| author | Fabian Huch <huch@in.tum.de> | 
| Thu, 24 Oct 2024 14:07:13 +0200 | |
| changeset 81364 | 84e4388f8ab1 | 
| parent 76216 | 9fc34f76b4e8 | 
| permissions | -rw-r--r-- | 
| 
9654
 
9754ba005b64
X-symbols for ordinal, cardinal, integer arithmetic
 
paulson 
parents: 
9492 
diff
changeset
 | 
1  | 
(* Title: ZF/Arith.thy  | 
| 1478 | 2  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
| 0 | 3  | 
Copyright 1992 University of Cambridge  | 
4  | 
*)  | 
|
5  | 
||
| 13163 | 6  | 
(*"Difference" is subtraction of natural numbers.  | 
7  | 
There are no negative numbers; we have  | 
|
8  | 
m #- n = 0 iff m<=n and m #- n = succ(k) iff m>n.  | 
|
| 
76215
 
a642599ffdea
More syntactic cleanup. LaTeX markup working
 
paulson <lp15@cam.ac.uk> 
parents: 
76214 
diff
changeset
 | 
9  | 
Also, rec(m, 0, \<lambda>z w.z) is pred(m).  | 
| 13163 | 10  | 
*)  | 
11  | 
||
| 60770 | 12  | 
section\<open>Arithmetic Operators and Their Definitions\<close>  | 
| 13328 | 13  | 
|
| 16417 | 14  | 
theory Arith imports Univ begin  | 
| 6070 | 15  | 
|
| 60770 | 16  | 
text\<open>Proofs about elementary arithmetic: addition, multiplication, etc.\<close>  | 
| 13328 | 17  | 
|
| 24893 | 18  | 
definition  | 
| 
76215
 
a642599ffdea
More syntactic cleanup. LaTeX markup working
 
paulson <lp15@cam.ac.uk> 
parents: 
76214 
diff
changeset
 | 
19  | 
pred :: "i\<Rightarrow>i" (*inverse of succ*) where  | 
| 
 
a642599ffdea
More syntactic cleanup. LaTeX markup working
 
paulson <lp15@cam.ac.uk> 
parents: 
76214 
diff
changeset
 | 
20  | 
"pred(y) \<equiv> nat_case(0, \<lambda>x. x, y)"  | 
| 6070 | 21  | 
|
| 24893 | 22  | 
definition  | 
| 
76215
 
a642599ffdea
More syntactic cleanup. LaTeX markup working
 
paulson <lp15@cam.ac.uk> 
parents: 
76214 
diff
changeset
 | 
23  | 
natify :: "i\<Rightarrow>i" (*coerces non-nats to nats*) where  | 
| 
 
a642599ffdea
More syntactic cleanup. LaTeX markup working
 
paulson <lp15@cam.ac.uk> 
parents: 
76214 
diff
changeset
 | 
24  | 
"natify \<equiv> Vrecursor(\<lambda>f a. if a = succ(pred(a)) then succ(f`pred(a))  | 
| 
9491
 
1a36151ee2fc
natify, a coercion to reduce the number of type constraints in arithmetic
 
paulson 
parents: 
6070 
diff
changeset
 | 
25  | 
else 0)"  | 
| 6070 | 26  | 
|
| 0 | 27  | 
consts  | 
| 
76215
 
a642599ffdea
More syntactic cleanup. LaTeX markup working
 
paulson <lp15@cam.ac.uk> 
parents: 
76214 
diff
changeset
 | 
28  | 
raw_add :: "[i,i]\<Rightarrow>i"  | 
| 
 
a642599ffdea
More syntactic cleanup. LaTeX markup working
 
paulson <lp15@cam.ac.uk> 
parents: 
76214 
diff
changeset
 | 
29  | 
raw_diff :: "[i,i]\<Rightarrow>i"  | 
| 
 
a642599ffdea
More syntactic cleanup. LaTeX markup working
 
paulson <lp15@cam.ac.uk> 
parents: 
76214 
diff
changeset
 | 
30  | 
raw_mult :: "[i,i]\<Rightarrow>i"  | 
| 
9492
 
72e429c66608
used natify with div and mod; also put in the divide-by-zero trick
 
paulson 
parents: 
9491 
diff
changeset
 | 
31  | 
|
| 
 
72e429c66608
used natify with div and mod; also put in the divide-by-zero trick
 
paulson 
parents: 
9491 
diff
changeset
 | 
32  | 
primrec  | 
| 
 
72e429c66608
used natify with div and mod; also put in the divide-by-zero trick
 
paulson 
parents: 
9491 
diff
changeset
 | 
33  | 
"raw_add (0, n) = n"  | 
| 
 
72e429c66608
used natify with div and mod; also put in the divide-by-zero trick
 
paulson 
parents: 
9491 
diff
changeset
 | 
34  | 
"raw_add (succ(m), n) = succ(raw_add(m, n))"  | 
| 0 | 35  | 
|
| 6070 | 36  | 
primrec  | 
| 13163 | 37  | 
raw_diff_0: "raw_diff(m, 0) = m"  | 
38  | 
raw_diff_succ: "raw_diff(m, succ(n)) =  | 
|
| 
76215
 
a642599ffdea
More syntactic cleanup. LaTeX markup working
 
paulson <lp15@cam.ac.uk> 
parents: 
76214 
diff
changeset
 | 
39  | 
nat_case(0, \<lambda>x. x, raw_diff(m, n))"  | 
| 
9491
 
1a36151ee2fc
natify, a coercion to reduce the number of type constraints in arithmetic
 
paulson 
parents: 
6070 
diff
changeset
 | 
40  | 
|
| 
 
1a36151ee2fc
natify, a coercion to reduce the number of type constraints in arithmetic
 
paulson 
parents: 
6070 
diff
changeset
 | 
41  | 
primrec  | 
| 
9492
 
72e429c66608
used natify with div and mod; also put in the divide-by-zero trick
 
paulson 
parents: 
9491 
diff
changeset
 | 
42  | 
"raw_mult(0, n) = 0"  | 
| 
 
72e429c66608
used natify with div and mod; also put in the divide-by-zero trick
 
paulson 
parents: 
9491 
diff
changeset
 | 
43  | 
"raw_mult(succ(m), n) = raw_add (n, raw_mult(m, n))"  | 
| 13163 | 44  | 
|
| 24893 | 45  | 
definition  | 
| 
76215
 
a642599ffdea
More syntactic cleanup. LaTeX markup working
 
paulson <lp15@cam.ac.uk> 
parents: 
76214 
diff
changeset
 | 
46  | 
add :: "[i,i]\<Rightarrow>i" (infixl \<open>#+\<close> 65) where  | 
| 
76213
 
e44d86131648
Removal of obsolete ASCII syntax
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
47  | 
"m #+ n \<equiv> raw_add (natify(m), natify(n))"  | 
| 
9491
 
1a36151ee2fc
natify, a coercion to reduce the number of type constraints in arithmetic
 
paulson 
parents: 
6070 
diff
changeset
 | 
48  | 
|
| 24893 | 49  | 
definition  | 
| 
76215
 
a642599ffdea
More syntactic cleanup. LaTeX markup working
 
paulson <lp15@cam.ac.uk> 
parents: 
76214 
diff
changeset
 | 
50  | 
diff :: "[i,i]\<Rightarrow>i" (infixl \<open>#-\<close> 65) where  | 
| 
76213
 
e44d86131648
Removal of obsolete ASCII syntax
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
51  | 
"m #- n \<equiv> raw_diff (natify(m), natify(n))"  | 
| 0 | 52  | 
|
| 24893 | 53  | 
definition  | 
| 
76215
 
a642599ffdea
More syntactic cleanup. LaTeX markup working
 
paulson <lp15@cam.ac.uk> 
parents: 
76214 
diff
changeset
 | 
54  | 
mult :: "[i,i]\<Rightarrow>i" (infixl \<open>#*\<close> 70) where  | 
| 
76213
 
e44d86131648
Removal of obsolete ASCII syntax
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
55  | 
"m #* n \<equiv> raw_mult (natify(m), natify(n))"  | 
| 
9492
 
72e429c66608
used natify with div and mod; also put in the divide-by-zero trick
 
paulson 
parents: 
9491 
diff
changeset
 | 
56  | 
|
| 24893 | 57  | 
definition  | 
| 
76215
 
a642599ffdea
More syntactic cleanup. LaTeX markup working
 
paulson <lp15@cam.ac.uk> 
parents: 
76214 
diff
changeset
 | 
58  | 
raw_div :: "[i,i]\<Rightarrow>i" where  | 
| 
76213
 
e44d86131648
Removal of obsolete ASCII syntax
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
59  | 
"raw_div (m, n) \<equiv>  | 
| 
76215
 
a642599ffdea
More syntactic cleanup. LaTeX markup working
 
paulson <lp15@cam.ac.uk> 
parents: 
76214 
diff
changeset
 | 
60  | 
transrec(m, \<lambda>j f. if j<n | n=0 then 0 else succ(f`(j#-n)))"  | 
| 
9492
 
72e429c66608
used natify with div and mod; also put in the divide-by-zero trick
 
paulson 
parents: 
9491 
diff
changeset
 | 
61  | 
|
| 24893 | 62  | 
definition  | 
| 
76215
 
a642599ffdea
More syntactic cleanup. LaTeX markup working
 
paulson <lp15@cam.ac.uk> 
parents: 
76214 
diff
changeset
 | 
63  | 
raw_mod :: "[i,i]\<Rightarrow>i" where  | 
| 
76213
 
e44d86131648
Removal of obsolete ASCII syntax
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
64  | 
"raw_mod (m, n) \<equiv>  | 
| 
76215
 
a642599ffdea
More syntactic cleanup. LaTeX markup working
 
paulson <lp15@cam.ac.uk> 
parents: 
76214 
diff
changeset
 | 
65  | 
transrec(m, \<lambda>j f. if j<n | n=0 then j else f`(j#-n))"  | 
| 
9491
 
1a36151ee2fc
natify, a coercion to reduce the number of type constraints in arithmetic
 
paulson 
parents: 
6070 
diff
changeset
 | 
66  | 
|
| 24893 | 67  | 
definition  | 
| 
76215
 
a642599ffdea
More syntactic cleanup. LaTeX markup working
 
paulson <lp15@cam.ac.uk> 
parents: 
76214 
diff
changeset
 | 
68  | 
div :: "[i,i]\<Rightarrow>i" (infixl \<open>div\<close> 70) where  | 
| 
76213
 
e44d86131648
Removal of obsolete ASCII syntax
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
69  | 
"m div n \<equiv> raw_div (natify(m), natify(n))"  | 
| 
9491
 
1a36151ee2fc
natify, a coercion to reduce the number of type constraints in arithmetic
 
paulson 
parents: 
6070 
diff
changeset
 | 
70  | 
|
| 24893 | 71  | 
definition  | 
| 
76215
 
a642599ffdea
More syntactic cleanup. LaTeX markup working
 
paulson <lp15@cam.ac.uk> 
parents: 
76214 
diff
changeset
 | 
72  | 
mod :: "[i,i]\<Rightarrow>i" (infixl \<open>mod\<close> 70) where  | 
| 
76213
 
e44d86131648
Removal of obsolete ASCII syntax
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
73  | 
"m mod n \<equiv> raw_mod (natify(m), natify(n))"  | 
| 
9491
 
1a36151ee2fc
natify, a coercion to reduce the number of type constraints in arithmetic
 
paulson 
parents: 
6070 
diff
changeset
 | 
74  | 
|
| 13163 | 75  | 
declare rec_type [simp]  | 
76  | 
nat_0_le [simp]  | 
|
77  | 
||
78  | 
||
| 
76213
 
e44d86131648
Removal of obsolete ASCII syntax
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
79  | 
lemma zero_lt_lemma: "\<lbrakk>0<k; k \<in> nat\<rbrakk> \<Longrightarrow> \<exists>j\<in>nat. k = succ(j)"  | 
| 13163 | 80  | 
apply (erule rev_mp)  | 
81  | 
apply (induct_tac "k", auto)  | 
|
82  | 
done  | 
|
83  | 
||
| 
76213
 
e44d86131648
Removal of obsolete ASCII syntax
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
84  | 
(* @{term"\<lbrakk>0 < k; k \<in> nat; \<And>j. \<lbrakk>j \<in> nat; k = succ(j)\<rbrakk> \<Longrightarrow> Q\<rbrakk> \<Longrightarrow> Q"} *)
 | 
| 45608 | 85  | 
lemmas zero_lt_natE = zero_lt_lemma [THEN bexE]  | 
| 13163 | 86  | 
|
87  | 
||
| 69593 | 88  | 
subsection\<open>\<open>natify\<close>, the Coercion to \<^term>\<open>nat\<close>\<close>  | 
| 13163 | 89  | 
|
90  | 
lemma pred_succ_eq [simp]: "pred(succ(y)) = y"  | 
|
91  | 
by (unfold pred_def, auto)  | 
|
92  | 
||
93  | 
lemma natify_succ: "natify(succ(x)) = succ(natify(x))"  | 
|
94  | 
by (rule natify_def [THEN def_Vrecursor, THEN trans], auto)  | 
|
95  | 
||
96  | 
lemma natify_0 [simp]: "natify(0) = 0"  | 
|
97  | 
by (rule natify_def [THEN def_Vrecursor, THEN trans], auto)  | 
|
98  | 
||
| 
76213
 
e44d86131648
Removal of obsolete ASCII syntax
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
99  | 
lemma natify_non_succ: "\<forall>z. x \<noteq> succ(z) \<Longrightarrow> natify(x) = 0"  | 
| 13163 | 100  | 
by (rule natify_def [THEN def_Vrecursor, THEN trans], auto)  | 
101  | 
||
| 
14060
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
102  | 
lemma natify_in_nat [iff,TC]: "natify(x) \<in> nat"  | 
| 13163 | 103  | 
apply (rule_tac a=x in eps_induct)  | 
| 
14060
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
104  | 
apply (case_tac "\<exists>z. x = succ(z)")  | 
| 13163 | 105  | 
apply (auto simp add: natify_succ natify_non_succ)  | 
106  | 
done  | 
|
107  | 
||
| 
76213
 
e44d86131648
Removal of obsolete ASCII syntax
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
108  | 
lemma natify_ident [simp]: "n \<in> nat \<Longrightarrow> natify(n) = n"  | 
| 13163 | 109  | 
apply (induct_tac "n")  | 
110  | 
apply (auto simp add: natify_succ)  | 
|
111  | 
done  | 
|
112  | 
||
| 
76213
 
e44d86131648
Removal of obsolete ASCII syntax
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
113  | 
lemma natify_eqE: "\<lbrakk>natify(x) = y; x \<in> nat\<rbrakk> \<Longrightarrow> x=y"  | 
| 13163 | 114  | 
by auto  | 
115  | 
||
116  | 
||
117  | 
(*** Collapsing rules: to remove natify from arithmetic expressions ***)  | 
|
118  | 
||
119  | 
lemma natify_idem [simp]: "natify(natify(x)) = natify(x)"  | 
|
120  | 
by simp  | 
|
121  | 
||
122  | 
(** Addition **)  | 
|
123  | 
||
124  | 
lemma add_natify1 [simp]: "natify(m) #+ n = m #+ n"  | 
|
125  | 
by (simp add: add_def)  | 
|
126  | 
||
127  | 
lemma add_natify2 [simp]: "m #+ natify(n) = m #+ n"  | 
|
128  | 
by (simp add: add_def)  | 
|
129  | 
||
130  | 
(** Multiplication **)  | 
|
131  | 
||
132  | 
lemma mult_natify1 [simp]: "natify(m) #* n = m #* n"  | 
|
133  | 
by (simp add: mult_def)  | 
|
134  | 
||
135  | 
lemma mult_natify2 [simp]: "m #* natify(n) = m #* n"  | 
|
136  | 
by (simp add: mult_def)  | 
|
137  | 
||
138  | 
(** Difference **)  | 
|
139  | 
||
140  | 
lemma diff_natify1 [simp]: "natify(m) #- n = m #- n"  | 
|
141  | 
by (simp add: diff_def)  | 
|
142  | 
||
143  | 
lemma diff_natify2 [simp]: "m #- natify(n) = m #- n"  | 
|
144  | 
by (simp add: diff_def)  | 
|
145  | 
||
146  | 
(** Remainder **)  | 
|
147  | 
||
148  | 
lemma mod_natify1 [simp]: "natify(m) mod n = m mod n"  | 
|
149  | 
by (simp add: mod_def)  | 
|
150  | 
||
151  | 
lemma mod_natify2 [simp]: "m mod natify(n) = m mod n"  | 
|
152  | 
by (simp add: mod_def)  | 
|
153  | 
||
154  | 
||
155  | 
(** Quotient **)  | 
|
156  | 
||
157  | 
lemma div_natify1 [simp]: "natify(m) div n = m div n"  | 
|
158  | 
by (simp add: div_def)  | 
|
159  | 
||
160  | 
lemma div_natify2 [simp]: "m div natify(n) = m div n"  | 
|
161  | 
by (simp add: div_def)  | 
|
162  | 
||
163  | 
||
| 60770 | 164  | 
subsection\<open>Typing rules\<close>  | 
| 13163 | 165  | 
|
166  | 
(** Addition **)  | 
|
167  | 
||
| 
76213
 
e44d86131648
Removal of obsolete ASCII syntax
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
168  | 
lemma raw_add_type: "\<lbrakk>m\<in>nat; n\<in>nat\<rbrakk> \<Longrightarrow> raw_add (m, n) \<in> nat"  | 
| 13163 | 169  | 
by (induct_tac "m", auto)  | 
170  | 
||
| 
14060
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
171  | 
lemma add_type [iff,TC]: "m #+ n \<in> nat"  | 
| 13163 | 172  | 
by (simp add: add_def raw_add_type)  | 
173  | 
||
174  | 
(** Multiplication **)  | 
|
175  | 
||
| 
76213
 
e44d86131648
Removal of obsolete ASCII syntax
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
176  | 
lemma raw_mult_type: "\<lbrakk>m\<in>nat; n\<in>nat\<rbrakk> \<Longrightarrow> raw_mult (m, n) \<in> nat"  | 
| 13163 | 177  | 
apply (induct_tac "m")  | 
178  | 
apply (simp_all add: raw_add_type)  | 
|
179  | 
done  | 
|
180  | 
||
| 
14060
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
181  | 
lemma mult_type [iff,TC]: "m #* n \<in> nat"  | 
| 13163 | 182  | 
by (simp add: mult_def raw_mult_type)  | 
183  | 
||
184  | 
||
185  | 
(** Difference **)  | 
|
186  | 
||
| 
76213
 
e44d86131648
Removal of obsolete ASCII syntax
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
187  | 
lemma raw_diff_type: "\<lbrakk>m\<in>nat; n\<in>nat\<rbrakk> \<Longrightarrow> raw_diff (m, n) \<in> nat"  | 
| 13173 | 188  | 
by (induct_tac "n", auto)  | 
| 13163 | 189  | 
|
| 
14060
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
190  | 
lemma diff_type [iff,TC]: "m #- n \<in> nat"  | 
| 13163 | 191  | 
by (simp add: diff_def raw_diff_type)  | 
192  | 
||
193  | 
lemma diff_0_eq_0 [simp]: "0 #- n = 0"  | 
|
| 
76216
 
9fc34f76b4e8
getting rid of apply (unfold ...)
 
paulson <lp15@cam.ac.uk> 
parents: 
76215 
diff
changeset
 | 
194  | 
unfolding diff_def  | 
| 13163 | 195  | 
apply (rule natify_in_nat [THEN nat_induct], auto)  | 
196  | 
done  | 
|
197  | 
||
198  | 
(*Must simplify BEFORE the induction: else we get a critical pair*)  | 
|
199  | 
lemma diff_succ_succ [simp]: "succ(m) #- succ(n) = m #- n"  | 
|
200  | 
apply (simp add: natify_succ diff_def)  | 
|
| 13784 | 201  | 
apply (rule_tac x1 = n in natify_in_nat [THEN nat_induct], auto)  | 
| 13163 | 202  | 
done  | 
203  | 
||
204  | 
(*This defining property is no longer wanted*)  | 
|
205  | 
declare raw_diff_succ [simp del]  | 
|
206  | 
||
207  | 
(*Natify has weakened this law, compared with the older approach*)  | 
|
208  | 
lemma diff_0 [simp]: "m #- 0 = natify(m)"  | 
|
209  | 
by (simp add: diff_def)  | 
|
210  | 
||
| 
76213
 
e44d86131648
Removal of obsolete ASCII syntax
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
211  | 
lemma diff_le_self: "m\<in>nat \<Longrightarrow> (m #- n) \<le> m"  | 
| 46820 | 212  | 
apply (subgoal_tac " (m #- natify (n)) \<le> m")  | 
| 13784 | 213  | 
apply (rule_tac [2] m = m and n = "natify (n) " in diff_induct)  | 
| 13163 | 214  | 
apply (erule_tac [6] leE)  | 
215  | 
apply (simp_all add: le_iff)  | 
|
216  | 
done  | 
|
217  | 
||
218  | 
||
| 60770 | 219  | 
subsection\<open>Addition\<close>  | 
| 13163 | 220  | 
|
221  | 
(*Natify has weakened this law, compared with the older approach*)  | 
|
222  | 
lemma add_0_natify [simp]: "0 #+ m = natify(m)"  | 
|
223  | 
by (simp add: add_def)  | 
|
224  | 
||
225  | 
lemma add_succ [simp]: "succ(m) #+ n = succ(m #+ n)"  | 
|
226  | 
by (simp add: natify_succ add_def)  | 
|
227  | 
||
| 
76213
 
e44d86131648
Removal of obsolete ASCII syntax
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
228  | 
lemma add_0: "m \<in> nat \<Longrightarrow> 0 #+ m = m"  | 
| 13163 | 229  | 
by simp  | 
230  | 
||
231  | 
(*Associative law for addition*)  | 
|
232  | 
lemma add_assoc: "(m #+ n) #+ k = m #+ (n #+ k)"  | 
|
233  | 
apply (subgoal_tac "(natify(m) #+ natify(n)) #+ natify(k) =  | 
|
234  | 
natify(m) #+ (natify(n) #+ natify(k))")  | 
|
235  | 
apply (rule_tac [2] n = "natify(m)" in nat_induct)  | 
|
236  | 
apply auto  | 
|
237  | 
done  | 
|
238  | 
||
239  | 
(*The following two lemmas are used for add_commute and sometimes  | 
|
240  | 
elsewhere, since they are safe for rewriting.*)  | 
|
241  | 
lemma add_0_right_natify [simp]: "m #+ 0 = natify(m)"  | 
|
242  | 
apply (subgoal_tac "natify(m) #+ 0 = natify(m)")  | 
|
243  | 
apply (rule_tac [2] n = "natify(m)" in nat_induct)  | 
|
244  | 
apply auto  | 
|
245  | 
done  | 
|
246  | 
||
247  | 
lemma add_succ_right [simp]: "m #+ succ(n) = succ(m #+ n)"  | 
|
| 
76216
 
9fc34f76b4e8
getting rid of apply (unfold ...)
 
paulson <lp15@cam.ac.uk> 
parents: 
76215 
diff
changeset
 | 
248  | 
unfolding add_def  | 
| 13163 | 249  | 
apply (rule_tac n = "natify(m) " in nat_induct)  | 
250  | 
apply (auto simp add: natify_succ)  | 
|
251  | 
done  | 
|
252  | 
||
| 
76213
 
e44d86131648
Removal of obsolete ASCII syntax
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
253  | 
lemma add_0_right: "m \<in> nat \<Longrightarrow> m #+ 0 = m"  | 
| 13163 | 254  | 
by auto  | 
255  | 
||
256  | 
(*Commutative law for addition*)  | 
|
257  | 
lemma add_commute: "m #+ n = n #+ m"  | 
|
258  | 
apply (subgoal_tac "natify(m) #+ natify(n) = natify(n) #+ natify(m) ")  | 
|
259  | 
apply (rule_tac [2] n = "natify(m) " in nat_induct)  | 
|
260  | 
apply auto  | 
|
261  | 
done  | 
|
262  | 
||
263  | 
(*for a/c rewriting*)  | 
|
264  | 
lemma add_left_commute: "m#+(n#+k)=n#+(m#+k)"  | 
|
265  | 
apply (rule add_commute [THEN trans])  | 
|
266  | 
apply (rule add_assoc [THEN trans])  | 
|
267  | 
apply (rule add_commute [THEN subst_context])  | 
|
268  | 
done  | 
|
269  | 
||
270  | 
(*Addition is an AC-operator*)  | 
|
271  | 
lemmas add_ac = add_assoc add_commute add_left_commute  | 
|
272  | 
||
273  | 
(*Cancellation law on the left*)  | 
|
274  | 
lemma raw_add_left_cancel:  | 
|
| 
76213
 
e44d86131648
Removal of obsolete ASCII syntax
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
275  | 
"\<lbrakk>raw_add(k, m) = raw_add(k, n); k\<in>nat\<rbrakk> \<Longrightarrow> m=n"  | 
| 13163 | 276  | 
apply (erule rev_mp)  | 
277  | 
apply (induct_tac "k", auto)  | 
|
278  | 
done  | 
|
279  | 
||
| 
76213
 
e44d86131648
Removal of obsolete ASCII syntax
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
280  | 
lemma add_left_cancel_natify: "k #+ m = k #+ n \<Longrightarrow> natify(m) = natify(n)"  | 
| 
76216
 
9fc34f76b4e8
getting rid of apply (unfold ...)
 
paulson <lp15@cam.ac.uk> 
parents: 
76215 
diff
changeset
 | 
281  | 
unfolding add_def  | 
| 13163 | 282  | 
apply (drule raw_add_left_cancel, auto)  | 
283  | 
done  | 
|
284  | 
||
285  | 
lemma add_left_cancel:  | 
|
| 
76213
 
e44d86131648
Removal of obsolete ASCII syntax
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
286  | 
"\<lbrakk>i = j; i #+ m = j #+ n; m\<in>nat; n\<in>nat\<rbrakk> \<Longrightarrow> m = n"  | 
| 13163 | 287  | 
by (force dest!: add_left_cancel_natify)  | 
288  | 
||
289  | 
(*Thanks to Sten Agerholm*)  | 
|
| 
76213
 
e44d86131648
Removal of obsolete ASCII syntax
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
290  | 
lemma add_le_elim1_natify: "k#+m \<le> k#+n \<Longrightarrow> natify(m) \<le> natify(n)"  | 
| 46820 | 291  | 
apply (rule_tac P = "natify(k) #+m \<le> natify(k) #+n" in rev_mp)  | 
| 13163 | 292  | 
apply (rule_tac [2] n = "natify(k) " in nat_induct)  | 
293  | 
apply auto  | 
|
294  | 
done  | 
|
295  | 
||
| 
76213
 
e44d86131648
Removal of obsolete ASCII syntax
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
296  | 
lemma add_le_elim1: "\<lbrakk>k#+m \<le> k#+n; m \<in> nat; n \<in> nat\<rbrakk> \<Longrightarrow> m \<le> n"  | 
| 13163 | 297  | 
by (drule add_le_elim1_natify, auto)  | 
298  | 
||
| 
76213
 
e44d86131648
Removal of obsolete ASCII syntax
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
299  | 
lemma add_lt_elim1_natify: "k#+m < k#+n \<Longrightarrow> natify(m) < natify(n)"  | 
| 13163 | 300  | 
apply (rule_tac P = "natify(k) #+m < natify(k) #+n" in rev_mp)  | 
301  | 
apply (rule_tac [2] n = "natify(k) " in nat_induct)  | 
|
302  | 
apply auto  | 
|
303  | 
done  | 
|
304  | 
||
| 
76213
 
e44d86131648
Removal of obsolete ASCII syntax
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
305  | 
lemma add_lt_elim1: "\<lbrakk>k#+m < k#+n; m \<in> nat; n \<in> nat\<rbrakk> \<Longrightarrow> m < n"  | 
| 13163 | 306  | 
by (drule add_lt_elim1_natify, auto)  | 
307  | 
||
| 
76213
 
e44d86131648
Removal of obsolete ASCII syntax
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
308  | 
lemma zero_less_add: "\<lbrakk>n \<in> nat; m \<in> nat\<rbrakk> \<Longrightarrow> 0 < m #+ n \<longleftrightarrow> (0<m | 0<n)"  | 
| 15201 | 309  | 
by (induct_tac "n", auto)  | 
310  | 
||
| 13163 | 311  | 
|
| 60770 | 312  | 
subsection\<open>Monotonicity of Addition\<close>  | 
| 13163 | 313  | 
|
314  | 
(*strict, in 1st argument; proof is by rule induction on 'less than'.  | 
|
| 
14060
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
315  | 
Still need j\<in>nat, for consider j = omega. Then we can have i<omega,  | 
| 
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
316  | 
which is the same as i\<in>nat, but natify(j)=0, so the conclusion fails.*)  | 
| 
76213
 
e44d86131648
Removal of obsolete ASCII syntax
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
317  | 
lemma add_lt_mono1: "\<lbrakk>i<j; j\<in>nat\<rbrakk> \<Longrightarrow> i#+k < j#+k"  | 
| 13163 | 318  | 
apply (frule lt_nat_in_nat, assumption)  | 
319  | 
apply (erule succ_lt_induct)  | 
|
320  | 
apply (simp_all add: leI)  | 
|
321  | 
done  | 
|
322  | 
||
| 60770 | 323  | 
text\<open>strict, in second argument\<close>  | 
| 
76213
 
e44d86131648
Removal of obsolete ASCII syntax
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
324  | 
lemma add_lt_mono2: "\<lbrakk>i<j; j\<in>nat\<rbrakk> \<Longrightarrow> k#+i < k#+j"  | 
| 
14060
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
325  | 
by (simp add: add_commute [of k] add_lt_mono1)  | 
| 13163 | 326  | 
|
| 61798 | 327  | 
text\<open>A [clumsy] way of lifting < monotonicity to \<open>\<le>\<close> monotonicity\<close>  | 
| 13163 | 328  | 
lemma Ord_lt_mono_imp_le_mono:  | 
| 
76213
 
e44d86131648
Removal of obsolete ASCII syntax
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
329  | 
assumes lt_mono: "\<And>i j. \<lbrakk>i<j; j:k\<rbrakk> \<Longrightarrow> f(i) < f(j)"  | 
| 
 
e44d86131648
Removal of obsolete ASCII syntax
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
330  | 
and ford: "\<And>i. i:k \<Longrightarrow> Ord(f(i))"  | 
| 46820 | 331  | 
and leij: "i \<le> j"  | 
| 13163 | 332  | 
and jink: "j:k"  | 
| 46820 | 333  | 
shows "f(i) \<le> f(j)"  | 
334  | 
apply (insert leij jink)  | 
|
| 13163 | 335  | 
apply (blast intro!: leCI lt_mono ford elim!: leE)  | 
336  | 
done  | 
|
337  | 
||
| 61798 | 338  | 
text\<open>\<open>\<le>\<close> monotonicity, 1st argument\<close>  | 
| 
76213
 
e44d86131648
Removal of obsolete ASCII syntax
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
339  | 
lemma add_le_mono1: "\<lbrakk>i \<le> j; j\<in>nat\<rbrakk> \<Longrightarrow> i#+k \<le> j#+k"  | 
| 
76215
 
a642599ffdea
More syntactic cleanup. LaTeX markup working
 
paulson <lp15@cam.ac.uk> 
parents: 
76214 
diff
changeset
 | 
340  | 
apply (rule_tac f = "\<lambda>j. j#+k" in Ord_lt_mono_imp_le_mono, typecheck)  | 
| 13163 | 341  | 
apply (blast intro: add_lt_mono1 add_type [THEN nat_into_Ord])+  | 
342  | 
done  | 
|
343  | 
||
| 61798 | 344  | 
text\<open>\<open>\<le>\<close> monotonicity, both arguments\<close>  | 
| 
76213
 
e44d86131648
Removal of obsolete ASCII syntax
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
345  | 
lemma add_le_mono: "\<lbrakk>i \<le> j; k \<le> l; j\<in>nat; l\<in>nat\<rbrakk> \<Longrightarrow> i#+k \<le> j#+l"  | 
| 13163 | 346  | 
apply (rule add_le_mono1 [THEN le_trans], assumption+)  | 
347  | 
apply (subst add_commute, subst add_commute, rule add_le_mono1, assumption+)  | 
|
348  | 
done  | 
|
349  | 
||
| 60770 | 350  | 
text\<open>Combinations of less-than and less-than-or-equals\<close>  | 
| 
14060
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
351  | 
|
| 
76213
 
e44d86131648
Removal of obsolete ASCII syntax
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
352  | 
lemma add_lt_le_mono: "\<lbrakk>i<j; k\<le>l; j\<in>nat; l\<in>nat\<rbrakk> \<Longrightarrow> i#+k < j#+l"  | 
| 
14060
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
353  | 
apply (rule add_lt_mono1 [THEN lt_trans2], assumption+)  | 
| 
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
354  | 
apply (subst add_commute, subst add_commute, rule add_le_mono1, assumption+)  | 
| 
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
355  | 
done  | 
| 
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
356  | 
|
| 
76213
 
e44d86131648
Removal of obsolete ASCII syntax
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
357  | 
lemma add_le_lt_mono: "\<lbrakk>i\<le>j; k<l; j\<in>nat; l\<in>nat\<rbrakk> \<Longrightarrow> i#+k < j#+l"  | 
| 
14060
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
358  | 
by (subst add_commute, subst add_commute, erule add_lt_le_mono, assumption+)  | 
| 
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
359  | 
|
| 60770 | 360  | 
text\<open>Less-than: in other words, strict in both arguments\<close>  | 
| 
76213
 
e44d86131648
Removal of obsolete ASCII syntax
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
361  | 
lemma add_lt_mono: "\<lbrakk>i<j; k<l; j\<in>nat; l\<in>nat\<rbrakk> \<Longrightarrow> i#+k < j#+l"  | 
| 46820 | 362  | 
apply (rule add_lt_le_mono)  | 
363  | 
apply (auto intro: leI)  | 
|
| 
14060
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
364  | 
done  | 
| 
 
c0c4af41fa3b
Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
 
paulson 
parents: 
13784 
diff
changeset
 | 
365  | 
|
| 13163 | 366  | 
(** Subtraction is the inverse of addition. **)  | 
367  | 
||
368  | 
lemma diff_add_inverse: "(n#+m) #- n = natify(m)"  | 
|
369  | 
apply (subgoal_tac " (natify(n) #+ m) #- natify(n) = natify(m) ")  | 
|
370  | 
apply (rule_tac [2] n = "natify(n) " in nat_induct)  | 
|
371  | 
apply auto  | 
|
372  | 
done  | 
|
373  | 
||
374  | 
lemma diff_add_inverse2: "(m#+n) #- n = natify(m)"  | 
|
375  | 
by (simp add: add_commute [of m] diff_add_inverse)  | 
|
376  | 
||
377  | 
lemma diff_cancel: "(k#+m) #- (k#+n) = m #- n"  | 
|
378  | 
apply (subgoal_tac "(natify(k) #+ natify(m)) #- (natify(k) #+ natify(n)) =  | 
|
379  | 
natify(m) #- natify(n) ")  | 
|
380  | 
apply (rule_tac [2] n = "natify(k) " in nat_induct)  | 
|
381  | 
apply auto  | 
|
382  | 
done  | 
|
383  | 
||
384  | 
lemma diff_cancel2: "(m#+k) #- (n#+k) = m #- n"  | 
|
385  | 
by (simp add: add_commute [of _ k] diff_cancel)  | 
|
386  | 
||
387  | 
lemma diff_add_0: "n #- (n#+m) = 0"  | 
|
388  | 
apply (subgoal_tac "natify(n) #- (natify(n) #+ natify(m)) = 0")  | 
|
389  | 
apply (rule_tac [2] n = "natify(n) " in nat_induct)  | 
|
390  | 
apply auto  | 
|
391  | 
done  | 
|
392  | 
||
| 13361 | 393  | 
lemma pred_0 [simp]: "pred(0) = 0"  | 
394  | 
by (simp add: pred_def)  | 
|
395  | 
||
| 76214 | 396  | 
lemma eq_succ_imp_eq_m1: "\<lbrakk>i = succ(j); i\<in>nat\<rbrakk> \<Longrightarrow> j = i #- 1 \<and> j \<in>nat"  | 
| 46820 | 397  | 
by simp  | 
| 13361 | 398  | 
|
399  | 
lemma pred_Un_distrib:  | 
|
| 
76213
 
e44d86131648
Removal of obsolete ASCII syntax
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
400  | 
"\<lbrakk>i\<in>nat; j\<in>nat\<rbrakk> \<Longrightarrow> pred(i \<union> j) = pred(i) \<union> pred(j)"  | 
| 46820 | 401  | 
apply (erule_tac n=i in natE, simp)  | 
402  | 
apply (erule_tac n=j in natE, simp)  | 
|
| 13361 | 403  | 
apply (simp add: succ_Un_distrib [symmetric])  | 
404  | 
done  | 
|
405  | 
||
406  | 
lemma pred_type [TC,simp]:  | 
|
| 
76213
 
e44d86131648
Removal of obsolete ASCII syntax
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
407  | 
"i \<in> nat \<Longrightarrow> pred(i) \<in> nat"  | 
| 13361 | 408  | 
by (simp add: pred_def split: split_nat_case)  | 
409  | 
||
| 
76213
 
e44d86131648
Removal of obsolete ASCII syntax
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
410  | 
lemma nat_diff_pred: "\<lbrakk>i\<in>nat; j\<in>nat\<rbrakk> \<Longrightarrow> i #- succ(j) = pred(i #- j)"  | 
| 46820 | 411  | 
apply (rule_tac m=i and n=j in diff_induct)  | 
| 13361 | 412  | 
apply (auto simp add: pred_def nat_imp_quasinat split: split_nat_case)  | 
413  | 
done  | 
|
414  | 
||
| 58860 | 415  | 
lemma diff_succ_eq_pred: "i #- succ(j) = pred(i #- j)"  | 
| 13361 | 416  | 
apply (insert nat_diff_pred [of "natify(i)" "natify(j)"])  | 
| 46820 | 417  | 
apply (simp add: natify_succ [symmetric])  | 
| 13361 | 418  | 
done  | 
419  | 
||
420  | 
lemma nat_diff_Un_distrib:  | 
|
| 
76213
 
e44d86131648
Removal of obsolete ASCII syntax
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
421  | 
"\<lbrakk>i\<in>nat; j\<in>nat; k\<in>nat\<rbrakk> \<Longrightarrow> (i \<union> j) #- k = (i#-k) \<union> (j#-k)"  | 
| 46820 | 422  | 
apply (rule_tac n=k in nat_induct)  | 
423  | 
apply (simp_all add: diff_succ_eq_pred pred_Un_distrib)  | 
|
| 13361 | 424  | 
done  | 
425  | 
||
426  | 
lemma diff_Un_distrib:  | 
|
| 
76213
 
e44d86131648
Removal of obsolete ASCII syntax
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
427  | 
"\<lbrakk>i\<in>nat; j\<in>nat\<rbrakk> \<Longrightarrow> (i \<union> j) #- k = (i#-k) \<union> (j#-k)"  | 
| 13361 | 428  | 
by (insert nat_diff_Un_distrib [of i j "natify(k)"], simp)  | 
429  | 
||
| 69593 | 430  | 
text\<open>We actually prove \<^term>\<open>i #- j #- k = i #- (j #+ k)\<close>\<close>  | 
| 13361 | 431  | 
lemma diff_diff_left [simplified]:  | 
| 58860 | 432  | 
"natify(i)#-natify(j)#-k = natify(i) #- (natify(j)#+k)"  | 
| 13361 | 433  | 
by (rule_tac m="natify(i)" and n="natify(j)" in diff_induct, auto)  | 
434  | 
||
| 13163 | 435  | 
|
436  | 
(** Lemmas for the CancelNumerals simproc **)  | 
|
437  | 
||
| 
46821
 
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
 
paulson 
parents: 
46820 
diff
changeset
 | 
438  | 
lemma eq_add_iff: "(u #+ m = u #+ n) \<longleftrightarrow> (0 #+ m = natify(n))"  | 
| 13163 | 439  | 
apply auto  | 
440  | 
apply (blast dest: add_left_cancel_natify)  | 
|
441  | 
apply (simp add: add_def)  | 
|
442  | 
done  | 
|
443  | 
||
| 
46821
 
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
 
paulson 
parents: 
46820 
diff
changeset
 | 
444  | 
lemma less_add_iff: "(u #+ m < u #+ n) \<longleftrightarrow> (0 #+ m < natify(n))"  | 
| 13163 | 445  | 
apply (auto simp add: add_lt_elim1_natify)  | 
446  | 
apply (drule add_lt_mono1)  | 
|
447  | 
apply (auto simp add: add_commute [of u])  | 
|
448  | 
done  | 
|
449  | 
||
450  | 
lemma diff_add_eq: "((u #+ m) #- (u #+ n)) = ((0 #+ m) #- n)"  | 
|
451  | 
by (simp add: diff_cancel)  | 
|
452  | 
||
453  | 
(*To tidy up the result of a simproc. Only the RHS will be simplified.*)  | 
|
| 
76213
 
e44d86131648
Removal of obsolete ASCII syntax
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
454  | 
lemma eq_cong2: "u = u' \<Longrightarrow> (t\<equiv>u) \<equiv> (t\<equiv>u')"  | 
| 13163 | 455  | 
by auto  | 
456  | 
||
| 
76213
 
e44d86131648
Removal of obsolete ASCII syntax
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
457  | 
lemma iff_cong2: "u \<longleftrightarrow> u' \<Longrightarrow> (t\<equiv>u) \<equiv> (t\<equiv>u')"  | 
| 13163 | 458  | 
by auto  | 
459  | 
||
460  | 
||
| 60770 | 461  | 
subsection\<open>Multiplication\<close>  | 
| 13163 | 462  | 
|
463  | 
lemma mult_0 [simp]: "0 #* m = 0"  | 
|
464  | 
by (simp add: mult_def)  | 
|
465  | 
||
466  | 
lemma mult_succ [simp]: "succ(m) #* n = n #+ (m #* n)"  | 
|
467  | 
by (simp add: add_def mult_def natify_succ raw_mult_type)  | 
|
468  | 
||
469  | 
(*right annihilation in product*)  | 
|
470  | 
lemma mult_0_right [simp]: "m #* 0 = 0"  | 
|
| 
76216
 
9fc34f76b4e8
getting rid of apply (unfold ...)
 
paulson <lp15@cam.ac.uk> 
parents: 
76215 
diff
changeset
 | 
471  | 
unfolding mult_def  | 
| 13163 | 472  | 
apply (rule_tac n = "natify(m) " in nat_induct)  | 
473  | 
apply auto  | 
|
474  | 
done  | 
|
475  | 
||
476  | 
(*right successor law for multiplication*)  | 
|
477  | 
lemma mult_succ_right [simp]: "m #* succ(n) = m #+ (m #* n)"  | 
|
478  | 
apply (subgoal_tac "natify(m) #* succ (natify(n)) =  | 
|
479  | 
natify(m) #+ (natify(m) #* natify(n))")  | 
|
480  | 
apply (simp (no_asm_use) add: natify_succ add_def mult_def)  | 
|
481  | 
apply (rule_tac n = "natify(m) " in nat_induct)  | 
|
482  | 
apply (simp_all add: add_ac)  | 
|
483  | 
done  | 
|
484  | 
||
485  | 
lemma mult_1_natify [simp]: "1 #* n = natify(n)"  | 
|
486  | 
by auto  | 
|
487  | 
||
488  | 
lemma mult_1_right_natify [simp]: "n #* 1 = natify(n)"  | 
|
489  | 
by auto  | 
|
490  | 
||
| 
76213
 
e44d86131648
Removal of obsolete ASCII syntax
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
491  | 
lemma mult_1: "n \<in> nat \<Longrightarrow> 1 #* n = n"  | 
| 13163 | 492  | 
by simp  | 
493  | 
||
| 
76213
 
e44d86131648
Removal of obsolete ASCII syntax
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
494  | 
lemma mult_1_right: "n \<in> nat \<Longrightarrow> n #* 1 = n"  | 
| 13163 | 495  | 
by simp  | 
496  | 
||
497  | 
(*Commutative law for multiplication*)  | 
|
498  | 
lemma mult_commute: "m #* n = n #* m"  | 
|
499  | 
apply (subgoal_tac "natify(m) #* natify(n) = natify(n) #* natify(m) ")  | 
|
500  | 
apply (rule_tac [2] n = "natify(m) " in nat_induct)  | 
|
501  | 
apply auto  | 
|
502  | 
done  | 
|
503  | 
||
504  | 
(*addition distributes over multiplication*)  | 
|
505  | 
lemma add_mult_distrib: "(m #+ n) #* k = (m #* k) #+ (n #* k)"  | 
|
506  | 
apply (subgoal_tac "(natify(m) #+ natify(n)) #* natify(k) =  | 
|
507  | 
(natify(m) #* natify(k)) #+ (natify(n) #* natify(k))")  | 
|
508  | 
apply (rule_tac [2] n = "natify(m) " in nat_induct)  | 
|
509  | 
apply (simp_all add: add_assoc [symmetric])  | 
|
510  | 
done  | 
|
511  | 
||
512  | 
(*Distributive law on the left*)  | 
|
513  | 
lemma add_mult_distrib_left: "k #* (m #+ n) = (k #* m) #+ (k #* n)"  | 
|
514  | 
apply (subgoal_tac "natify(k) #* (natify(m) #+ natify(n)) =  | 
|
515  | 
(natify(k) #* natify(m)) #+ (natify(k) #* natify(n))")  | 
|
516  | 
apply (rule_tac [2] n = "natify(m) " in nat_induct)  | 
|
517  | 
apply (simp_all add: add_ac)  | 
|
518  | 
done  | 
|
519  | 
||
520  | 
(*Associative law for multiplication*)  | 
|
521  | 
lemma mult_assoc: "(m #* n) #* k = m #* (n #* k)"  | 
|
522  | 
apply (subgoal_tac "(natify(m) #* natify(n)) #* natify(k) =  | 
|
523  | 
natify(m) #* (natify(n) #* natify(k))")  | 
|
524  | 
apply (rule_tac [2] n = "natify(m) " in nat_induct)  | 
|
525  | 
apply (simp_all add: add_mult_distrib)  | 
|
526  | 
done  | 
|
527  | 
||
528  | 
(*for a/c rewriting*)  | 
|
529  | 
lemma mult_left_commute: "m #* (n #* k) = n #* (m #* k)"  | 
|
530  | 
apply (rule mult_commute [THEN trans])  | 
|
531  | 
apply (rule mult_assoc [THEN trans])  | 
|
532  | 
apply (rule mult_commute [THEN subst_context])  | 
|
533  | 
done  | 
|
534  | 
||
535  | 
lemmas mult_ac = mult_assoc mult_commute mult_left_commute  | 
|
536  | 
||
537  | 
||
538  | 
lemma lt_succ_eq_0_disj:  | 
|
| 
76213
 
e44d86131648
Removal of obsolete ASCII syntax
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
539  | 
"\<lbrakk>m\<in>nat; n\<in>nat\<rbrakk>  | 
| 76214 | 540  | 
\<Longrightarrow> (m < succ(n)) \<longleftrightarrow> (m = 0 | (\<exists>j\<in>nat. m = succ(j) \<and> j < n))"  | 
| 13163 | 541  | 
by (induct_tac "m", auto)  | 
542  | 
||
543  | 
lemma less_diff_conv [rule_format]:  | 
|
| 
76213
 
e44d86131648
Removal of obsolete ASCII syntax
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
544  | 
"\<lbrakk>j\<in>nat; k\<in>nat\<rbrakk> \<Longrightarrow> \<forall>i\<in>nat. (i < j #- k) \<longleftrightarrow> (i #+ k < j)"  | 
| 13784 | 545  | 
by (erule_tac m = k in diff_induct, auto)  | 
| 13163 | 546  | 
|
547  | 
lemmas nat_typechecks = rec_type nat_0I nat_1I nat_succI Ord_nat  | 
|
548  | 
||
| 0 | 549  | 
end  |