author | clasohm |
Thu, 19 Oct 1995 13:25:03 +0100 | |
changeset 1287 | 84f44b84d584 |
parent 7 | 268f93ab3bc4 |
permissions | -rw-r--r-- |
0 | 1 |
(* Title: ZF/ex/equiv.ML |
2 |
ID: $Id$ |
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
4 |
Copyright 1993 University of Cambridge |
|
5 |
||
6 |
For equiv.thy. Equivalence relations in Zermelo-Fraenkel Set Theory |
|
7 |
*) |
|
8 |
||
9 |
val RSLIST = curry (op MRS); |
|
10 |
||
11 |
open Equiv; |
|
12 |
||
13 |
(*** Suppes, Theorem 70: r is an equiv relation iff converse(r) O r = r ***) |
|
14 |
||
15 |
(** first half: equiv(A,r) ==> converse(r) O r = r **) |
|
16 |
||
17 |
goalw Equiv.thy [trans_def,sym_def] |
|
18 |
"!!r. [| sym(r); trans(r) |] ==> converse(r) O r <= r"; |
|
19 |
by (fast_tac (ZF_cs addSEs [converseD,compE]) 1); |
|
20 |
val sym_trans_comp_subset = result(); |
|
21 |
||
22 |
goalw Equiv.thy [refl_def] |
|
23 |
"!!A r. refl(A,r) ==> r <= converse(r) O r"; |
|
24 |
by (fast_tac (ZF_cs addSIs [converseI] addIs [compI]) 1); |
|
25 |
val refl_comp_subset = result(); |
|
26 |
||
27 |
goalw Equiv.thy [equiv_def] |
|
28 |
"!!A r. equiv(A,r) ==> converse(r) O r = r"; |
|
29 |
by (rtac equalityI 1); |
|
30 |
by (REPEAT (ares_tac [sym_trans_comp_subset, refl_comp_subset] 1 |
|
31 |
ORELSE etac conjE 1)); |
|
32 |
val equiv_comp_eq = result(); |
|
33 |
||
34 |
(*second half*) |
|
35 |
goalw Equiv.thy [equiv_def,refl_def,sym_def,trans_def] |
|
36 |
"!!A r. [| converse(r) O r = r; domain(r) = A |] ==> equiv(A,r)"; |
|
37 |
by (etac equalityE 1); |
|
38 |
by (subgoal_tac "ALL x y. <x,y> : r --> <y,x> : r" 1); |
|
39 |
by (safe_tac ZF_cs); |
|
40 |
by (fast_tac (ZF_cs addSIs [converseI] addIs [compI]) 3); |
|
41 |
by (ALLGOALS (fast_tac |
|
42 |
(ZF_cs addSIs [converseI] addIs [compI] addSEs [compE]))); |
|
43 |
by flexflex_tac; |
|
44 |
val comp_equivI = result(); |
|
45 |
||
46 |
(** Equivalence classes **) |
|
47 |
||
48 |
(*Lemma for the next result*) |
|
49 |
goalw Equiv.thy [equiv_def,trans_def,sym_def] |
|
50 |
"!!A r. [| equiv(A,r); <a,b>: r |] ==> r``{a} <= r``{b}"; |
|
51 |
by (fast_tac ZF_cs 1); |
|
52 |
val equiv_class_subset = result(); |
|
53 |
||
54 |
goal Equiv.thy "!!A r. [| equiv(A,r); <a,b>: r |] ==> r``{a} = r``{b}"; |
|
55 |
by (REPEAT (ares_tac [equalityI, equiv_class_subset] 1)); |
|
56 |
by (rewrite_goals_tac [equiv_def,sym_def]); |
|
57 |
by (fast_tac ZF_cs 1); |
|
58 |
val equiv_class_eq = result(); |
|
59 |
||
60 |
val prems = goalw Equiv.thy [equiv_def,refl_def] |
|
61 |
"[| equiv(A,r); a: A |] ==> a: r``{a}"; |
|
62 |
by (cut_facts_tac prems 1); |
|
63 |
by (fast_tac ZF_cs 1); |
|
64 |
val equiv_class_self = result(); |
|
65 |
||
66 |
(*Lemma for the next result*) |
|
67 |
goalw Equiv.thy [equiv_def,refl_def] |
|
68 |
"!!A r. [| equiv(A,r); r``{b} <= r``{a}; b: A |] ==> <a,b>: r"; |
|
69 |
by (fast_tac ZF_cs 1); |
|
70 |
val subset_equiv_class = result(); |
|
71 |
||
72 |
val prems = goal Equiv.thy |
|
73 |
"[| r``{a} = r``{b}; equiv(A,r); b: A |] ==> <a,b>: r"; |
|
74 |
by (REPEAT (resolve_tac (prems @ [equalityD2, subset_equiv_class]) 1)); |
|
75 |
val eq_equiv_class = result(); |
|
76 |
||
77 |
(*thus r``{a} = r``{b} as well*) |
|
78 |
goalw Equiv.thy [equiv_def,trans_def,sym_def] |
|
79 |
"!!A r. [| equiv(A,r); x: (r``{a} Int r``{b}) |] ==> <a,b>: r"; |
|
80 |
by (fast_tac ZF_cs 1); |
|
81 |
val equiv_class_nondisjoint = result(); |
|
82 |
||
83 |
val [major] = goalw Equiv.thy [equiv_def,refl_def] |
|
84 |
"equiv(A,r) ==> r <= A*A"; |
|
85 |
by (rtac (major RS conjunct1 RS conjunct1) 1); |
|
86 |
val equiv_type = result(); |
|
87 |
||
88 |
goal Equiv.thy |
|
89 |
"!!A r. equiv(A,r) ==> <x,y>: r <-> r``{x} = r``{y} & x:A & y:A"; |
|
90 |
by (fast_tac (ZF_cs addIs [eq_equiv_class, equiv_class_eq] |
|
91 |
addDs [equiv_type]) 1); |
|
92 |
val equiv_class_eq_iff = result(); |
|
93 |
||
94 |
goal Equiv.thy |
|
95 |
"!!A r. [| equiv(A,r); x: A; y: A |] ==> r``{x} = r``{y} <-> <x,y>: r"; |
|
96 |
by (fast_tac (ZF_cs addIs [eq_equiv_class, equiv_class_eq] |
|
97 |
addDs [equiv_type]) 1); |
|
98 |
val eq_equiv_class_iff = result(); |
|
99 |
||
100 |
(*** Quotients ***) |
|
101 |
||
102 |
(** Introduction/elimination rules -- needed? **) |
|
103 |
||
104 |
val prems = goalw Equiv.thy [quotient_def] "x:A ==> r``{x}: A/r"; |
|
105 |
by (rtac RepFunI 1); |
|
106 |
by (resolve_tac prems 1); |
|
107 |
val quotientI = result(); |
|
108 |
||
109 |
val major::prems = goalw Equiv.thy [quotient_def] |
|
110 |
"[| X: A/r; !!x. [| X = r``{x}; x:A |] ==> P |] \ |
|
111 |
\ ==> P"; |
|
112 |
by (rtac (major RS RepFunE) 1); |
|
113 |
by (eresolve_tac prems 1); |
|
114 |
by (assume_tac 1); |
|
115 |
val quotientE = result(); |
|
116 |
||
117 |
goalw Equiv.thy [equiv_def,refl_def,quotient_def] |
|
118 |
"!!A r. equiv(A,r) ==> Union(A/r) = A"; |
|
119 |
by (fast_tac eq_cs 1); |
|
120 |
val Union_quotient = result(); |
|
121 |
||
122 |
goalw Equiv.thy [quotient_def] |
|
123 |
"!!A r. [| equiv(A,r); X: A/r; Y: A/r |] ==> X=Y | (X Int Y <= 0)"; |
|
124 |
by (safe_tac (ZF_cs addSIs [equiv_class_eq])); |
|
125 |
by (assume_tac 1); |
|
126 |
by (rewrite_goals_tac [equiv_def,trans_def,sym_def]); |
|
127 |
by (fast_tac ZF_cs 1); |
|
128 |
val quotient_disj = result(); |
|
129 |
||
130 |
(**** Defining unary operations upon equivalence classes ****) |
|
131 |
||
132 |
(** These proofs really require as local premises |
|
133 |
equiv(A,r); congruent(r,b) |
|
134 |
**) |
|
135 |
||
136 |
(*Conversion rule*) |
|
137 |
val prems as [equivA,bcong,_] = goal Equiv.thy |
|
138 |
"[| equiv(A,r); congruent(r,b); a: A |] ==> (UN x:r``{a}. b(x)) = b(a)"; |
|
139 |
by (cut_facts_tac prems 1); |
|
140 |
by (rtac UN_singleton 1); |
|
141 |
by (etac equiv_class_self 1); |
|
142 |
by (assume_tac 1); |
|
143 |
by (rewrite_goals_tac [equiv_def,sym_def,congruent_def]); |
|
144 |
by (fast_tac ZF_cs 1); |
|
145 |
val UN_equiv_class = result(); |
|
146 |
||
147 |
(*Resolve th against the "local" premises*) |
|
148 |
val localize = RSLIST [equivA,bcong]; |
|
149 |
||
150 |
(*type checking of UN x:r``{a}. b(x) *) |
|
151 |
val _::_::prems = goalw Equiv.thy [quotient_def] |
|
152 |
"[| equiv(A,r); congruent(r,b); X: A/r; \ |
|
153 |
\ !!x. x : A ==> b(x) : B |] \ |
|
154 |
\ ==> (UN x:X. b(x)) : B"; |
|
155 |
by (cut_facts_tac prems 1); |
|
156 |
by (safe_tac ZF_cs); |
|
157 |
by (rtac (localize UN_equiv_class RS ssubst) 1); |
|
158 |
by (REPEAT (ares_tac prems 1)); |
|
159 |
val UN_equiv_class_type = result(); |
|
160 |
||
161 |
(*Sufficient conditions for injectiveness. Could weaken premises! |
|
162 |
major premise could be an inclusion; bcong could be !!y. y:A ==> b(y):B |
|
163 |
*) |
|
164 |
val _::_::prems = goalw Equiv.thy [quotient_def] |
|
165 |
"[| equiv(A,r); congruent(r,b); \ |
|
166 |
\ (UN x:X. b(x))=(UN y:Y. b(y)); X: A/r; Y: A/r; \ |
|
167 |
\ !!x y. [| x:A; y:A; b(x)=b(y) |] ==> <x,y>:r |] \ |
|
168 |
\ ==> X=Y"; |
|
169 |
by (cut_facts_tac prems 1); |
|
170 |
by (safe_tac ZF_cs); |
|
171 |
by (rtac (equivA RS equiv_class_eq) 1); |
|
172 |
by (REPEAT (ares_tac prems 1)); |
|
173 |
by (etac box_equals 1); |
|
174 |
by (REPEAT (ares_tac [localize UN_equiv_class] 1)); |
|
175 |
val UN_equiv_class_inject = result(); |
|
176 |
||
177 |
||
178 |
(**** Defining binary operations upon equivalence classes ****) |
|
179 |
||
180 |
||
181 |
goalw Equiv.thy [congruent_def,congruent2_def,equiv_def,refl_def] |
|
182 |
"!!A r. [| equiv(A,r); congruent2(r,b); a: A |] ==> congruent(r,b(a))"; |
|
183 |
by (fast_tac ZF_cs 1); |
|
184 |
val congruent2_implies_congruent = result(); |
|
185 |
||
186 |
val equivA::prems = goalw Equiv.thy [congruent_def] |
|
187 |
"[| equiv(A,r); congruent2(r,b); a: A |] ==> \ |
|
188 |
\ congruent(r, %x1. UN x2:r``{a}. b(x1,x2))"; |
|
189 |
by (cut_facts_tac (equivA::prems) 1); |
|
190 |
by (safe_tac ZF_cs); |
|
191 |
by (rtac (equivA RS equiv_type RS subsetD RS SigmaE2) 1); |
|
192 |
by (assume_tac 1); |
|
7
268f93ab3bc4
Installation of new simplifier for ZF/ex. The hom_ss example in misc.ML is
lcp
parents:
0
diff
changeset
|
193 |
by (asm_simp_tac (ZF_ss addsimps [equivA RS UN_equiv_class, |
0 | 194 |
congruent2_implies_congruent]) 1); |
195 |
by (rewrite_goals_tac [congruent2_def,equiv_def,refl_def]); |
|
196 |
by (fast_tac ZF_cs 1); |
|
197 |
val congruent2_implies_congruent_UN = result(); |
|
198 |
||
199 |
val prems as equivA::_ = goal Equiv.thy |
|
200 |
"[| equiv(A,r); congruent2(r,b); a1: A; a2: A |] \ |
|
201 |
\ ==> (UN x1:r``{a1}. UN x2:r``{a2}. b(x1,x2)) = b(a1,a2)"; |
|
202 |
by (cut_facts_tac prems 1); |
|
7
268f93ab3bc4
Installation of new simplifier for ZF/ex. The hom_ss example in misc.ML is
lcp
parents:
0
diff
changeset
|
203 |
by (asm_simp_tac (ZF_ss addsimps [equivA RS UN_equiv_class, |
0 | 204 |
congruent2_implies_congruent, |
205 |
congruent2_implies_congruent_UN]) 1); |
|
206 |
val UN_equiv_class2 = result(); |
|
207 |
||
208 |
(*type checking*) |
|
209 |
val prems = goalw Equiv.thy [quotient_def] |
|
210 |
"[| equiv(A,r); congruent2(r,b); \ |
|
211 |
\ X1: A/r; X2: A/r; \ |
|
212 |
\ !!x1 x2. [| x1: A; x2: A |] ==> b(x1,x2) : B |] \ |
|
213 |
\ ==> (UN x1:X1. UN x2:X2. b(x1,x2)) : B"; |
|
214 |
by (cut_facts_tac prems 1); |
|
215 |
by (safe_tac ZF_cs); |
|
216 |
by (REPEAT (ares_tac (prems@[UN_equiv_class_type, |
|
217 |
congruent2_implies_congruent_UN, |
|
218 |
congruent2_implies_congruent, quotientI]) 1)); |
|
219 |
val UN_equiv_class_type2 = result(); |
|
220 |
||
221 |
||
222 |
(*Suggested by John Harrison -- the two subproofs may be MUCH simpler |
|
223 |
than the direct proof*) |
|
224 |
val prems = goalw Equiv.thy [congruent2_def,equiv_def,refl_def] |
|
225 |
"[| equiv(A,r); \ |
|
226 |
\ !! y z w. [| w: A; <y,z> : r |] ==> b(y,w) = b(z,w); \ |
|
227 |
\ !! y z w. [| w: A; <y,z> : r |] ==> b(w,y) = b(w,z) \ |
|
228 |
\ |] ==> congruent2(r,b)"; |
|
229 |
by (cut_facts_tac prems 1); |
|
230 |
by (safe_tac ZF_cs); |
|
231 |
by (rtac trans 1); |
|
232 |
by (REPEAT (ares_tac prems 1 |
|
233 |
ORELSE etac (subsetD RS SigmaE2) 1 THEN assume_tac 2 THEN assume_tac 1)); |
|
234 |
val congruent2I = result(); |
|
235 |
||
236 |
val [equivA,commute,congt] = goal Equiv.thy |
|
237 |
"[| equiv(A,r); \ |
|
7
268f93ab3bc4
Installation of new simplifier for ZF/ex. The hom_ss example in misc.ML is
lcp
parents:
0
diff
changeset
|
238 |
\ !! y z. [| y: A; z: A |] ==> b(y,z) = b(z,y); \ |
0 | 239 |
\ !! y z w. [| w: A; <y,z>: r |] ==> b(w,y) = b(w,z) \ |
240 |
\ |] ==> congruent2(r,b)"; |
|
241 |
by (resolve_tac [equivA RS congruent2I] 1); |
|
242 |
by (rtac (commute RS trans) 1); |
|
243 |
by (rtac (commute RS trans RS sym) 3); |
|
244 |
by (rtac sym 5); |
|
245 |
by (REPEAT (ares_tac [congt] 1 |
|
246 |
ORELSE etac (equivA RS equiv_type RS subsetD RS SigmaE2) 1)); |
|
247 |
val congruent2_commuteI = result(); |
|
248 |
||
249 |
(***OBSOLETE VERSION |
|
250 |
(*Rules congruentI and congruentD would simplify use of rewriting below*) |
|
251 |
val [equivA,ZinA,congt,commute] = goalw Equiv.thy [quotient_def] |
|
252 |
"[| equiv(A,r); Z: A/r; \ |
|
253 |
\ !!w. [| w: A |] ==> congruent(r, %z.b(w,z)); \ |
|
254 |
\ !!x y. [| x: A; y: A |] ==> b(y,x) = b(x,y) \ |
|
255 |
\ |] ==> congruent(r, %w. UN z: Z. b(w,z))"; |
|
256 |
val congt' = rewrite_rule [congruent_def] congt; |
|
257 |
by (cut_facts_tac [ZinA,congt] 1); |
|
258 |
by (rewtac congruent_def); |
|
259 |
by (safe_tac ZF_cs); |
|
260 |
by (rtac (equivA RS equiv_type RS subsetD RS SigmaE2) 1); |
|
261 |
by (assume_tac 1); |
|
7
268f93ab3bc4
Installation of new simplifier for ZF/ex. The hom_ss example in misc.ML is
lcp
parents:
0
diff
changeset
|
262 |
by (asm_simp_tac (ZF_ss addsimps [congt RS (equivA RS UN_equiv_class)]) 1); |
0 | 263 |
by (rtac (commute RS trans) 1); |
264 |
by (rtac (commute RS trans RS sym) 3); |
|
265 |
by (rtac sym 5); |
|
266 |
by (REPEAT (ares_tac [congt' RS spec RS spec RS mp] 1)); |
|
267 |
val congruent_commuteI = result(); |
|
268 |
***) |