | 
| 
 | 
   109  | 
Futatsugi, K., Goguen, J., Jouannaud, J.-P., Meseguer, J.,
  | 
| 
 | 
   110  | 
\newblock Principles of {OBJ2},
 | 
| 
 | 
   111  | 
\newblock In {\em Princ. Prog. Lang.\/} (1985), pp.~52--66
 | 
| 
 | 
   112  | 
  | 
| 
 | 
   113  | 
\bibitem{gallier86}
 | 
| 
 | 
   114  | 
Gallier, J.~H.,
  | 
| 
 | 
   115  | 
\newblock {\em Logic for Computer Science: Foundations of Automatic Theorem
 | 
| 
 | 
   116  | 
  Proving},
  | 
| 
 | 
   117  | 
\newblock Harper \& Row, 1986
  | 
| 
 | 
   118  | 
  | 
| 
 | 
   119  | 
\bibitem{mgordon-hol}
 | 
| 
 | 
   120  | 
Gordon, M. J.~C., Melham, T.~F.,
  | 
| 
 | 
   121  | 
\newblock {\em Introduction to {HOL}: A Theorem Proving Environment for Higher
 | 
| 
 | 
   122  | 
  Order Logic},
  | 
| 
 | 
   123  | 
\newblock Cambridge Univ. Press, 1993
  | 
| 
 | 
   124  | 
  | 
| 
 | 
   125  | 
\bibitem{halmos60}
 | 
| 
 | 
   126  | 
Halmos, P.~R.,
  | 
| 
 | 
   127  | 
\newblock {\em Naive Set Theory},
 | 
| 
 | 
   128  | 
\newblock Van Nostrand, 1960
  | 
| 
 | 
   129  | 
  | 
| 
 | 
   130  | 
\bibitem{harper-jacm}
 | 
| 
 | 
   131  | 
Harper, R., Honsell, F., Plotkin, G.,
  | 
| 
 | 
   132  | 
\newblock A framework for defining logics,
  | 
| 
 | 
   133  | 
\newblock {\em J.~ACM {\bf 40}}, 1 (1993), 143--184
 | 
| 
 | 
   134  | 
  | 
| 
 | 
   135  | 
\bibitem{haskell-tutorial}
 | 
| 
 | 
   136  | 
Hudak, P., Fasel, J.~H.,
  | 
| 
 | 
   137  | 
\newblock A gentle introduction to {Haskell},
 | 
| 
 | 
   138  | 
\newblock {\em {SIGPLAN} {\bf 27}}, 5 (May 1992)
 | 
| 
 | 
   139  | 
  | 
| 
 | 
   140  | 
\bibitem{haskell-report}
 | 
| 
 | 
   141  | 
Hudak, P., Jones, S.~P., Wadler, P.,
  | 
| 
 | 
   142  | 
\newblock Report on the programming language {Haskell}: A non-strict, purely
 | 
| 
 | 
   143  | 
  functional language,
  | 
| 
 | 
   144  | 
\newblock {\em {SIGPLAN} {\bf 27}}, 5 (May 1992),
 | 
| 
 | 
   145  | 
\newblock Version 1.2
  | 
| 
 | 
   146  | 
  | 
| 
 | 
   147  | 
\bibitem{huet75}
 | 
| 
 | 
   148  | 
Huet, G.~P.,
  | 
| 
 | 
   149  | 
\newblock A unification algorithm for typed $\lambda$-calculus,
  | 
| 
 | 
   150  | 
\newblock {\em Theoretical Comput. Sci. {\bf 1}\/} (1975), 27--57
 | 
| 
 | 
   151  | 
  | 
| 
 | 
   152  | 
\bibitem{huet78}
 | 
| 
 | 
   153  | 
Huet, G.~P., Lang, B.,
  | 
| 
 | 
   154  | 
\newblock Proving and applying program transformations expressed with
  | 
| 
 | 
   155  | 
  second-order patterns,
  | 
| 
 | 
   156  | 
\newblock {\em Acta Inf. {\bf 11}\/} (1978), 31--55
 | 
| 
 | 
   157  | 
  | 
| 
 | 
   158  | 
\bibitem{mural}
 | 
| 
 | 
   159  | 
Jones, C.~B., Jones, K.~D., Lindsay, P.~A., Moore, R.,
  | 
| 
 | 
   160  | 
\newblock {\em Mural: A Formal Development Support System},
 | 
| 
 | 
   161  | 
\newblock Springer, 1991
  | 
| 
 | 
   162  | 
  | 
| 
 | 
   163  | 
\bibitem{alf}
 | 
| 
 | 
   164  | 
Magnusson, L., {Nordstr\"om}, B.,
 | 
| 
 | 
   165  | 
\newblock The {ALF} proof editor and its proof engine,
 | 
| 
 | 
   166  | 
\newblock In {\em Types for Proofs and Programs: International Workshop {TYPES
 | 
| 
 | 
   167  | 
  '93}\/} (published 1994), Springer, pp.~213--237,
  | 
| 
 | 
   168  | 
\newblock LNCS 806
  | 
| 
 | 
   169  | 
  | 
| 
 | 
   170  | 
\bibitem{mw81}
 | 
| 
 | 
   171  | 
Manna, Z., Waldinger, R.,
  | 
| 
 | 
   172  | 
\newblock Deductive synthesis of the unification algorithm,
  | 
| 
 | 
   173  | 
\newblock {\em Sci. Comput. Programming {\bf 1}}, 1 (1981), 5--48
 | 
| 
 | 
   174  | 
  | 
| 
 | 
   175  | 
\bibitem{martin-nipkow}
 | 
| 
 | 
   176  | 
Martin, U., Nipkow, T.,
  | 
| 
 | 
   177  | 
\newblock Ordered rewriting and confluence,
  | 
| 
 | 
   178  | 
\newblock In {\em 10th Conf. Auto. Deduct.\/} (1990), M.~E. Stickel, Ed.,
 | 
| 
 | 
   179  | 
  Springer, pp.~366--380,
  | 
| 
 | 
   180  | 
\newblock LNCS 449
  | 
| 
 | 
   181  | 
  | 
| 
 | 
   182  | 
\bibitem{martinlof84}
 | 
| 
 | 
   183  | 
Martin-L\"of, P.,
  | 
| 
 | 
   184  | 
\newblock {\em Intuitionistic type theory},
 | 
| 
 | 
   185  | 
\newblock Bibliopolis, 1984
  | 
| 
 | 
   186  | 
  | 
| 
 | 
   187  | 
\bibitem{melham89}
 | 
| 
 | 
   188  | 
Melham, T.~F.,
  | 
| 
 | 
   189  | 
\newblock Automating recursive type definitions in higher order logic,
  | 
| 
 | 
   190  | 
\newblock In {\em Current Trends in Hardware Verification and Automated Theorem
 | 
| 
 | 
   191  | 
  Proving}, G.~Birtwistle, P.~A. Subrahmanyam, Eds. Springer, 1989,
  | 
| 
 | 
   192  | 
  pp.~341--386
  | 
| 
 | 
   193  | 
  | 
| 
 | 
   194  | 
\bibitem{miller-mixed}
 | 
| 
 | 
   195  | 
Miller, D.,
  | 
| 
 | 
   196  | 
\newblock Unification under a mixed prefix,
  | 
| 
 | 
   197  | 
\newblock {\em J. Symb. Comput. {\bf 14}}, 4 (1992), 321--358
 | 
| 
 | 
   198  | 
  | 
| 
 | 
   199  | 
\bibitem{milner-coind}
 | 
| 
 | 
   200  | 
Milner, R., Tofte, M.,
  | 
| 
 | 
   201  | 
\newblock Co-induction in relational semantics,
  | 
| 
 | 
   202  | 
\newblock {\em Theoretical Comput. Sci. {\bf 87}\/} (1991), 209--220
 | 
| 
 | 
   203  | 
  | 
| 
 | 
   204  | 
\bibitem{nipkow-prehofer}
 | 
| 
 | 
   205  | 
Nipkow, T., Prehofer, C.,
  | 
| 
 | 
   206  | 
\newblock Type checking type classes,
  | 
| 
 | 
   207  | 
\newblock In {\em 20th Princ. Prog. Lang.\/} (1993), ACM Press, pp.~409--418,
 | 
| 
 | 
   208  | 
\newblock Revised version to appear in \bgroup\em J. Func. Prog.\egroup
  | 
| 
 | 
   209  | 
  | 
| 
 | 
   210  | 
\bibitem{noel}
 | 
| 
 | 
   211  | 
{No\"el}, P.,
 | 
| 
 | 
   212  | 
\newblock Experimenting with {Isabelle} in {ZF} set theory,
 | 
| 
 | 
   213  | 
\newblock {\em J. Auto. Reas. {\bf 10}}, 1 (1993), 15--58
 | 
| 
 | 
   214  | 
  | 
| 
 | 
   215  | 
\bibitem{nordstrom90}
 | 
| 
 | 
   216  | 
{Nordstr\"om}, B., Petersson, K., Smith, J.,
 | 
| 
 | 
   217  | 
\newblock {\em Programming in {Martin-L\"of}'s Type Theory. An Introduction},
 | 
| 
 | 
   218  | 
\newblock Oxford University Press, 1990
  | 
| 
 | 
   219  | 
  | 
| 
 | 
   220  | 
\bibitem{paulin92}
 | 
| 
 | 
   221  | 
Paulin-Mohring, C.,
  | 
| 
 | 
   222  | 
\newblock Inductive definitions in the system {Coq}: Rules and properties,
 | 
| 
 | 
   223  | 
\newblock Research Report 92-49, LIP, Ecole Normale Sup\'erieure de Lyon, Dec.
  | 
| 
 | 
   224  | 
  1992
  | 
| 
 | 
   225  | 
  | 
| 
 | 
   226  | 
\bibitem{paulson85}
 | 
| 
 | 
   227  | 
Paulson, L.~C.,
  | 
| 
 | 
   228  | 
\newblock Verifying the unification algorithm in {LCF},
 | 
| 
 | 
   229  | 
\newblock {\em Sci. Comput. Programming {\bf 5}\/} (1985), 143--170
 | 
| 
 | 
   230  | 
  | 
| 
 | 
   231  | 
\bibitem{paulson87}
 | 
| 
 | 
   232  | 
Paulson, L.~C.,
  | 
| 
 | 
   233  | 
\newblock {\em Logic and Computation: Interactive proof with Cambridge LCF},
 | 
| 
 | 
   234  | 
\newblock Cambridge Univ. Press, 1987
  | 
| 
 | 
   235  | 
  | 
| 
 | 
   236  | 
\bibitem{paulson89}
 | 
| 
 | 
   237  | 
Paulson, L.~C.,
  | 
| 
 | 
   238  | 
\newblock The foundation of a generic theorem prover,
  | 
| 
 | 
   239  | 
\newblock {\em J. Auto. Reas. {\bf 5}}, 3 (1989), 363--397
 | 
| 
 | 
   240  | 
  | 
| 
 | 
   241  | 
\bibitem{paulson-COLOG}
 | 
| 
 | 
   242  | 
Paulson, L.~C.,
  | 
| 
 | 
   243  | 
\newblock A formulation of the simple theory of types (for {Isabelle}),
 | 
| 
 | 
   244  | 
\newblock In {\em COLOG-88: International Conference on Computer Logic\/}
 | 
| 
 | 
   245  | 
  (Tallinn, 1990), P.~Martin-L\"of, G.~Mints, Eds., Estonian Academy of
  | 
| 
 | 
   246  | 
  Sciences, Springer,
  | 
| 
 | 
   247  | 
\newblock LNCS 417
  | 
| 
 | 
   248  | 
  | 
| 
 | 
   249  | 
\bibitem{paulson700}
 | 
| 
 | 
   250  | 
Paulson, L.~C.,
  | 
| 
 | 
   251  | 
\newblock {Isabelle}: The next 700 theorem provers,
 | 
| 
 | 
   252  | 
\newblock In {\em Logic and Computer Science}, P.~Odifreddi, Ed. Academic
 | 
| 
 | 
   253  | 
  Press, 1990, pp.~361--386
  | 
| 
 | 
   254  | 
  | 
| 
 | 
   255  | 
\bibitem{paulson91}
 | 
| 
 | 
   256  | 
Paulson, L.~C.,
  | 
| 
 | 
   257  | 
\newblock {\em {ML} for the Working Programmer},
 | 
| 
 | 
   258  | 
\newblock Cambridge Univ. Press, 1991
  | 
| 
 | 
   259  | 
  | 
| 
 | 
   260  | 
\bibitem{paulson-coind}
 | 
| 
 | 
   261  | 
Paulson, L.~C.,
  | 
| 
 | 
   262  | 
\newblock Co-induction and co-recursion in higher-order logic,
  | 
| 
 | 
   263  | 
\newblock Tech. Rep. 304, Comp. Lab., Univ. Cambridge, July 1993
  | 
| 
 | 
   264  | 
  | 
| 
 | 
   265  | 
\bibitem{paulson-fixedpt}
 | 
| 
 | 
   266  | 
Paulson, L.~C.,
  | 
| 
 | 
   267  | 
\newblock A fixedpoint approach to implementing (co)inductive definitions,
  | 
| 
 | 
   268  | 
\newblock Tech. Rep. 320, Comp. Lab., Univ. Cambridge, Dec. 1993
  | 
| 
 | 
   269  | 
  | 
| 
 | 
   270  | 
\bibitem{paulson-set-I}
 | 
| 
 | 
   271  | 
Paulson, L.~C.,
  | 
| 
 | 
   272  | 
\newblock Set theory for verification: {I}. {From} foundations to functions,
 | 
| 
 | 
   273  | 
\newblock {\em J. Auto. Reas. {\bf 11}}, 3 (1993), 353--389
 | 
| 
 | 
   274  | 
  | 
| 
 | 
   275  | 
\bibitem{paulson-set-II}
 | 
| 
 | 
   276  | 
Paulson, L.~C.,
  | 
| 
 | 
   277  | 
\newblock Set theory for verification: {II}. {Induction} and recursion,
 | 
| 
 | 
   278  | 
\newblock Tech. Rep. 312, Comp. Lab., Univ. Cambridge, 1993
  | 
| 
 | 
   279  | 
  | 
| 
 | 
   280  | 
\bibitem{paulson-final}
 | 
| 
 | 
   281  | 
Paulson, L.~C.,
  | 
| 
 | 
   282  | 
\newblock A concrete final coalgebra theorem for {ZF} set theory,
 | 
| 
 | 
   283  | 
\newblock Tech. rep., Comp. Lab., Univ. Cambridge, 1994
  | 
| 
 | 
   284  | 
  | 
| 
 | 
   285  | 
\bibitem{pelletier86}
 | 
| 
 | 
   286  | 
Pelletier, F.~J.,
  | 
| 
 | 
   287  | 
\newblock Seventy-five problems for testing automatic theorem provers,
  | 
| 
 | 
   288  | 
\newblock {\em J. Auto. Reas. {\bf 2}\/} (1986), 191--216,
 | 
| 
 | 
   289  | 
\newblock Errata, JAR 4 (1988), 235--236
  | 
| 
 | 
   290  | 
  | 
| 
 | 
   291  | 
\bibitem{plaisted90}
 | 
| 
 | 
   292  | 
Plaisted, D.~A.,
  | 
| 
 | 
   293  | 
\newblock A sequent-style model elimination strategy and a positive refinement,
  | 
| 
 | 
   294  | 
\newblock {\em J. Auto. Reas. {\bf 6}}, 4 (1990), 389--402
 | 
| 
 | 
   295  | 
  | 
| 
 | 
   296  | 
\bibitem{quaife92}
 | 
| 
 | 
   297  | 
Quaife, A.,
  | 
| 
 | 
   298  | 
\newblock Automated deduction in {von Neumann-Bernays-G\"odel} set theory,
 | 
| 
 | 
   299  | 
\newblock {\em J. Auto. Reas. {\bf 8}}, 1 (1992), 91--147
 | 
| 
 | 
   300  | 
  | 
| 
 | 
   301  | 
\bibitem{sawamura92}
 | 
| 
 | 
   302  | 
Sawamura, H., Minami, T., Ohashi, K.,
  | 
| 
 | 
   303  | 
\newblock Proof methods based on sheet of thought in {EUODHILOS},
 | 
| 
 | 
   304  | 
\newblock Research Report IIAS-RR-92-6E, International Institute for Advanced
  | 
| 
 | 
   305  | 
  Study of Social Information Science, Fujitsu Laboratories, 1992
  | 
| 
 | 
   306  | 
  | 
| 
 | 
   307  | 
\bibitem{suppes72}
 | 
| 
 | 
   308  | 
Suppes, P.,
  | 
| 
 | 
   309  | 
\newblock {\em Axiomatic Set Theory},
 | 
| 
 | 
   310  | 
\newblock Dover, 1972
  | 
| 
 | 
   311  | 
  | 
| 
 | 
   312  | 
\bibitem{takeuti87}
 | 
| 
 | 
   313  | 
Takeuti, G.,
  | 
| 
 | 
   314  | 
\newblock {\em Proof Theory}, 2nd~ed.,
 | 
| 
 | 
   315  | 
\newblock North Holland, 1987
  | 
| 
 | 
   316  | 
  | 
| 
 | 
   317  | 
\bibitem{thompson91}
 | 
| 
 | 
   318  | 
Thompson, S.,
  | 
| 
 | 
   319  | 
\newblock {\em Type Theory and Functional Programming},
 | 
| 
 | 
   320  | 
\newblock Addison-Wesley, 1991
  | 
| 
 | 
   321  | 
  | 
| 
 | 
   322  | 
\bibitem{principia}
 | 
| 
 | 
   323  | 
Whitehead, A.~N., Russell, B.,
  | 
| 
 | 
   324  | 
\newblock {\em Principia Mathematica},
 | 
| 
 | 
   325  | 
\newblock Cambridge Univ. Press, 1962,
  | 
| 
 | 
   326  | 
\newblock Paperback edition to *56, abridged from the 2nd edition (1927)
  | 
| 
 | 
   327  | 
  | 
| 
 | 
   328  | 
\bibitem{wos-bledsoe}
 | 
| 
 | 
   329  | 
Wos, L.,
  | 
| 
 | 
   330  | 
\newblock Automated reasoning and {Bledsoe's} dream for the field,
 | 
| 
 | 
   331  | 
\newblock In {\em Automated Reasoning: Essays in Honor of {Woody Bledsoe}},
 | 
| 
 | 
   332  | 
  R.~S. Boyer, Ed. Kluwer Academic Publishers, 1991, pp.~297--342
  | 
| 
 | 
   333  | 
  | 
| 
 | 
   334  | 
\end{thebibliography}
 |