| author | wenzelm | 
| Wed, 05 Nov 1997 19:39:34 +0100 | |
| changeset 4176 | 84a0bfbd74e5 | 
| parent 3835 | 9a5a4e123859 | 
| child 4187 | 2fafec5868fe | 
| permissions | -rw-r--r-- | 
| 1459 | 1 | (* Title: FOL/IFOL.ML | 
| 0 | 2 | ID: $Id$ | 
| 1459 | 3 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | 
| 0 | 4 | Copyright 1992 University of Cambridge | 
| 5 | ||
| 1280 | 6 | Tactics and lemmas for IFOL.thy (intuitionistic first-order logic) | 
| 0 | 7 | *) | 
| 8 | ||
| 9 | open IFOL; | |
| 10 | ||
| 11 | ||
| 779 | 12 | qed_goalw "TrueI" IFOL.thy [True_def] "True" | 
| 0 | 13 | (fn _ => [ (REPEAT (ares_tac [impI] 1)) ]); | 
| 14 | ||
| 15 | (*** Sequent-style elimination rules for & --> and ALL ***) | |
| 16 | ||
| 779 | 17 | qed_goal "conjE" IFOL.thy | 
| 0 | 18 | "[| P&Q; [| P; Q |] ==> R |] ==> R" | 
| 19 | (fn prems=> | |
| 20 | [ (REPEAT (resolve_tac prems 1 | |
| 21 | ORELSE (resolve_tac [conjunct1, conjunct2] 1 THEN | |
| 22 | resolve_tac prems 1))) ]); | |
| 23 | ||
| 779 | 24 | qed_goal "impE" IFOL.thy | 
| 0 | 25 | "[| P-->Q; P; Q ==> R |] ==> R" | 
| 26 | (fn prems=> [ (REPEAT (resolve_tac (prems@[mp]) 1)) ]); | |
| 27 | ||
| 779 | 28 | qed_goal "allE" IFOL.thy | 
| 3835 | 29 | "[| ALL x. P(x); P(x) ==> R |] ==> R" | 
| 0 | 30 | (fn prems=> [ (REPEAT (resolve_tac (prems@[spec]) 1)) ]); | 
| 31 | ||
| 32 | (*Duplicates the quantifier; for use with eresolve_tac*) | |
| 779 | 33 | qed_goal "all_dupE" IFOL.thy | 
| 3835 | 34 | "[| ALL x. P(x); [| P(x); ALL x. P(x) |] ==> R \ | 
| 0 | 35 | \ |] ==> R" | 
| 36 | (fn prems=> [ (REPEAT (resolve_tac (prems@[spec]) 1)) ]); | |
| 37 | ||
| 38 | ||
| 39 | (*** Negation rules, which translate between ~P and P-->False ***) | |
| 40 | ||
| 779 | 41 | qed_goalw "notI" IFOL.thy [not_def] "(P ==> False) ==> ~P" | 
| 0 | 42 | (fn prems=> [ (REPEAT (ares_tac (prems@[impI]) 1)) ]); | 
| 43 | ||
| 779 | 44 | qed_goalw "notE" IFOL.thy [not_def] "[| ~P; P |] ==> R" | 
| 0 | 45 | (fn prems=> | 
| 46 | [ (resolve_tac [mp RS FalseE] 1), | |
| 47 | (REPEAT (resolve_tac prems 1)) ]); | |
| 48 | ||
| 1891 | 49 | qed_goal "rev_notE" IFOL.thy "!!P R. [| P; ~P |] ==> R" | 
| 50 | (fn _ => [REPEAT (ares_tac [notE] 1)]); | |
| 51 | ||
| 0 | 52 | (*This is useful with the special implication rules for each kind of P. *) | 
| 779 | 53 | qed_goal "not_to_imp" IFOL.thy | 
| 0 | 54 | "[| ~P; (P-->False) ==> Q |] ==> Q" | 
| 55 | (fn prems=> [ (REPEAT (ares_tac (prems@[impI,notE]) 1)) ]); | |
| 56 | ||
| 1002 | 57 | (* For substitution into an assumption P, reduce Q to P-->Q, substitute into | 
| 0 | 58 | this implication, then apply impI to move P back into the assumptions. | 
| 59 | To specify P use something like | |
| 60 |       eres_inst_tac [ ("P","ALL y. ?S(x,y)") ] rev_mp 1   *)
 | |
| 779 | 61 | qed_goal "rev_mp" IFOL.thy "[| P; P --> Q |] ==> Q" | 
| 0 | 62 | (fn prems=> [ (REPEAT (resolve_tac (prems@[mp]) 1)) ]); | 
| 63 | ||
| 64 | ||
| 65 | (*Contrapositive of an inference rule*) | |
| 779 | 66 | qed_goal "contrapos" IFOL.thy "[| ~Q; P==>Q |] ==> ~P" | 
| 0 | 67 | (fn [major,minor]=> | 
| 68 | [ (rtac (major RS notE RS notI) 1), | |
| 69 | (etac minor 1) ]); | |
| 70 | ||
| 71 | ||
| 72 | (*** Modus Ponens Tactics ***) | |
| 73 | ||
| 74 | (*Finds P-->Q and P in the assumptions, replaces implication by Q *) | |
| 75 | fun mp_tac i = eresolve_tac [notE,impE] i THEN assume_tac i; | |
| 76 | ||
| 77 | (*Like mp_tac but instantiates no variables*) | |
| 78 | fun eq_mp_tac i = eresolve_tac [notE,impE] i THEN eq_assume_tac i; | |
| 79 | ||
| 80 | ||
| 81 | (*** If-and-only-if ***) | |
| 82 | ||
| 779 | 83 | qed_goalw "iffI" IFOL.thy [iff_def] | 
| 0 | 84 | "[| P ==> Q; Q ==> P |] ==> P<->Q" | 
| 85 | (fn prems=> [ (REPEAT (ares_tac (prems@[conjI, impI]) 1)) ]); | |
| 86 | ||
| 87 | ||
| 88 | (*Observe use of rewrite_rule to unfold "<->" in meta-assumptions (prems) *) | |
| 779 | 89 | qed_goalw "iffE" IFOL.thy [iff_def] | 
| 0 | 90 | "[| P <-> Q; [| P-->Q; Q-->P |] ==> R |] ==> R" | 
| 1459 | 91 | (fn prems => [ (rtac conjE 1), (REPEAT (ares_tac prems 1)) ]); | 
| 0 | 92 | |
| 93 | (* Destruct rules for <-> similar to Modus Ponens *) | |
| 94 | ||
| 779 | 95 | qed_goalw "iffD1" IFOL.thy [iff_def] "[| P <-> Q; P |] ==> Q" | 
| 0 | 96 | (fn prems => [ (rtac (conjunct1 RS mp) 1), (REPEAT (ares_tac prems 1)) ]); | 
| 97 | ||
| 779 | 98 | qed_goalw "iffD2" IFOL.thy [iff_def] "[| P <-> Q; Q |] ==> P" | 
| 0 | 99 | (fn prems => [ (rtac (conjunct2 RS mp) 1), (REPEAT (ares_tac prems 1)) ]); | 
| 100 | ||
| 779 | 101 | qed_goal "iff_refl" IFOL.thy "P <-> P" | 
| 0 | 102 | (fn _ => [ (REPEAT (ares_tac [iffI] 1)) ]); | 
| 103 | ||
| 779 | 104 | qed_goal "iff_sym" IFOL.thy "Q <-> P ==> P <-> Q" | 
| 0 | 105 | (fn [major] => | 
| 106 | [ (rtac (major RS iffE) 1), | |
| 107 | (rtac iffI 1), | |
| 108 | (REPEAT (eresolve_tac [asm_rl,mp] 1)) ]); | |
| 109 | ||
| 779 | 110 | qed_goal "iff_trans" IFOL.thy | 
| 0 | 111 | "!!P Q R. [| P <-> Q; Q<-> R |] ==> P <-> R" | 
| 112 | (fn _ => | |
| 113 | [ (rtac iffI 1), | |
| 114 | (REPEAT (eresolve_tac [asm_rl,iffE] 1 ORELSE mp_tac 1)) ]); | |
| 115 | ||
| 116 | ||
| 117 | (*** Unique existence. NOTE THAT the following 2 quantifications | |
| 118 | EX!x such that [EX!y such that P(x,y)] (sequential) | |
| 119 | EX!x,y such that P(x,y) (simultaneous) | |
| 120 | do NOT mean the same thing. The parser treats EX!x y.P(x,y) as sequential. | |
| 121 | ***) | |
| 122 | ||
| 779 | 123 | qed_goalw "ex1I" IFOL.thy [ex1_def] | 
| 0 | 124 | "[| P(a); !!x. P(x) ==> x=a |] ==> EX! x. P(x)" | 
| 125 | (fn prems => [ (REPEAT (ares_tac (prems@[exI,conjI,allI,impI]) 1)) ]); | |
| 126 | ||
| 2843 | 127 | (*Sometimes easier to use: the premises have no shared variables. Safe!*) | 
| 779 | 128 | qed_goal "ex_ex1I" IFOL.thy | 
| 3835 | 129 | "[| EX x. P(x); !!x y. [| P(x); P(y) |] ==> x=y |] ==> EX! x. P(x)" | 
| 12 
f17d542276b6
Added ex_ex1I: new introduction rule for the EX! quantifier.
 lcp parents: 
0diff
changeset | 130 | (fn [ex,eq] => [ (rtac (ex RS exE) 1), | 
| 1459 | 131 | (REPEAT (ares_tac [ex1I,eq] 1)) ]); | 
| 12 
f17d542276b6
Added ex_ex1I: new introduction rule for the EX! quantifier.
 lcp parents: 
0diff
changeset | 132 | |
| 779 | 133 | qed_goalw "ex1E" IFOL.thy [ex1_def] | 
| 3835 | 134 | "[| EX! x. P(x); !!x. [| P(x); ALL y. P(y) --> y=x |] ==> R |] ==> R" | 
| 0 | 135 | (fn prems => | 
| 136 | [ (cut_facts_tac prems 1), | |
| 137 | (REPEAT (eresolve_tac [exE,conjE] 1 ORELSE ares_tac prems 1)) ]); | |
| 138 | ||
| 139 | ||
| 140 | (*** <-> congruence rules for simplification ***) | |
| 141 | ||
| 142 | (*Use iffE on a premise. For conj_cong, imp_cong, all_cong, ex_cong*) | |
| 143 | fun iff_tac prems i = | |
| 144 | resolve_tac (prems RL [iffE]) i THEN | |
| 145 | REPEAT1 (eresolve_tac [asm_rl,mp] i); | |
| 146 | ||
| 779 | 147 | qed_goal "conj_cong" IFOL.thy | 
| 0 | 148 | "[| P <-> P'; P' ==> Q <-> Q' |] ==> (P&Q) <-> (P'&Q')" | 
| 149 | (fn prems => | |
| 150 | [ (cut_facts_tac prems 1), | |
| 151 | (REPEAT (ares_tac [iffI,conjI] 1 | |
| 152 | ORELSE eresolve_tac [iffE,conjE,mp] 1 | |
| 153 | ORELSE iff_tac prems 1)) ]); | |
| 154 | ||
| 793 | 155 | (*Reversed congruence rule! Used in ZF/Order*) | 
| 156 | qed_goal "conj_cong2" IFOL.thy | |
| 157 | "[| P <-> P'; P' ==> Q <-> Q' |] ==> (Q&P) <-> (Q'&P')" | |
| 158 | (fn prems => | |
| 159 | [ (cut_facts_tac prems 1), | |
| 160 | (REPEAT (ares_tac [iffI,conjI] 1 | |
| 161 | ORELSE eresolve_tac [iffE,conjE,mp] 1 | |
| 162 | ORELSE iff_tac prems 1)) ]); | |
| 163 | ||
| 779 | 164 | qed_goal "disj_cong" IFOL.thy | 
| 0 | 165 | "[| P <-> P'; Q <-> Q' |] ==> (P|Q) <-> (P'|Q')" | 
| 166 | (fn prems => | |
| 167 | [ (cut_facts_tac prems 1), | |
| 168 | (REPEAT (eresolve_tac [iffE,disjE,disjI1,disjI2] 1 | |
| 169 | ORELSE ares_tac [iffI] 1 | |
| 170 | ORELSE mp_tac 1)) ]); | |
| 171 | ||
| 779 | 172 | qed_goal "imp_cong" IFOL.thy | 
| 0 | 173 | "[| P <-> P'; P' ==> Q <-> Q' |] ==> (P-->Q) <-> (P'-->Q')" | 
| 174 | (fn prems => | |
| 175 | [ (cut_facts_tac prems 1), | |
| 176 | (REPEAT (ares_tac [iffI,impI] 1 | |
| 1459 | 177 | ORELSE etac iffE 1 | 
| 0 | 178 | ORELSE mp_tac 1 ORELSE iff_tac prems 1)) ]); | 
| 179 | ||
| 779 | 180 | qed_goal "iff_cong" IFOL.thy | 
| 0 | 181 | "[| P <-> P'; Q <-> Q' |] ==> (P<->Q) <-> (P'<->Q')" | 
| 182 | (fn prems => | |
| 183 | [ (cut_facts_tac prems 1), | |
| 1459 | 184 | (REPEAT (etac iffE 1 | 
| 0 | 185 | ORELSE ares_tac [iffI] 1 | 
| 186 | ORELSE mp_tac 1)) ]); | |
| 187 | ||
| 779 | 188 | qed_goal "not_cong" IFOL.thy | 
| 0 | 189 | "P <-> P' ==> ~P <-> ~P'" | 
| 190 | (fn prems => | |
| 191 | [ (cut_facts_tac prems 1), | |
| 192 | (REPEAT (ares_tac [iffI,notI] 1 | |
| 193 | ORELSE mp_tac 1 | |
| 194 | ORELSE eresolve_tac [iffE,notE] 1)) ]); | |
| 195 | ||
| 779 | 196 | qed_goal "all_cong" IFOL.thy | 
| 3835 | 197 | "(!!x. P(x) <-> Q(x)) ==> (ALL x. P(x)) <-> (ALL x. Q(x))" | 
| 0 | 198 | (fn prems => | 
| 199 | [ (REPEAT (ares_tac [iffI,allI] 1 | |
| 200 | ORELSE mp_tac 1 | |
| 1459 | 201 | ORELSE etac allE 1 ORELSE iff_tac prems 1)) ]); | 
| 0 | 202 | |
| 779 | 203 | qed_goal "ex_cong" IFOL.thy | 
| 3835 | 204 | "(!!x. P(x) <-> Q(x)) ==> (EX x. P(x)) <-> (EX x. Q(x))" | 
| 0 | 205 | (fn prems => | 
| 1459 | 206 | [ (REPEAT (etac exE 1 ORELSE ares_tac [iffI,exI] 1 | 
| 0 | 207 | ORELSE mp_tac 1 | 
| 208 | ORELSE iff_tac prems 1)) ]); | |
| 209 | ||
| 779 | 210 | qed_goal "ex1_cong" IFOL.thy | 
| 3835 | 211 | "(!!x. P(x) <-> Q(x)) ==> (EX! x. P(x)) <-> (EX! x. Q(x))" | 
| 0 | 212 | (fn prems => | 
| 213 | [ (REPEAT (eresolve_tac [ex1E, spec RS mp] 1 ORELSE ares_tac [iffI,ex1I] 1 | |
| 214 | ORELSE mp_tac 1 | |
| 215 | ORELSE iff_tac prems 1)) ]); | |
| 216 | ||
| 217 | (*** Equality rules ***) | |
| 218 | ||
| 779 | 219 | qed_goal "sym" IFOL.thy "a=b ==> b=a" | 
| 0 | 220 | (fn [major] => [ (rtac (major RS subst) 1), (rtac refl 1) ]); | 
| 221 | ||
| 779 | 222 | qed_goal "trans" IFOL.thy "[| a=b; b=c |] ==> a=c" | 
| 0 | 223 | (fn [prem1,prem2] => [ (rtac (prem2 RS subst) 1), (rtac prem1 1) ]); | 
| 224 | ||
| 225 | (** ~ b=a ==> ~ a=b **) | |
| 226 | val [not_sym] = compose(sym,2,contrapos); | |
| 227 | ||
| 2037 | 228 | (*Substitution: rule and tactic*) | 
| 229 | bind_thm ("ssubst", sym RS subst);
 | |
| 230 | fun stac th = CHANGED o rtac (th RS ssubst); | |
| 0 | 231 | |
| 232 | (*A special case of ex1E that would otherwise need quantifier expansion*) | |
| 779 | 233 | qed_goal "ex1_equalsE" IFOL.thy | 
| 3835 | 234 | "[| EX! x. P(x); P(a); P(b) |] ==> a=b" | 
| 0 | 235 | (fn prems => | 
| 236 | [ (cut_facts_tac prems 1), | |
| 237 | (etac ex1E 1), | |
| 238 | (rtac trans 1), | |
| 239 | (rtac sym 2), | |
| 240 | (REPEAT (eresolve_tac [asm_rl, spec RS mp] 1)) ]); | |
| 241 | ||
| 242 | (** Polymorphic congruence rules **) | |
| 243 | ||
| 779 | 244 | qed_goal "subst_context" IFOL.thy | 
| 0 | 245 | "[| a=b |] ==> t(a)=t(b)" | 
| 246 | (fn prems=> | |
| 247 | [ (resolve_tac (prems RL [ssubst]) 1), | |
| 1459 | 248 | (rtac refl 1) ]); | 
| 0 | 249 | |
| 779 | 250 | qed_goal "subst_context2" IFOL.thy | 
| 0 | 251 | "[| a=b; c=d |] ==> t(a,c)=t(b,d)" | 
| 252 | (fn prems=> | |
| 253 | [ (EVERY1 (map rtac ((prems RL [ssubst]) @ [refl]))) ]); | |
| 254 | ||
| 779 | 255 | qed_goal "subst_context3" IFOL.thy | 
| 0 | 256 | "[| a=b; c=d; e=f |] ==> t(a,c,e)=t(b,d,f)" | 
| 257 | (fn prems=> | |
| 258 | [ (EVERY1 (map rtac ((prems RL [ssubst]) @ [refl]))) ]); | |
| 259 | ||
| 260 | (*Useful with eresolve_tac for proving equalties from known equalities. | |
| 1459 | 261 | a = b | 
| 262 | | | | |
| 263 | c = d *) | |
| 779 | 264 | qed_goal "box_equals" IFOL.thy | 
| 0 | 265 | "[| a=b; a=c; b=d |] ==> c=d" | 
| 266 | (fn prems=> | |
| 1459 | 267 | [ (rtac trans 1), | 
| 268 | (rtac trans 1), | |
| 269 | (rtac sym 1), | |
| 0 | 270 | (REPEAT (resolve_tac prems 1)) ]); | 
| 271 | ||
| 272 | (*Dual of box_equals: for proving equalities backwards*) | |
| 779 | 273 | qed_goal "simp_equals" IFOL.thy | 
| 0 | 274 | "[| a=c; b=d; c=d |] ==> a=b" | 
| 275 | (fn prems=> | |
| 1459 | 276 | [ (rtac trans 1), | 
| 277 | (rtac trans 1), | |
| 0 | 278 | (REPEAT (resolve_tac (prems @ (prems RL [sym])) 1)) ]); | 
| 279 | ||
| 280 | (** Congruence rules for predicate letters **) | |
| 281 | ||
| 779 | 282 | qed_goal "pred1_cong" IFOL.thy | 
| 0 | 283 | "a=a' ==> P(a) <-> P(a')" | 
| 284 | (fn prems => | |
| 285 | [ (cut_facts_tac prems 1), | |
| 286 | (rtac iffI 1), | |
| 287 | (DEPTH_SOLVE (eresolve_tac [asm_rl, subst, ssubst] 1)) ]); | |
| 288 | ||
| 779 | 289 | qed_goal "pred2_cong" IFOL.thy | 
| 0 | 290 | "[| a=a'; b=b' |] ==> P(a,b) <-> P(a',b')" | 
| 291 | (fn prems => | |
| 292 | [ (cut_facts_tac prems 1), | |
| 293 | (rtac iffI 1), | |
| 294 | (DEPTH_SOLVE (eresolve_tac [asm_rl, subst, ssubst] 1)) ]); | |
| 295 | ||
| 779 | 296 | qed_goal "pred3_cong" IFOL.thy | 
| 0 | 297 | "[| a=a'; b=b'; c=c' |] ==> P(a,b,c) <-> P(a',b',c')" | 
| 298 | (fn prems => | |
| 299 | [ (cut_facts_tac prems 1), | |
| 300 | (rtac iffI 1), | |
| 301 | (DEPTH_SOLVE (eresolve_tac [asm_rl, subst, ssubst] 1)) ]); | |
| 302 | ||
| 303 | (*special cases for free variables P, Q, R, S -- up to 3 arguments*) | |
| 304 | ||
| 305 | val pred_congs = | |
| 306 | flat (map (fn c => | |
| 1459 | 307 |                map (fn th => read_instantiate [("P",c)] th)
 | 
| 308 | [pred1_cong,pred2_cong,pred3_cong]) | |
| 309 | (explode"PQRS")); | |
| 0 | 310 | |
| 311 | (*special case for the equality predicate!*) | |
| 312 | val eq_cong = read_instantiate [("P","op =")] pred2_cong;
 | |
| 313 | ||
| 314 | ||
| 315 | (*** Simplifications of assumed implications. | |
| 316 | Roy Dyckhoff has proved that conj_impE, disj_impE, and imp_impE | |
| 317 | used with mp_tac (restricted to atomic formulae) is COMPLETE for | |
| 318 | intuitionistic propositional logic. See | |
| 319 | R. Dyckhoff, Contraction-free sequent calculi for intuitionistic logic | |
| 320 | (preprint, University of St Andrews, 1991) ***) | |
| 321 | ||
| 779 | 322 | qed_goal "conj_impE" IFOL.thy | 
| 0 | 323 | "[| (P&Q)-->S; P-->(Q-->S) ==> R |] ==> R" | 
| 324 | (fn major::prems=> | |
| 325 | [ (REPEAT (ares_tac ([conjI, impI, major RS mp]@prems) 1)) ]); | |
| 326 | ||
| 779 | 327 | qed_goal "disj_impE" IFOL.thy | 
| 0 | 328 | "[| (P|Q)-->S; [| P-->S; Q-->S |] ==> R |] ==> R" | 
| 329 | (fn major::prems=> | |
| 330 | [ (DEPTH_SOLVE (ares_tac ([disjI1, disjI2, impI, major RS mp]@prems) 1)) ]); | |
| 331 | ||
| 332 | (*Simplifies the implication. Classical version is stronger. | |
| 333 | Still UNSAFE since Q must be provable -- backtracking needed. *) | |
| 779 | 334 | qed_goal "imp_impE" IFOL.thy | 
| 0 | 335 | "[| (P-->Q)-->S; [| P; Q-->S |] ==> Q; S ==> R |] ==> R" | 
| 336 | (fn major::prems=> | |
| 337 | [ (REPEAT (ares_tac ([impI, major RS mp]@prems) 1)) ]); | |
| 338 | ||
| 339 | (*Simplifies the implication. Classical version is stronger. | |
| 340 | Still UNSAFE since ~P must be provable -- backtracking needed. *) | |
| 779 | 341 | qed_goal "not_impE" IFOL.thy | 
| 0 | 342 | "[| ~P --> S; P ==> False; S ==> R |] ==> R" | 
| 343 | (fn major::prems=> | |
| 344 | [ (REPEAT (ares_tac ([notI, impI, major RS mp]@prems) 1)) ]); | |
| 345 | ||
| 346 | (*Simplifies the implication. UNSAFE. *) | |
| 779 | 347 | qed_goal "iff_impE" IFOL.thy | 
| 0 | 348 | "[| (P<->Q)-->S; [| P; Q-->S |] ==> Q; [| Q; P-->S |] ==> P; \ | 
| 349 | \ S ==> R |] ==> R" | |
| 350 | (fn major::prems=> | |
| 351 | [ (REPEAT (ares_tac ([iffI, impI, major RS mp]@prems) 1)) ]); | |
| 352 | ||
| 353 | (*What if (ALL x.~~P(x)) --> ~~(ALL x.P(x)) is an assumption? UNSAFE*) | |
| 779 | 354 | qed_goal "all_impE" IFOL.thy | 
| 3835 | 355 | "[| (ALL x. P(x))-->S; !!x. P(x); S ==> R |] ==> R" | 
| 0 | 356 | (fn major::prems=> | 
| 357 | [ (REPEAT (ares_tac ([allI, impI, major RS mp]@prems) 1)) ]); | |
| 358 | ||
| 359 | (*Unsafe: (EX x.P(x))-->S is equivalent to ALL x.P(x)-->S. *) | |
| 779 | 360 | qed_goal "ex_impE" IFOL.thy | 
| 3835 | 361 | "[| (EX x. P(x))-->S; P(x)-->S ==> R |] ==> R" | 
| 0 | 362 | (fn major::prems=> | 
| 363 | [ (REPEAT (ares_tac ([exI, impI, major RS mp]@prems) 1)) ]); | |
| 821 | 364 | |
| 1608 | 365 | (*** Courtesy of Krzysztof Grabczewski ***) | 
| 366 | ||
| 821 | 367 | val major::prems = goal IFOL.thy "[| P|Q; P==>R; Q==>S |] ==> R|S"; | 
| 1459 | 368 | by (rtac (major RS disjE) 1); | 
| 821 | 369 | by (REPEAT (eresolve_tac (prems RL [disjI1, disjI2]) 1)); | 
| 370 | qed "disj_imp_disj"; | |
| 1608 | 371 | |
| 372 | (* The following two theorms are useful when rewriting only one instance *) | |
| 373 | (* of a definition *) | |
| 374 | (* first one for definitions of formulae and the second for terms *) | |
| 375 | ||
| 376 | val prems = goal IFOL.thy "(A == B) ==> A <-> B"; | |
| 377 | by (rewrite_goals_tac prems); | |
| 378 | by (rtac iff_refl 1); | |
| 379 | qed "def_imp_iff"; | |
| 380 | ||
| 381 | val prems = goal IFOL.thy "(A == B) ==> A = B"; | |
| 382 | by (rewrite_goals_tac prems); | |
| 383 | by (rtac refl 1); | |
| 384 | qed "def_imp_eq"; | |
| 385 | ||
| 3722 
24af9e73451e
qed_spec_mp, normalize_thm, etc. copied in from HOL.ML
 paulson parents: 
2843diff
changeset | 386 | |
| 
24af9e73451e
qed_spec_mp, normalize_thm, etc. copied in from HOL.ML
 paulson parents: 
2843diff
changeset | 387 | (** strip ALL and --> from proved goal while preserving ALL-bound var names **) | 
| 
24af9e73451e
qed_spec_mp, normalize_thm, etc. copied in from HOL.ML
 paulson parents: 
2843diff
changeset | 388 | |
| 
24af9e73451e
qed_spec_mp, normalize_thm, etc. copied in from HOL.ML
 paulson parents: 
2843diff
changeset | 389 | local | 
| 
24af9e73451e
qed_spec_mp, normalize_thm, etc. copied in from HOL.ML
 paulson parents: 
2843diff
changeset | 390 | |
| 
24af9e73451e
qed_spec_mp, normalize_thm, etc. copied in from HOL.ML
 paulson parents: 
2843diff
changeset | 391 | (* Use XXX to avoid forall_intr failing because of duplicate variable name *) | 
| 
24af9e73451e
qed_spec_mp, normalize_thm, etc. copied in from HOL.ML
 paulson parents: 
2843diff
changeset | 392 | val myspec = read_instantiate [("P","?XXX")] spec;
 | 
| 
24af9e73451e
qed_spec_mp, normalize_thm, etc. copied in from HOL.ML
 paulson parents: 
2843diff
changeset | 393 | val _ $ (_ $ (vx as Var(_,vxT))) = concl_of myspec; | 
| 
24af9e73451e
qed_spec_mp, normalize_thm, etc. copied in from HOL.ML
 paulson parents: 
2843diff
changeset | 394 | val cvx = cterm_of (#sign(rep_thm myspec)) vx; | 
| 
24af9e73451e
qed_spec_mp, normalize_thm, etc. copied in from HOL.ML
 paulson parents: 
2843diff
changeset | 395 | val aspec = forall_intr cvx myspec; | 
| 
24af9e73451e
qed_spec_mp, normalize_thm, etc. copied in from HOL.ML
 paulson parents: 
2843diff
changeset | 396 | |
| 
24af9e73451e
qed_spec_mp, normalize_thm, etc. copied in from HOL.ML
 paulson parents: 
2843diff
changeset | 397 | in | 
| 
24af9e73451e
qed_spec_mp, normalize_thm, etc. copied in from HOL.ML
 paulson parents: 
2843diff
changeset | 398 | |
| 
24af9e73451e
qed_spec_mp, normalize_thm, etc. copied in from HOL.ML
 paulson parents: 
2843diff
changeset | 399 | fun RSspec th = | 
| 
24af9e73451e
qed_spec_mp, normalize_thm, etc. copied in from HOL.ML
 paulson parents: 
2843diff
changeset | 400 | (case concl_of th of | 
| 
24af9e73451e
qed_spec_mp, normalize_thm, etc. copied in from HOL.ML
 paulson parents: 
2843diff
changeset | 401 |      _ $ (Const("All",_) $ Abs(a,_,_)) =>
 | 
| 
24af9e73451e
qed_spec_mp, normalize_thm, etc. copied in from HOL.ML
 paulson parents: 
2843diff
changeset | 402 | let val ca = cterm_of (#sign(rep_thm th)) (Var((a,0),vxT)) | 
| 
24af9e73451e
qed_spec_mp, normalize_thm, etc. copied in from HOL.ML
 paulson parents: 
2843diff
changeset | 403 | in th RS forall_elim ca aspec end | 
| 
24af9e73451e
qed_spec_mp, normalize_thm, etc. copied in from HOL.ML
 paulson parents: 
2843diff
changeset | 404 |   | _ => raise THM("RSspec",0,[th]));
 | 
| 
24af9e73451e
qed_spec_mp, normalize_thm, etc. copied in from HOL.ML
 paulson parents: 
2843diff
changeset | 405 | |
| 
24af9e73451e
qed_spec_mp, normalize_thm, etc. copied in from HOL.ML
 paulson parents: 
2843diff
changeset | 406 | fun RSmp th = | 
| 
24af9e73451e
qed_spec_mp, normalize_thm, etc. copied in from HOL.ML
 paulson parents: 
2843diff
changeset | 407 | (case concl_of th of | 
| 
24af9e73451e
qed_spec_mp, normalize_thm, etc. copied in from HOL.ML
 paulson parents: 
2843diff
changeset | 408 |      _ $ (Const("op -->",_)$_$_) => th RS mp
 | 
| 
24af9e73451e
qed_spec_mp, normalize_thm, etc. copied in from HOL.ML
 paulson parents: 
2843diff
changeset | 409 |   | _ => raise THM("RSmp",0,[th]));
 | 
| 
24af9e73451e
qed_spec_mp, normalize_thm, etc. copied in from HOL.ML
 paulson parents: 
2843diff
changeset | 410 | |
| 
24af9e73451e
qed_spec_mp, normalize_thm, etc. copied in from HOL.ML
 paulson parents: 
2843diff
changeset | 411 | fun normalize_thm funs = | 
| 
24af9e73451e
qed_spec_mp, normalize_thm, etc. copied in from HOL.ML
 paulson parents: 
2843diff
changeset | 412 | let fun trans [] th = th | 
| 
24af9e73451e
qed_spec_mp, normalize_thm, etc. copied in from HOL.ML
 paulson parents: 
2843diff
changeset | 413 | | trans (f::fs) th = (trans funs (f th)) handle THM _ => trans fs th | 
| 
24af9e73451e
qed_spec_mp, normalize_thm, etc. copied in from HOL.ML
 paulson parents: 
2843diff
changeset | 414 | in trans funs end; | 
| 
24af9e73451e
qed_spec_mp, normalize_thm, etc. copied in from HOL.ML
 paulson parents: 
2843diff
changeset | 415 | |
| 
24af9e73451e
qed_spec_mp, normalize_thm, etc. copied in from HOL.ML
 paulson parents: 
2843diff
changeset | 416 | fun qed_spec_mp name = | 
| 
24af9e73451e
qed_spec_mp, normalize_thm, etc. copied in from HOL.ML
 paulson parents: 
2843diff
changeset | 417 | let val thm = normalize_thm [RSspec,RSmp] (result()) | 
| 
24af9e73451e
qed_spec_mp, normalize_thm, etc. copied in from HOL.ML
 paulson parents: 
2843diff
changeset | 418 | in bind_thm(name, thm) end; | 
| 
24af9e73451e
qed_spec_mp, normalize_thm, etc. copied in from HOL.ML
 paulson parents: 
2843diff
changeset | 419 | |
| 
24af9e73451e
qed_spec_mp, normalize_thm, etc. copied in from HOL.ML
 paulson parents: 
2843diff
changeset | 420 | fun qed_goal_spec_mp name thy s p = | 
| 
24af9e73451e
qed_spec_mp, normalize_thm, etc. copied in from HOL.ML
 paulson parents: 
2843diff
changeset | 421 | bind_thm (name, normalize_thm [RSspec,RSmp] (prove_goal thy s p)); | 
| 
24af9e73451e
qed_spec_mp, normalize_thm, etc. copied in from HOL.ML
 paulson parents: 
2843diff
changeset | 422 | |
| 
24af9e73451e
qed_spec_mp, normalize_thm, etc. copied in from HOL.ML
 paulson parents: 
2843diff
changeset | 423 | fun qed_goalw_spec_mp name thy defs s p = | 
| 
24af9e73451e
qed_spec_mp, normalize_thm, etc. copied in from HOL.ML
 paulson parents: 
2843diff
changeset | 424 | bind_thm (name, normalize_thm [RSspec,RSmp] (prove_goalw thy defs s p)); | 
| 
24af9e73451e
qed_spec_mp, normalize_thm, etc. copied in from HOL.ML
 paulson parents: 
2843diff
changeset | 425 | |
| 
24af9e73451e
qed_spec_mp, normalize_thm, etc. copied in from HOL.ML
 paulson parents: 
2843diff
changeset | 426 | end; |